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ABSTRACT: 

 

The rapidly growing world population and the resulting pressure on the efficiency of agriculture require a sustainable development 

of intensive field management with regard to natural resources. In this context, the use of non-destructive remote sensing 

technologies to monitor status and change detection of plant growth is in the focus of research and application. In this contribution, 

we evaluate the applicability of multitemporal terrestrial laser scanning (TLS) for rice growth monitoring. The test sites are located 

around Jiansanjiang in Heilongjiang Province in the far northeast of China. The focus of the field experiment was on different 

nitrogen fertilizer inputs during the growing period in 2011. To realize the monitoring approach, three campaigns were carried out 

during the vegetative stage of rice plants. For all campaigns the terrestrial laser scanner Riegl VZ-1000 was used. The achieved 

knowledge can be described in two parts. First, for each date the variability of plant height and biomass is detectable for the whole 

experiment field and - more important - between the plots. Furthermore, differences in height and biomass related to edge effects can 

be investigated for every single plot. The spatial distribution is visualized by Crop Surface Models (CSM), which are digital surface 

models with a high resolution and accuracy achieved by the interpolation of the 3D point clouds. Secondly, the multitemporal 

surveying approach enables the monitoring of the growth rate of the rice plants. Additionally, it is possible to detect and analyze as 

well the spatial distribution of the changes by comparing the CSMs. Our results show that TLS is a suitable and promising method 

for rice growth monitoring. Furthermore, the contemporaneous surveying with other sensors enables us to validate our measurements 

and bares opportunities for further enhancements. 
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1. INTRODUCTION 

The principle of Light Detection and Ranging (LIDAR) systems 

is the computation of distances between a sensor and a target 

with a laser beam (Jensen, 2007). This is possible by (i) 

measuring the time between transmitting and receiving a pulsed 

signal, (ii) calculating the phase shift in a sinusoidal continuous 

beam, or (iii) detecting a laser dot on a target with a camera and 

calculate the distance from the triangle between transmitter, 

camera, and target (Shan & Toth, 2009; Kraus, 2004). Thus, 

highly accurate 3D point clouds are obtained from the achieved 

information. Depending on the used platform, it can be 

distinguished between Airborne Laser Scanning (ALS), 

Terrestrial Laser Scanning (TLS), and Mobile Laser Scanning 

(MLS) (Vosselmann & Maas, 2010). The methods differ in 

their accuracy, spatial resolution, covered area, and measuring 

rate. 

 

Generally, the investigation and monitoring of the earth’s 

surface by remote sensing techniques is object of research in 

various fields of interests. However, in the field of agriculture, 

laser scanning is only used for a few applications. 

McKinion et al. (2010) established yield stability maps for 

cotton and corn fields over a period of three years with ALS 

measurements. At a smaller scale, Eitel et al. (2011) analysed 

the nitrogen status of spring wheat using a TLS system with a 

green scanning laser. Based on a previous study (Eitel et al., 

2010), they detected the ability to quantify the crop nitrogen 

status by the relationship between leaf chlorophyll and reflected 

green laser light. In the context of precision farming, 

Saeys et al. (2009) mounted a laser scanner on a combine 

harvester to estimate the crop density while driving. The driving 

speed can be adjusted automatically in order to maximize the 

capacity of the harvester. The usability of multi-temporal TLS 

to detect 3D crop changes, is presented by Hoffmeister et al. 

(2010). In this study, patterns in the distribution of height 

differences within a sugar-beet field were detected with a time-

of-flight laser scanner and visualized in Crop Surface Models 

(CSM) and Crop Volume Models (CVM). Ehlert et al. (2008, 

2009) established a measuring system with a triangulation and a 

time-of-flight scanner. The estimated mean crop heights 

(oilseed rape, winter rye, winter wheat, and grassland) were 

correlated to fresh and dry biomass with good results (R²=0.75 

to 0.99). The impact of different nitrogen fertilizer rates on 

various cereals (barley, oat, and wheat) was investigated with a 

phase-shift scanner by Lumme et al. (2008). They found a good 

correlation between plant height and grain yield (R²=0.88 to 

0.99). 

 

The structure of rice plants is similar to the investigated cereals, 

which suggests that laser scanning can also be used to 

determine rice crop properties. Moreover, the importance of 
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rice cultivation increases because it is a staple food, in 

particular for the rapidly growing Asian population. 

Casanova et al. (1998) already presented a study about 

monitoring rice during the growing season with a hand-held 

radiometer. Their conclusion was that only biomass can be 

predicted with a high accuracy (R²=0.97). The possibility to 

estimate the leaf area index (LAI) from spectral data is limited 

(R²=0.67). Recent studies focus on deriving different vegetation 

properties, like the LAI and the green leaf chlorophyll density 

(GLCD), from remote sensing data. Therefore, Yang et al. 

(2011) compared different transformations for reflectance data, 

obtained from a spectroradiometer, concerning their capability 

of predicting rice biophysical parameters. In another study 

Ryu et al. (2011) used an airborne hyperspectral sensor to 

determine the nitrogen content of rice plants at the heading 

stage. In the context of rice growth monitoring, Koppe et al. 

(2012) demonstrated the potential of multi-temporal and dual-

polarimetric TerraSAR-X data based on a survey carried out in 

the same region observed in our study. However, any studies 

about TLS measurements for rice exist at this stage. 

 

Thus, we evaluate the applicability of multitemporal TLS for 

rice growth monitoring in this approach. In contrast to other 

presented studies using phase-shift or optical probe sensors, a 

time-of-flight sensor was used. The surveys were carried out on 

test sites related to the ICASD project. The International Center 

for Agro-Informatics and Sustainable Development (ICASD) 

was founded in 2009 as a cooperative research center between 

the China Agricultural University, Beijing and the University of 

Cologne, Germany (ICASD, 2012). Besides the development of 

an open, international, and multidisciplinary platform for agro-

informatics and sustainable development, one of the major aims 

is the application of information sciences and technologies in 

the field of agriculture. 

 

 

2. METHODS 

2.1 Study area 

We conducted our surveys on test fields close to the city 

Jiansanjiang (N 47°13'54", E 132°38'53") in Heilongjiang 

Province in the far northeast of China. The Province with a 

continental monsoon climate is an important basis for 

agricultural products (Gao & Liu, 2011).  

 

The focus of the monitored field experiment was on different 

nitrogen fertilizer inputs during the growing period. One half of 

the paddy rice field with a spatial extent of 60 m by 60 m was 

cultivated with the rice variety Kongyu131, the other one with 

Longjing21. Furthermore, nine different treatments were 

repeated thrice for both rice varieties. The treatments differ in 

the amount of applied nitrogen fertilizer during the early and 

middle growing period. Thus, the area was divided into 54 plots 

(10 m by 7 m).  

 

2.2 Surveys 

For all field campaigns the terrestrial laser scanner Riegl 

VZ-1000 (Riegl LMS GmbH, 2011), provided by Five Star 

Electronic Technologies, located in Beijing, was used. The 

narrow infrared laser beam with online full waveform analysis 

and echo digitization enables the fast recording of high-accurate 

3D point clouds. Additionally, a digital camera, Nikon D700, 

was mounted on the laser scanner. From the recorded RGB-

photos the point clouds gained from the laser scanner can be 

colorized and the corresponding surfaces can be textured. 

 

The instrument was fixed on a tripod, which raises the sensor 

up to 1.5 m above ground. Where possible, the whole setting 

was build up on a small trailer behind a tractor to achieve a 

greater height (cf. Figure 1). In order to capture the whole study 

area, nine scan positions were established. For the analyses 

presented in this paper, four of them were of major importance: 

Two positions without the trailer at the north edge and two 

positions with the trailer at the south edge of the investigated 

field. 

 

For the monitoring approach, three campaigns were carried out 

on the 21st of June, the 4th, and the 18th of July 2011. The 

chosen period is within the vegetative stage of the rice plants, 

when the stem elongation process takes place. Remarkable 

differences between the dates were assumed, due to the increase 

of tillers and plant height during this stage. 

 

Moreover, common tie points in all scans are required to enable 

the merging of all scan positions in the postprocessing. 

Therefore, high reflective cylinders that can be easily detected 

by the laser scanner, were fixed on ranging poles build upon the 

dikes between the fields (Hoffmeister et al., 2010). The 

positions of these poles were marked with large nails in the first 

campaign. Thus, every scan of each date can be merged together 

by reestablishing the ranging poles for the other two campaigns. 

Furthermore, on each date the plant heights of eight to ten 

plants per plot were measured manually and plant samples were 

taken to evaluate the biomass of stem and leafs. 

 

2.3 Postprocessing 

For the postprocessing of the achieved data, Riegls software 

RiSCAN PRO, which is delivered with the laser scanner, was 

used. The first registration and merging of the scan positions 

was performed with an indirect registration method, based on 

the mentioned high reflective cylinders acting as tie points. 

Figure 1.  Overview of the investigated area from one scan position at the south edge of the field. On the right side the scanner 

with the tripod mounted on the small trailer can be seen. 
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However, a further adjustment was applied, to enhance this 

registration result. Therefore, RiSCAN PRO offers the Multi 

Station Adjustment, which is based on the Iterative Closest 

Point (ICP) Algorithm (Besl & McKay, 1992). The position and 

orientation of each scan position can be modified in multiple 

iterations. 

 

Subsequently, the Area Of Interest (AOI) was manually 

extracted from the merged point cloud of each date. For an 

easier orientation and the distinction between fields and dikes, 

the point clouds were colorized from the recorded photos. 

Nevertheless, the point clouds still contain noise, caused by 

reflections on water or on small particles in the air. To reduce 

this, a further filtering based on reflectance, measured for each 

point during the data acquisition, was performed. 

 

In a next step, the cleaned point clouds were interpolated in 

order to receive a digital terrain model (DTM), with a spatial 

resolution of 0.01 m. For the calculation of the plant heights 

and the comparison of the results from the different dates a 

common reference surface is required. Usually a high accurate 

Digital Surface Model (DSM), achievable from scanning the 

AOI without any vegetation, is used. However, since such data 

were not obtained in this present study, we applied another 

method. In order to receive a reference surface similar to the 

real ground, the lowest parts in the point cloud from the first 

date, accordingly containing the least dense vegetation, were 

selected manually to interpolate a DSM. As it can be seen in 

Figure 2, the rice plants were small enough to clearly identify 

points on the ground. Finally, the Crop Surface Models (CSM) 

as the difference between DTM and DSM were established for 

each date. Likewise, the differences between the CSMs were 

calculated for growth monitoring.  

 

Moreover, the height values, stored in the CSMs, were used to 

calculate the mean plant height and growth of each plot. In the 

following, growth is always defined as a difference in height. 

Additionally, the manually measured heights were averaged for 

each plot and correlated with the values from the CSMs to 

validate the results. 

3. RESULTS 

3.1 Point Clouds 

As a first result, point clouds with high density and accuracy are 

derived. The merged and filtered datasets contain six to ten 

Mio. points for each date, just covering the AOI. This data was 

used to create the CSMs and calculate the mean plant height 

and growth for each plot. 

 

3.2 Crop Surface Models 

The received CSMs can be visualized as maps of height growth. 

Therefore, the height was calculated above the common 

reference surface, considered as DSM in this study. Figure 3 

shows the maps for four selected plots of the same treatment. 

On the left side, two repetition plots of Kongyu131, on the right 

side two repetition plots of Longjing21 are shown. For the 

presentation, the point clouds were interpolated, using the 

Inverse Distance Weighting (IDW) algorithm. The results are 

stored in raster data sets with a resolution of 0.01 m.  

 

The following statements can be made from the maps 

(Figure 3): 

 The plant height of Longjing21 is - especially at the last 

date - higher than Kongyu131. 

 In plot 163 the linear structure of the fields can be clearly 

seen. 

 In plot 262 pronounced height differences within the plot 

can be detected.  

 

The spatial distribution of the height difference between the 

CSMs, showing the plant growth, can also be visualized by the 

calculation of a new raster. As a result, varieties within the 

fields can be detected. Figure 4 shows the calculated height 

difference between two consecutive CSMs of two plots and 

hence the change in plant height between the first and second, 

respectively second and third date. For both plots an evenly 

distributed increase in height can be concluded. Moreover, a 

stronger increase of height can be detected for Longjing21 

(plot 232), especially for the period between the second and 

third date. 

 

3.3 Mean Plant Height and Biomass 

From the CSMs, the mean plant height for each single plot was 

calculated as the height above the common reference surface. 

Furthermore, the averaged manually measured plant heights 

were checked against the heights from the CSMs. For the 

statistical analyses 18 plots (nine of each rice variety), well 

distributed over the whole field, were chosen. Since the 

measurements from all dates were used, the analyses are based 

on 54 values. The height values comprise a great range (cf. 

Figure 5), which makes the regression more reliable. The 

correlation between the mean plant height achieved from the 

CSMs and the average measured plant height is very good 

(R²=0.91).  

 

Figure 2.  Photo of one corner of the investigated field, 

showing the least dense vegetation. 
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Figure 3.  Maps of Crop Surface Models for four selected plots, showing the results for all three dates. The 

height is always calculated by subtracting the DSM of each date from the DTM. 

Figure 4.  Maps of height difference between two 

consecutive CSMs. 

Figure 5.  Regression of mean plant height calculated from 

CSM and manually measured plant height (n=54). 
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Additionally, at each date plant samples from selected plots 

were taken and dry biomass (stem and leaf) was measured. 

Thus, the statistical analyses are based on 22 values. A very 

good correlation between plant height and dry biomass was 

achieved (R²=0.88) and the regression line fits well (cf. 

Figure 6). 

 

3.4 Monitoring Approach 

The change in plant height was monitored by the calculation of 

differences between each CSM, similar to the calculation of the 

plant height above the reference surface. In order to verify the 

results, the average manually measured plant growth was 

calculated and compared to the outcomes from the CSMs. The 

coefficient of determination (R²=0.86) is again very good. As it 

can be seen in Figure 7, the calculation of the regression line is 

based on values of a great range from 5 to 30 cm, which 

reinforces the plausibility.  

4. DISCUSSION 

First of all, the data acquisition with the laser scanner in the 

field worked very well. A major advantage of the TLS system is 

the easily achievable and fast data acquisition of the whole 

field, compared to Casanova et al. (1998), using a hand-held 

radiometer. Anyway, an accurate differentiation between each 

plot is possible with a higher spatial resolution than achievable 

with ALS (McKinion et al., 2010).  

 

However, the compact and lightweight build-up of the Riegl 

VZ-1000 is therefore quite helpful. Ehlert et al. (2009) and 

Lumme et al. (2009) complain about problems with noise in the 

point clouds. This problem is always linked with TLS, due to 

wind and other effects. However, the time-of-flight scanner, 

used in this study, reduces this problem by the high measuring 

speed. Earlier studies with a comparable set-up 

(Hoffmeister et al., 2011), show already the usability of this 

method, but further improvement is still desirable. Nevertheless, 

some minor problems, like the transportation of the scanner on 

the dikes, have to be solved.  

 

For the registration and merging of the scan positions, RiSCAN 

PRO offers appropriate tools. The indirect registration based on 

the tie points can be considerably improved by the ICP 

algorithm. By employing the MSA, the standard deviation error 

was decreased from 0.1 m to 0.05 m. Furthermore, filtering 

based on the reflectance was helpful to remove noise from the 

point clouds. Thus, the time consuming manual postprocessing 

was remarkably accelerated. Furthermore, the scan positions 

where the setting could be build up on the trailer, profit from 

the greater height. This could be seen e.g. in the CSMs of plot 

163 (cf. Figure 3). The plot was at the south edge of the 

investigated field, close to the scan positions with the trailer. 

Due to the higher perspective, the linear structure of the field is 

strongly visible. 

 

Beside the well working method, the results show that our 

approach seems to be suitable for rice growth monitoring. The 

good correlation between the mean plant height calculated from 

the CSMs and the manually measured plant height (R²=0.91) as 

well as the correlation with the dry biomass (R²=0.88) show the 

accuracy of the achieved models. However, the accuracy of the 

data is comparable with those from the mentioned studies with 

cereals (Ehlert et al., 2008; 2009). Moreover, the correlation 

concerning the plant growth (R²=0.86) confirms the suitability 

for the monitoring approach. The already mentioned study of 

Hoffmeister et al. (2011) with a comparable set-up, was carried 

out on sugar-beet fields. In contrast to rice, the more complex 

structure of the sugar-beet leaves impairs the correlation 

between mean height and dry biomass. 

 

Moreover, the spatial distribution of variances within the CSM 

of one plot and between different CSMs can be detected. First, 

the CSMs from various repetitions can be compared. Secondly, 

for monitoring, CSMs from several time steps can be compared 

to receive information about plant growth. Again, compared to 

the studies on sugar-beet fields (Hoffmeister et al., 2010; 2011) 

spatial differences in height were detectable as well. 

 

 

5. CONCLUSION AND OUTLOOK 

The results presented in this contribution show the applicability 

for accurate capturing and monitoring of rice growth in terms of 

changes in plant height and biomass. These spatial patterns of 

Figure 6.  Regression of mean plant height calculated from 

CSM and biomass of stem and leaf (n=22). 

Figure 7.  Regression of mean plant growth increase 

between two consecutive CSMs and average measured plant 

growth increase (n=36). 
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plant growth are measureable by this method. A very good 

correlation between plant height and dry biomass enables the 

establishment of biomass calculations at a certain time step by 

this measurement technique. Furthermore, the visualization of 

the spatial distribution in a high resolution is possible.  

 

For the future, two research approaches should be followed. 

First, TLS data could be linked to spectral data, acquired in the 

field (Li et al., 2010). Secondly, the usability of Unmanned 

Aerial Vehicles (UAV) for rice growth monitoring with laser 

scanning might be considered. As Bareth et al. (2011) mention, 

the Riegl LMS-Q160, developed for ALS, might be a promising 

device.  
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