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ABSTRACT: 
 
Classification of remote sensing imagery provides an inexpensive yet efficient approach to land cover mapping. In supervised image 
classification, training samples are collected through certain sampling schemes, which are used to derive classification rules, aiming 
for adequate accuracy for the applications at hand. However, in conventional classification methods, the potential of training 
samples in terms of locational information is not tapped further, confounding the classification accuracy to the limited separability 
inherent to the given input feature vector. This paper explores two methods pertaining to geostatistics, i.e., simple kriging with local 
mean and cokriging, to predict class occurrences based on training samples’ indicator transforms (location and classes) and 
spectrally derived class probabilities, thus calibrating the a posterior class probability vectors derived from initial spectral 
classification. The results showed that classification accuracy is significantly increased by these two methods for utilizing spatial 
information contained in training samples and initial spectral classification, compared with those obtainable with spectral 
classification. Moreover, the proposed methods constitute a valuable strategy for making fuller use of information residing in 
training data for improving spectrally derived classification, which is independent of the specific classifiers initially adopted for 
image classification. 
 
 

                                                                 
*  Corresponding author.   

1. INTRODUCTION 

Land cover, as a spatial factor impacting and linking human life 
and natural environment, refers to the observed (bio)physical 
cover on the earth's surface (FAO, 2000). Remote sensing is an 
attractive data source for land cover mapping. Although remote 
sensing has been used successfully in mapping a range of land 
covers at a variety of spatial and temporal scales, the land cover 
maps derived are often judged to be of insufficient quality for 
operational applications (Foody, 2002). Therefore, how to 
improve the quality of land cover maps has been a hot issue all 
the time. 
 
Thematic mapping, exemplified by land cover mapping, from 
remotely sensed data is typically based on an image 
classification (Foody, 2002). Hence, the performance of a 
certain classifier would become a key factor which impacts on 
the classification accuracy and further impacts on the quality of 
the derived maps. An operating classifier can be considered as a 
system that reduces the initial uncertainty by consuming the 
information contained in the input vector (Battiti, 1995). Battiti 
further indicates that the final uncertainty will be zero in the 
ideal case (i.e., the class will be certain), while it can be higher 
in the actual applications for at least two different reasons, i.e., 
insufficient input information or suboptimal operation.  
 
Hence, the performance of a classifier is one possibility that 
relates to suboptimal operation. That is, even if sufficient input 
information is given, classification accuracy quantified by the 
confusion matrix may be lower than its potential value due to 
the insufficient training of the classifier. On the other hand, the 
information loss during the training period manifests a 
conceivable promotion space of classification accuracy. 

Therefore, if a strategy is capable of compensating or reducing 
the information loss, an accuracy promotion of classification 
would be foreseeable.  
 
Traditional spectral classification of remotely sensed images 
applied on a pixel-by-pixel basis ignores the potentially useful 
spatial information between the values of proximate pixels 
(Atkinson, 2000; Zhang, 2009). Geostatistical approaches, 
adopted in this paper, indeed aim to employ the spatial 
information inherent in remotely sensed images to enhance the 
spectral classification. Spatial information mainly serves two 
purposes that derive texture “wavebands” for subsequent use in 
classification or smooth the imagery prior to or after 
classification (Atkinson, 2000). 
 
This paper utilizes two kriging approaches, i.e., simple kriging 
with local and cokriging, to fusion the input (e.g., spectral ) and 
spatial information. In the following sections, first the 
principles of the two kriging paradigms are revisited, then an 
index which assesses the potential separability of a data set is 
introduced, and finally the experimental results are presented 
and analyzed. 
 
 

2. METHOD 

Spectral response in each waveband of a remotely sensed image 
may be treated as a continuous variable, which is also defined 
as a regional variable in geostatistics. The variogram (or 
covariance function) is a quantitative model which reflects the 
relationship and spatial structure of the regional variables.  
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Assume )(xZ to be a certain attribute, i.e., a regional variable, 

then the experimental variogram )(h  (generally abbreviated to 

variogram) may be obtained from   =1, 2, ..., N(h) pairs of 
observations { )(  xZ , )( hx Z } defined on a support   

at locations {x, x+h} separated by a fixed lag h: 
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where       h = a vector of direction and distance.  
 
If the study area is isotropic, h simply degrades to distance h. In 
this paper, the support   represents a single pixel in a remotely 
sensed image. 
 
The kriging system is essentially a generalized least square 
regression algorithm (Goovaerts, 2002), which is characterized 
by the following formula: 
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where    )(ˆ xZ = estimate of the regional variable )(xZ  

)( xz = realization of Z at x  

)(x = weight of )( xz  

)(xm , )( xm = expected values of Z  at x and x  

)(xn = total number of realizations in the 
neighborhood of x .  

 
The purpose of kriging is to minimize the estimated 
variance )]()(ˆ[)(2 xxx ZZVarE   under the unbiased 
condition, i.e., 0)]()(ˆ[  xx ZZE . 
 
The regional variable )(xZ is usually further decomposed to two 
parts, formulated as follows: 
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where  )(xR = the residual component modelled as a stationary 

random function with zero mean 
)(xm = the trend component 

 
2.1 Simple Kriging with Varying Local Mean 

Traditionally, simple kriging considers the mean )(xm to be 

known and constant, i.e., )(xm =m, through the study area 
(Goovaerts, 2002). In other words, the mean m dose not depend 
on location x but represents global information common to all 
unsampled locations under the assumption of stationarity. Once 
the trend component )(xm is known and varying with the 

location x, Eq.2 turns to simple kriging with varying local mean.  
 

Given K land cover types of a certain study area, )(xZ in Eq.2 

may be replaced by a Boolean variable )(xkI to indicate 

whether the unsampled location pertaining to the predefined kth 
class. The indicator transform of )(xkI  is 
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Hence, Eq.2 may be rewritten as: 
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where   )( xki = indicator of a training sample at location x  

)(),( xx kk pp = the a posteriori probability (of hard 

classification) or membership (of fuzzy classification), 
obtained by a classifier, pertaining to unsampled 
location x and training sample at location x  

)(ˆ xkI = estimate of the probability that the unsampled 

location x pertains to the kth class. 
 

Given K classes under consideration, Eq.5 will be repeated K 
times. Then a normalization process will be applied to attain K 
estimated probabilities, which finally constitute a K-class 

indicator vector, i.e., )(ˆ xKI .  

 
Through information fusion of the indicator vectors of training 
samples and the predicted probability vectors, Eq.5 aims at 
revising the probability vectors. It incorporates both the known 
categorical information of training samples and the predicted a 
posteriori information of all the pixels throughout a remotely 
sensed image. From the perspective of the information theory, 
Eq.5 adequately excavates the information contained in the 
input vectors (i.e., spectral features) which is partially wasted 
by a classifier. It is )()(  xx KK PI  that is the wasted 
information, namely the aforementioned residual. Therefore, 
Eq.5 utilizes the linear combinations of residuals pertaining to 
the training samples to amend the posterior probabilities which 
are directly predicted by a classifier (Zhang, 2009). 

 
2.2 Cokriging 

In the kriging paradigm, another algorithm to combine the 
primary and secondary information is cokriging. Direct 
measurements of the primary attribute of interest are often 
supplemented by secondary information in order to improve the 
estimation (Goovaerts, 1997). 
 
Similarly, given K land cover types in a study area, assume 

)(xkI to be the primary variable and )(xkP  to be the 

secondary variable, the cokriging estimate for )(xkI  is 
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where   )( xki = indicator transform of the class pertaining to 

the training sample at x  

)( xkp  = posterior probabilities or memberships 

pertaining to all the supports x , i.e., all the pixels 

)(),(  xx mm = mean values of )(xkI  and )(xkP  at 

x and x , respectively 

)(),( xx   = weights of primary variable and 

secondary variable, respectively 
 

Obviously, it is the combination of the primary and secondary 
information that helps improve the directly predicted precision.  
 
2.3 The Upper Bound of Accuracy: Arif Index 

Eq.5 and Eq.6 are the mathematical bases for the fusion of input 
information (e.g. spectral information) and spatial information. 
The common ground of the two equations is that both the input 
information and spatial information depend only on the training 
samples. In other words, the differences between the indicator 
vectors and the posterior probability vectors of training samples 
are the premise on which the method proposed in this paper will 
function. The information loss due to classifier consumption 
will result in the residuals. It is easy to encounter this 
circumstance in remotely sensed image classification, so the 
premise on which to apply the methods proposed in this paper is 
prone to be satisfied.  
 
Even if an ideal classifier exists, the predicted land cover types 
are probably different with the ground truth due to insufficient 
input vectors. In other words, a maximum achievable accuracy 
exists in pattern classification using a particular set of features. 
Hence, if an upper bound of the discrimination power of input 
vectors can be assessed, the difference between the upper bound 
and the predicted accuracy of a certain classifier may be 
regarded as a quantitative measurement of the information 
wasted by the classifier. Furthermore, the quantitative 
measurement manifests the existence of differences between 
true land cover types and the posterior probabilities which 
ascertain the premise of the applications of Eq.5 and Eq.6. 
 
Arif index, adopted in this paper, can be used to directly assess 
the maximum achievable classification accuracy of a set of 
input features by any classifiers (Arif, 2009). This index varies 
from 0 to 1, with 0 representing completely separable classes 
while 1 representing completely overlapping classes. In other 
words, as overlapping among classes increases, the value of 
Arif index also increases and the classification accuracy 
decreases.  
 
In Figure 1, the parameter N denotes the volume of training 
samples, and the parameter  ( 1 ) denotes a user defined 
threshold which controls the strength of clustering data points 
of the same class near a particular data point y. The Arif index 
is defined as 
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Figure 1. Flow Chart for Calculating Arif Index 
 
Obviously, Arif index gives the ratio of data points which are 
not surrounded by data points of its class to the total number of 
data points (Arif, 2009). The relationship between Arif index 
and the maximum accuracy a feature set may achieve is 
computed as  
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where    boundlowerAccuracy _ = lower bound of accuracy which 

is the percentage of the majority class. 
 
Hence, a linear trend can be interpolated between 100% 
classification accuracy and the lower bound of the classification 
accuracy. 
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3. EXPERIMENTS AND ANALYSIS 

The land cover data used in this paper is acquired from the 
National Land Cover Dataset 2001 (abbreviated to NLCD2001) 
for conterminous United States. Sixty-five mapping zones and 
sixteen land cover types are involved in NLCD2001. All 
NLCD2001 products were generated from a standardized set of 
data layers mosaiced by mapping zone. Typical zonal layers 
included multi-season Landsat-5 TM and Landsat-7 Enhanced 
Thematic Mapper (ETM+) imagery centred on a nominal 
collection year of 2001 (Homer, 2007). All of the images are 
geo-registrated to the Albers equal area projection grid, and 
resampled to 30m grid cells.  
 
 

(a) 

 

 Open Water 

 Forest 

 Grassland/Shrub

 Barren/Sand 

 Cropland 

 Wetland 
 

(b) (c) 
 

Figure 2. (a): Land cover types in NLCD2001 database; (b) and 
(c): an ETM+ image and six land covers of the test area 

 
Because all the images utilized in NLCD2001 are provided by 
U.S. Geological Survey (USGS) Centre for Earth Resources 
Observation and Science (EROS), a corresponding Landsat 7 
ETM+ image was downloaded from EROS. It was acquired on 
July 13, 1999. After the registration with the land cover data, a 
study area ranging from the latitude of 1447   N to 4547  N, 
and from the longitude 10109  W to 12109   W was clipped 
from the ETM+ image. The clipped image is made up of 500 by 
500 pixels (Figure 2(a)). In our experiment, six classes 
including open water, forest, grassland/shrub, barren/sand, 
cropland and wetland are chosen from the NLCD2001 (Figure 
2(b)). The tasseled cap transformation is applied to the ETM+ 
image after which the two components of soil brightness and 
greenness are selected. 
 
Thanks to NLCD2011, the ground truth of each pixel in the 
image is known. Hence, 1500 training samples are random 
selected with others allocated as testing samples. The ratio of 
training samples to testing samples is rather small. The support 
vector machine (abbreviated to SVM) is utilized as the classifier 
in this paper. And the package libsvm interfacing with the 
statistical software R is adopted to implement K-class ( 2K ) 
land cover classification (Meyer, 2009).  
 

For this Data set, the estimated Arif index is 0.411 which 
manifests a moderate separability and corresponding to the 
potential highest accuracy of 79.47%. Compared to the overall 
accuracy of 73.79% obtained by the SVM classifier, 79.47% 
not only reflects that part of the information is consumed by the 
classifier, but indicates an improvable accuracy of about 5%. Tt 
is easy to compute indicator transforms for training samples of 
known class labels. And, after prediction of the posterior 
probabilities pertaining to six classes by the SVM classifier, the 
residuals can be calculated as differences between binary 
indicators and predicted class probabilities. Table 1 lists the 
variogram models of simple kriging with local mean which 
reflect the spatial distribution of residuals of the training 
samples. And it also shows the vairogram models of the 
primary variable and the secondary variable, and the 
covariogram of the cokriging method. It exhibits the spatial 
variation of the target variable at the locations of training 
samples and testing samples (i.e., all pixels except for training 
samples in this experiment), respectively. The trend of the 
cokriging method in this paper is obtained by applying spatial 
smoothing to the posterior probabilities. 
 
In general, as is shown in Table 2, the cokriging method obtains 
a considerable improvement in overall accuracy and kappa 
coefficient, and simple kriging with local mean is no exception 
and even more effective. The former achieves 2 percents 
improvement in overall accuracy and an increase in kappa 
coefficient from 0.58 to 0.65, while the latter witnesses a 5% 
accuracy increase and an improved kappa coefficient of 0.68. 
The reason the SK method gains higher accuracies than 
cokriging may be that the trends of the primary and secondary 
variables of cokriging are obtained through smoothing in spatial 
domain, while the trend of the SK method is localized to each 
pixel. Therefore, the residuals are more accurate. Moreover, the 
latter demands less variogram models and thus costs less time 
for modelling. Therefore, the method of simple kriging with 
local mean is more worthy of recommendation for the fusion of 
input information and spatial information. 

 
Furthermore, the SK method is made as an example to account 
for the effects of kriging paradigm. Four groups of testing 
samples, each of which contains fifteen samples with ground 
truth as farmland but classified as other land cover types are 
randomly chosen and exhibited, shown in Figure 3. The 
posterior probabilities predicted by the SVM classifier and 
those revised by the SK method are compared in this figure. 
Generally, the posterior probabilities obtained by the classifier 
would first be corrected by residuals and then be normalized. 
However, in order to more clearly reveal the probability 
fluctuations before and after residual corrections, the 
normalization procedure was skipped over. In Figure 3, the 
abscissa represents the number of testing samples, while the 
ordinate denotes the probabilities. For the selected testing 
samples, the red circle ● denotes probabilities pertaining to the 
land cover type of farmland after SVM prediction, while the 
black triangle ▲ represents the highest posterior probabilities 
pertaining to the prevailing class type other than farmland after 
the prediction of SVM. Figures 3(a)-(b) illustrate that the 
classifier failed to make accurate predictions. Correspondingly, 
the reversed purple triangle ▼ denotes the probabilities 
pertaining to farmland after residual corrections by the SK 
method; while the blue squares ■ represent the revised ones 
corresponding to the original black triangles ▲. 
 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B7, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

250



 

 

 SK Cokriging  

Class Variogram 
Variogram of 

primary variable
Variogram of 

secondary variable
Covariogram 

Open water 0.0007 Sph(30) 0.001 Sph(30) 0.0003 Sph(30) 0.0003 Sph(30) 
Forest 0.046 Exp(21) 0.044 Exp(58) 0.011 Exp(60) 0.005 Gau(250) 

Grassland/Shrub 0.012 Gau(37) 0.122 Exp(44) 0.018 Sph(50) 0.008 Exp(100) 
Barren/Sand 0.130 Gau(53) 0.130 Exp(80) 0.011 Gau(65) 0.005 Gau(180) 

Cropland 0.056 Gau(90) 0.056 Exp(430) 0.0009 Exp(75) 0.0002 Exp(100) 
Wetland 0.019 Exp(92) 0.019 Gau(100) 0.001 Gau(200) 0.0007 Gau(100) 

 
Table 1. Variograms and covariograms of SK and cokriging 

 
 

Method  SVM Classifie  Cokriging Simple Kriging with Local Mean 

Class 
 Producer’s 

Accuray 

User’s 

Accuray 

Producer’s 

Accuracy 

User’s 

Accuracy

Producer’s 

Accuracy 

User’s 

Accuracy 

Open water  37.29 53.14 24.41 48.65 31.86 50.81 

Forest  78.95 84.17 76.52 81.59 77.95 83.12 

Grassland/Shrub  57.36 66.33 58.86 64.91 61.29 64.47 

Barren/Sand  91.96 74.51 86.25 82.76 87.53 81.82 

Cropland  15.92 59.75 73.28 76.11 72.80 73.93 

Wetland  10.32  41.80 35.98 20.51 27.16 54.83 

Overall Accuracy  73.79  75.77 77.02 

Kappa Coefficient   0.58  0.63 0.65 
 

Table 2. Accuracy Assessment Indexes of SVM Classification and Two Kriging Methods (Accuracy Unit: %) 
 
 

 
(a) Classified as non-farmland; revised as farmland (b) Classified as non-farmland; revised as farmland 

 
(c) Classified as farmland; revised as farmland (d) Classified as farmland; revised as non-farmland 

 
Figure 3. The Probabilities of the SVM Classifier and the SK Method (e.g., Farmland) 

 
On the whole, Figures 3(a)-(c) reflect the effect of the SK 
method, i.e., it utilizes the information of spatial distribution 
provided by training samples to improve the posterior 
probabilities pertaining to the target land cover type and 
accordingly reduce those pertaining to the confusing types. 
Take Figure 3(a) for example. Given the testing samples with 

ground truth as farmland, the predicted posterior probabilities of 
farmland are less than those of other confusing types, which 
results in omission. However, after the residual corrections, the 
probabilities of farmland are improved with a relative 
probability decrease of other types, which may also be reflected 
by the producer’s accuracy in Table 2. In addition, as is shown 
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in Figure 3(b), the increased posterior probability pertaining to 
the right type is still not predominant to exceed the decreased 
probability pertaining to the confusing types. However, the 
effect that the SK method helps to improve the predicted 
probability of the right land cover type is still traceable. 
 
In Figure 3(d), the SK method fails to further improve the 
originally prevailing posterior probabilities pertaining to the 
right type, but instead meets the exact reverse. It may come 
down to two reasons: (1) the input vectors are prone to 
confusion which results in the slight advantage in the posterior 
probability of the right type; (2) the training samples in a local 
domain are sparse and unevenly distributed which results in an 
unfaithful modelling of residual variation and a naive spatial 
interpolation. That is, the less accurate residual variogram 
models would easily reverse the slight advantage. However， 
samples of this kind in Figure 3(b) only occupy 1.1 percent of 
the total samples. On the contrary, samples of the kind in Figure 
3(a), which are poorly classified but correctly revised, occupy 
58 percent.  
 
Moreover, compared to the producer’s and user’s accuracy 
acquired by the SVM classification, as are listed in Table 2, the 
corresponding accuracy fluctuations after the application of the 
SK method may not equivalent to mean that the kriging method 
is particularly suitable to some certain land cover types.  
 
In order to further testify the efficiency of the kriging paradigm, 
another TM image including 17 land cover types is adopted. A 
total of ten variables were available: Landsat TM channels 1-5, 
7, modified normalized difference vegetation index (MNDVI), 
scaled elevation, slope in degrees, and a combined slope-aspect 
variable. Further detail of this data set is documented in Zhang 
and Goodchild (2007). The estimated Arif index manifests a 
corresponding highest classification accuracy of 72.22%. The 
overall accuracy and kappa coefficient achieved by generalized 
linear model (abbreviated to GLM) are 65.55% and 0.62, 
respectively. After residual corrections, the former is improved 
to 75.45% and the latter is increased to 0.73. It is interesting to 
notice that the revised accuracy of 75.45% is larger than the 
estimated potential highest accuracy of 72.22%. The is that the 
potential highest is just estimated by the input vectors without 
considering the introduced spatial information during the post-
classification corrections. 
 
 

4. CONCLUSION 

The proposed two kriging methods are independent of the 
specific classifiers initially adopted for image classification. 
Hence, these methods may be treated as post-classification 
approaches. They aim at compensating part of the information 
consumed by classifiers due to the insufficient learning process. 
Moreover, these methods are independent of the land cover 
types, although the improvements vary in the producer’s and 
user’s accuracies of different land covers. The factors, including 
the sampling methods, sample sizes, and sample distributions, 
need to be further investigated, for they are close related to the 
spatial information of the training samples.  
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