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ABSTRACT:

A framework for multitemporal change detection based on kernel-composition is applied to a multispectral-multitemporal classification
scenario, evaluated and compared to traditional change detection approaches. The framework makes use of the fact that images of
different points in time can be used as input data sources for kernel-composition - a data fusion approach typically used with kernel
based classifiers like support vector machines (SVM). The framework is used to analyze the growth of a limestone pit in the Upper
Rhine Graben (West Germany). Results indicate that the highest accuracy rates are produced by the kernel based framework. The
approach produces the least number of false positives and gives the most convincing overall impression.

1 INTRODUCTION

Although the availability of modern remote sensing datasets in-
creases — e.g. hyperspectral, high resolution optical satellite im-
agery, interferometric synthetic aperture radar — many change de-
tection applications continue to require traditional datasets. The
fact that e.g. Landsat data are available since 1972 makes them
a valuable source of information for four entire decades. They
can be seen as a way to recover information on past environ-
mental conditions which are not observable any more by field
campaigns. However, traditional methods like post-classification
change detection based on overlaying classification maps raise
accuracy issues (Serra et al., 2003). Therefore, more sophisti-
cated change detection methods have been proposed in literature.
Some approaches model the probability of transition from one
class to another. Another approach is change detection based
on kernel-composition (Camps-Valls et al., 2006b). These issues
are exemplified on a change detection application from Upper
Rhine Graben. Changes in the landuse are outlined with spe-
cial focus on the construction of a limestone pit which contin-
uously grows replacing near-natural ecosystems. Kernel based
classifiers — like the well know support vector machine (SVM)
(Boser et al., 1992), (Cortes and Vapnik, 1995) — work on kernel
matrices. These kernel matrices represent the similarity between
data points in high dimensional feature spaces (reproducing ker-
nel Hilbert spaces, RKHS). The SVM chooses the most suitable
points by optimizing a target function on the kernel choosing only
a few training data points as SVs. These points are used to de-
fine a separating hyperplane which is usually non-linear in the
input space. The conceptual advantage of kernel-composition
is, that different kernel functions can by combined e.g. by ad-
dition, thus performing data fusion in the RKHS during classi-
fication. This circumstance is usually employed for data fusion
(Tuia and Camps-Valls, 2009). However, it can also be employed
for change detection. In (Camps-Valls et al., 2008), (Camps-Valls
et al., 2006a) well know change detection techniques — like im-
age differencing — are adapted for kernel-composition based ap-
proaches. An entire framework for change detection and mul-
titemporal classification is presented. This framework is evalu-
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Figure 1: Limestone pit near Heidelberg

ated and compared against traditional approaches herein. We ex-
emplify this framework analyzing the growth of a limestone pit
near the city of Heidelberg between 2001 and 2005. The kernel
based approaches are compared against traditional approaches
like post-classification change detection and an approach based
on stacking features before classification. Although traditional
approaches provide valuable information on the overall growth
of the limestone pit, kernel based approaches provide more ro-
bust results which are visually more convincing and quantita-
tively more accurate. The remainder of the paper is organized
as follows. Sec.2 provides the mathematical foundations of the
methods used. Sec.3 gives an overview of relevant literature in
change detection and kernel-composition methods. The results
of the comparison are presented in Sec.4 and discussed in Sec.5.
Finally, Sec.6 concludes the contribution.
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2 MATHEMATICAL FOUNDATIONS

Within this section, the mathematical foundations of the main
methods used will be given. A high number of profound intro-
ductions into the SVM problem (Burges, 1998), (Ivanciuc, 2007),
(Zhang, 2001), (Scholkopf and Smola, 2002), (Camps-Valls and
Bruzzone, 2009) and valuable reviews on the application of SVM
in remote sensing (Mountrakis et al., 2010), (Plaza et al., 2009)
have been published. For this reason, the foundations of SVM
and state-of-the-art application examples will not be given ex-
haustively, but strictly focused on the kernel-composition prob-
lem.

2.1 Kernel matrices and the SVM problem

Given a data set X with n data points, kernel matrices are the re-
sult of kernel functions applied over all n? tupels of data (Shawe-
Taylor and Cristianini, 2004). The outcome of a kernel function
Ka;x; = fs(xs, ;) is a similarity measure for the two training
data z; and x; depending on some distance metric 6. Usually,
¢ is the Euclidean distance (Mercier and Lennon, 2003). How-
ever, kernel functions can be modified by e.g. by introducing
different similarity measures (Amari and Wu, 1999). For in-
stance, (Mercier and Lennon, 2003) and (Honeine and Richard,
2010) use the spectral angle as a similarity measure for hyper-
spectral SVM classification. To model complex distributions of
the training data in the feature space, fs is usually some non-
linear function. The most frequently applied family of non-linear
functions are Gaussian radial basis functions (RBF) (Scholkopf et
al., 1997). The closer two points are found in the feature space,
the higher is their resulting kernel value. Given these facts, the
kernel matrix simply represents the similarity between the points
of the training data set. To understand how the kernel matrix is
used in SVM classification, it is helpful not to look at the primal,
but the dual formulation of the SVM problem (Ivanciuc, 2007).
The dual problem is given by Eq.1

2 —*ZZA Ajyiyi K

Ai >0 V Support Vectors
A; =0 V other points
Yi € [717 +1}

marimize : (1)

xl,xj)

The Lagrange multipliers A; are only greater than zero for the
support vectors. These are usually identified by sequential mini-
mal optimization (Platt, 1998). Hence, only training data which
are both SVs contribute to the solution of Eq.1 (for all other cases,
AiAj = O setting the second part of Eq.1 to zero). The class
labels y; are in [—1,1]. Since the second part of Eq.1 is sub-
tracted, only points with different class labels can maximize the
term (their product y;y; = —1 renders the second part positive).
The problem is therefore maximized, if points are chosen as SVs
which have different class labels but are found close to each other
in the feature space (thus yielding a high value in the kernel ma-
trix K (zi,x;)). Thus, the similarity values of the kernel matrix
are used for finding the best suited training points as SVs. By set-
ting the \; of all other points to zero, a sparse solution is found
which only depends on the SVs.

2.2 Kernel-Composition

As can be seen in Eq.1, the training data x; do not enter di-
rectly into the SVM problem. In contrast, the data are represented
by kernels K (z;,x;). According to Mercer’s theorem (Mercer,
1909), valid kernel functions can be combined, e.g. through ad-
dition, to form new valid kernels. From there, different sources
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of information on the same training data can be fused through
simple arithmetical operations (Camps -Valls et al., 2006b) For
instance, K¢ (z¢,25) = Ka(zf, 23') + Kp(zf,2P) fuses
the information domains A and B on the training data z;, x;
and forms a new kernel K. Within the original framework on
kernel-composition for data fusion (Camps-Valls et al., 2006b),

the following fusion approaches are published.

Kc(:vlc,mj )= KA(acZ , T ) +KB(mZ ,xf)

)

Ko(af,2f) = pKa(z,23') + (1 — p)Kp (', 27)

3

Ko(28,25) = Ka + Ki + Kap(z,2P) + Kga (2?27
4

Eq.2 is called direct summation kernel, the most simple form
of kernel-composition. Eq.3 is called weighted summation ker-
nel. Its main advantage is, that the weighting parameter ;1 €
(0, 1) allows to regulate the relevance of the two data sources A
and B for the classification problem. Eq.4 is called the cross-
information kernel. It consist of four single kernels while the
last two K ap and K p 4 allow incorporating the mutual informa-
tion between the data sources A and B (e.g. differences between
the value of both data sources yielded for a particular data point).
Based on these basic composition approaches (Camps-Valls et al.,
2008), (Camps-Valls et al., 2006a) extend the kernel-composition
framework to the field of multitemporal classification and change
detection. The key idea is to use images from the same land-
scape but from different points in time as input data for kernel-
composition and SVM classification. Given two points in time
t0 and t1 two kernels Ko and Ky are built. These kernels only
incorporate the spectral information given at each point of time.
Then, a new kernel can be build using one of the Eqs.2 t0 4 For
instance, KChange(mzcv ) = KO( T 5Ty ) +Kt1( Z;, ;1)
represents a direct summatlon kernel which incorporates the in-
formation about the change of the spectral responses of pixels
implicitly. Although the basic composite kernels can be used for
multitemporal classification as well, the authors developed spe-
cialized kernels in order to combine traditional change detection
techniques with kernel-composition. For instance, the image dif-
ference kernel is introduced in Eq.5.

)

c C
T, T

t0
Ly

Ko = Ku(zi', 2t') + Ko (2, 22%) —

- Kpu(®,25) (5

‘.Kﬂ,zo(%‘ 737]' )

Note that Eq.5 is a particular case of the cross-information ker-
nel (Eq.4) that performs the change detection technique of image
differencing in the RKHS.

3 RELATED WORK

Within this section, an overview on relevant contribution from the
field of change detection and kernel-composition will be given.
Since kernel-composition has been introduced only in 2006, it has
been dedicated far less research than change detection in general.

3.1 Change detection and multitemporal classification

Herein, a short outline on important reviews and state-of-the-art
papers in change detection is presented. A very comprehensive
introduction into multitemporal classification is given by (Gillan-
ders et al., 2008). (Singh, 1989) and (Coppin et al., 2004) present
reviews with emphasis on signal processing. (Wang and Xu,
2010) give a comparison on change detection methods empha-
sising particular aspects of different applications. (Holmgreen
and Thuresson, 1998) and (Wulder et al., 2006) present reviews



International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B7, 2012
XXII ISPRS Congress, 25 August — 01 September 2012, Melbourne, Australia

focused on applications of change detection of satellite images
in forestry. A comparable contribution for landscape monitor-
ing is given by (Kennedy et al., 2009). (Almutairi and Warner,
2010) present important considerations on accuracy assessment
and the influence of accuracy to the final change detection result.
(Van Oort, 2007) presents an insightful contribution on the impor-
tance of the error matrix of multitemporal classification. Some
state-of-the-art papers are given e.g. by (Bruzzone and Serpico,
1997) and (Bruzzone et al., 2004) which present an iterative ap-
proach for change detection. (Coops et al., 2010) apply Land-
sat time series for assessing forest fragmentation. (Dianat and
Kasaei, 2010) use a polynomial regression technique for change
detection which considers neighborhoods. Application schemes
based on SVMs are presented by (Nemmour and Chibani, 2006),
(He and Laptev, 2009) and (Bovolo et al., 2008). (Mota et al.,
2007) and (Feitosa et al., 2009) present fuzzy approaches based
on modeling the class transitional probabilities.

3.2 Kernel-composition

Kernel-composition as a method of data fusion has originally
been proposed by (Camps-Valls et al., 2006b). An example for
multispectral data fusion is given by (Camps-Valls and Bruzzone,
2009). Kernel-composition is widely applied for spectral-spatial
classification fusing hyperspectral data with wavelets (Tan and
Du, 2011), (Velasco-Forero and Manian, 2009), spatial correla-
tion data (Chen et al., 2011), morphological profiles (Tan and Du,
2010), (Tuia and Camps-Valls, 2009), empirical mode decompo-
sition (Demir and Erturk, 2010), median filters (Marconcini et
al., 2009) or self-complementary filters (Fauvel et al., 2008). An
approach fusing hyperspectral and laserscanning data is given
by (Braun et al., 2011). Another application domain is semi-
supervised learning, where kernel-composition is used to incor-

porate the spectral information of unlabeled pixels (Tuia and Camps-

Valls, 2011), (Tuia and Camps-Valls, 2009), (Marconcini et al.,
2009), (Camps-Valls et al., 2007), (Bandos et al., 2006). (Camps-
Valls et al., 2008), (Camps-Valls et al., 2006a) provide the frame-
work for multitemporal classification used herein. The frame-
work has so far been evaluated e.g. by (Bovolo et al., 2010) in
a support vector domain description approach on Landsat images
and by (Volpi et al., 2011) in an unsupervised approach on mul-
titemporal VHR data. To the knowledge of the authors, an eval-
uation on a multitemporal scenario with medium resolution data
based on supervised classification has not been published so far.

4 RESULTS

Within this section, results for three change detection approaches
will be presented. The main objective is to monitor the growth
of a limestone pit close to the village Mauer (near Heidelberg) in
the Upper Rhine Graben, Germany, Latitude: 49°19°50”N, Lon-
gitude: 8°48°17E (cf. Fig. 1). Two 122 x 135 pixel (~14.8km?)
subsets of Landsat ETM+ images are used. The first is from 02-
11-2001 (Fig.2(a)), the second is from 17-4-2005 (Fig.2(b)). For-
tunately, the village is located in the very center of both images,
so the failure of the Landsat ETM+ scan line corrector does not
affect the work at all. Between the two points in time, the lime-
stone pit has considerably grown. Although more landuse classes
are assigned for classification in the first place (e.g. meadows,
forests, settlements), only two classes of interest will be consid-
ered in the final result: LS-Pit present in 2001 (yellow) and LS-
Pit new between 2001 and 2005 (red). Complete groundtruth has
been made available by a digitization in the field and is shown
in Fig.2(c). Except the limestone pit, all other landuse classes
will not be considered and set to black. At first, change detec-
tion based on a post-classification approach will be employed.
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Secondly, features will be stacked to represent the change of pix-
els intensities between the two points in time. Lastly, kernel-

composition approaches based on (Camps-Valls et al., 2008), (Camps-

Valls et al., 2006a) and (Camps-Valls et al., 2006b) will be em-
ployed. These approaches also incorporate changes in pixels in-
tensities. All change detection approaches are based on image
classification. Each classification was done using an SVM with a
Gaussian RBF kernel'. Kernel parameters were tuned using a 5-
fold grid search in the ranges v € [27'%,2%] and C € [27°,2"7].
The LibSVM 3.11 library was utilized (Chang et al., 2001).

4.1 Post-classification approach

Two classifications are performed using the same landuse classes
in each dataset. The limestone pit is represented by a single class.
Since classification of the two points in time is performed sepa-
rately, it is not possible to assign the class LS-Pit new between
2001 and 2005 in the 2005 dataset. No features are available
which indicate whether or not a pixel has belonged to the lime-
stone pit in 2001 when classifying the 2005 image. From there,
one class LS-Pit has been assigned in both datasets and the two
classes of interest have been determined by overlaying the results
afterwards. The overall accuracy on the two classes is 86.7%.
A visual result after setting other classes (like meadows, forest,
settlements) to black is given in Fig.2(d). Note the high amount
of pixels falsely assigned to the class LS-Pit new between 2001
and 2005. Since the entire image scene is made up of limestone,
many places of bare soils have been confused with the limestone

pit.

4.2 Stacked-features approach

In order to provide implicit information on the changes of pixels
intensities, a stacked-features approach was performed. The data
matrices of both 8 channel Landsat datasets were concatenated to
build a 16 channel data matrix. Within this feature space, the two
classes LS-Pit present in 2001 and LS-Pit new between 2001 and
2005 can be distinguished in a single classification step. While
the class LS-Pit present in 2001 shows grey color in both images,
LS-Pit new between 2001 and 2005 would change from e.g. green
to grey. This indicates that a change from e.g. meadows to lime-
stone pit has taken place between the two points in time. From
there, only one classification needs to be performed. The overall
accuracy on the two classes is 87.5%. A visual result after setting
other classes to black is given in Fig.2(e). Note that the amount
of false positive pixels is considerably reduced. False positives
are now assigned to the class LS-Pit present in 2001. Much less
pixels are found in LS-Pit new between 2001 and 2005. Since the
latter class is characterized by a change in color from green to
grey, it is less confused with bare soils which would stay grey in
both points in time.

4.3 Kernel-composition approach

The last approach performed is similar to the stacked-features ap-
proach. In order to incorporate information on e.g. color changes,
both datasets are combined to a new dataset. However, it is aimed
to perform the fusion not in the feature space, but in the RKHS.

Therefore, a composed kernel matrix was build, e.g. by Kchange (aclc , T

Kzom(x;m,x;m) + K2005(x;05,x;-05). The following kernel-

composition approaches were followed: direct summation (Eq.2),
weighted summation (Eq.3), cross-information (Eq.4) and image
differencing (Eq.5). The overall accuracy values for each ap-
proach can be seen in Tab.1. The best overall accuracy yielded

'K (zi,7;) = exp(—v(||z; — x;||)2), implemented in LibSVM
3.11
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(d) Result: Post-classification

(e) Result: Stacked-features

4

(¢) Groundtruth

(f) Result: Kernel-composition

Figure 2: Landsat ETM+ image scenes, groundtruth and results

Table 1: Approaches and overall accuracies

Approach | Composition | Overall accuracy |
Post-classification - 86.7%
Stacked-features - 87.5%
Kernel-Composition Direct. Sum. 88.8%
Kernel-Composition | Weighted. Sum. 88.1%
Kernel-Composition Cross-Info. 87.9%
Kernel-Composition Image Diff. 88.6%

by the direct summation approach on the two classes is 88.8%.
As can be seen, all kernel-composition approaches yield slightly
higher accuracy values than the other approaches. Although specif-
ically designed for this task, the image difference kernel does not
yield the highest accuracy value. However, the performance dif-
ference to the direct summation kernel is only 0.2 percent points
— a value which should not be over-interpreted. It should be noted
that more simple kernels yield better results than more complex
ones. A result which is in agreement with the findings of the
inventors of the framework (Camps-Valls et al., 2006b), (Camps-
Valls et al., 2008), (Tuia and Camps-Valls, 2009). A visual result
after setting other classes to black is given in Fig.2(f). There are
much less false positives than in the other approaches. The only
exception is a large barren field where open Loess soil mixed
with limestone rocks is found (south-east corner of the image).
The spectral characteristics of this field are very similar to the
limestone pit thus making the classifier susceptible for confusion
with the limestone pit.

4.4 McNemar’s Test

The advantages in overall accuracy of e.g. kernel-composition
over post-classification may seem only a slight gain. Therefore,
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they were tested for significance using McNemar’s test (Foody,
2004). McNemar's test is based on x? statistics and can be em-
ployed to test the significance of differences between two nom-
inal labellings. The advantage is considered as significant if the
resulting test value |z| > 1.96. Testing the advantage of kernel-
composition over post-classification yielded |z| &~ 13.95 indicat-
ing a significant advantage. A test of kernel-composition against
the stacked-features approach yielded |z| ~ 6.50 which also is
significant. The stacked-features approach yielded |z| ~ 10.16
over post-classification. Thus, all advantages described are sig-
nificant.

5 DISCUSSION

We present a comparison of change detection based on kernel-

composition with two traditional methods, post-classification change

detection and a stacked-features approach. As Fig.2(d) reveals,
post-classification change detection produces many false alerts.
In fact, the limestone pit is only located in the very south east.
The overall accuracy yielded is 86.7%. Stacking features be-
fore classification (i.e. combining the two 8 channel datasets
to a new 16 channel dataset) and assigning two limestone pit
classes (LS-Pit present in 2001 and LS-Pit new between 2001
and 2005) produces better results. However, there are still too
many false alerts Fig.2(e). The overall accuracy yielded is 87.5%.
Approaches based on kernel-composition produce the most ac-
curate results. However, there are slight differences when us-
ing kernel-composition that depend on the type of composition.
In agreement with other authors, more simple composition ap-
proaches tend to produce better results than more complex ones.
In our case, the direct summation and the image difference kernel
produced the best results. The highest overall accuracy yielded
is 88.8% by a direct summation kernel. There are almost no
false alerts and the change between 2001 and 2005 becomes most
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clearly visible. The advantages between the approaches may seem
only moderate. However, in the major part of the pit, a separation
between the two limestone pit classes seem to be quite simple and
therefore, all approaches yield good results in a large part. Fur-
thermore, it has to be kept in mind that a major source of error
comes from confusion between the limestone pit and natural out-
crops of limestone or open chalky soils. Confusion between these
landcover types narrow the differences between the change de-
tection approaches. It should be noted though, that false positives
based on this source of error are much less for kernel-composition
approaches and more concentrated to single spots. According to
McNemar’s test, the advantage in overall accuracy of the kernel-
composition approach over the other approaches are significant.
The reason for the advantage of the kernel-composition approach
and the stacked-features approach over post-classification change
detection is straightforward. While post-classification change de-
tection does not include any information on the change in pixels
intensities between the two points of time, both kernel-composition
and stacked-features do incorporate this information implicitly.
However, the advantage of kernel-composition over the stacked-
features approach is remarkable. Both approaches include in-
formation on the change in pixels intensities. However, kernel-
composition appears to be a better suited technique to exploit
this information. It is assumed that the main advantage lies in
the fact, that the kernel-composition represents this information
in the RKHS, while the stacked-features approach represents it
in the original feature space. Since SVMs operate in the RKHS
when finding their optimal solution, kernel-composition and SVM
seem to be a more suitable combination for representing this im-
plicit information.

6 CONCLUSIONS

Kernel based change detection is a conceptually elegant and use-
ful method for change detection and multi temporal classification.
Standard techniques like image differencing can be executed in
RKHS, thus benefiting from the advantages of kernel based SVM
classification. Changes in landuse for the given dataset from Up-
per Rhine Graben can be visualized and furthermore quantified
with high precision. In future work, the approach will be tested
on more complex change detection problems.
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