
PANSHARPENING OF HYPERSPECTRAL IMAGES IN URBAN AREAS

Chembe Chisense, Johannes Engels, Michael Hahn and Eberhard Gülch

Stuttgart University of Applied Sciences
Schellingstr. 24

D-70174 Stuttgart, Germany
johannes.engels@hft-stuttgart.de

Commission VII/6

KEY WORDS: image fusion, hyperspectral, resolution, urban, classification

ABSTRACT:

Pansharpening has proven to be a valuable method for resolution enhancement of multi-band images when spatially high-resolving
panchromatic images are available in addition. In principle, pansharpening can beneficially be applied to hyperspectral images as well.
But whereas the grey values of multi-spectral images comprise at mostrelative information about the registered intensities, calibrated
hyperspectral images are supposed to provide absolute reflectivity values of the respective material surfaces. This physical significance
of the hyperspectral data should be preserved within the pansharpening process as much as possible. In this paper we compare several
common pansharpening methods such as Principal Component Fusion, Wavelet Fusion, Gram-Schmidt transform and investigate their
applicability for hyperspectral data. Our focus is on the impact of the pansharpening on material classifications. Apart from applying
common quality measures, we compare the results of material classifications from hyperspectral data, which were pansharpened by
different methods. In addition we propose an alternative pansharpening method which is based on an initial segmentation of the
panchromatic image with an additional use of map vector data.

1 INTRODUCTION

Pansharpening is a well-established technique for the enhance-
ment of spatial image resolution, which allows the fusion of a low
resolution multiband image with a high resolution panchromatic
image. A mere upsampling of the multi-band image with an in-
terpolation filter would result in a blurry quality with smoothed
edges and missing short-wavelength constituents in the spatial
Fourier expansions. Therefore at least the short-wavelength spa-
tial information of the panchromatic image is integrated within
fusion. This process, however, entails quite an amount of arbi-
trariness. Whereas the overall brightness of a pixel (apart from
histogram matching) can be more or less directly adopted from
the panchromatic information, the ratio of the grey values of the
individual channels depends strongly on the respective pansharp-
ening method.

More recently developed sensors suggest the application of pan-
sharpening techniques, as those sensors frequently provide data
in different resolution levels. Even more significant is the differ-
ence between hyperspectral sensors and colour cameras. Hyper-
spectral data usually feature a lower resolution than RGB images.
However, pansharpening of hyperspectral imagery by a panchro-
matic image imposes two distinct problems:

• Often the “panchromatic” image does not comprise the full
wavelength range of the hyperspectral image but only a part
of it. The panchromatic image might e.g. be derived from
RGB imagery, whereas the hyperspectral image covers a
wider range from the visible up to the shortwave infrared. In
such a case, the panchromatic image is not “representative”,
i.e. not a pixelwise average of the hyperspectral image.

• Calibrated hyperspectral data ideally feature reflectivity val-
ues of the respective material surfaces (disregarding depen-
dencies on the source - reflector - sensor geometry, i.e. the

BRDF function). Therefore, in contrast to common imagery,
an absolute hyperspectral grey value carries physical signif-
icance as a distinctive parameter of the material surfaces
alone. Any “resolution enhancement” runs the risk of di-
luting this significance by a distortion of the parameter.

In the present paper we compare several common pansharpening
methods with respect to their impact or suitability for hyperspec-
tral data. We present in addition an alternative pansharpening
method, which is based on the segmentation of the panchromatic
image. The interpolation on the finer grid is performed by us-
ing data points from the same segment only. For the evaluation
we apply visual inspection, profile analysis and some common
quality measures. As more important, however, we rate a com-
parison of the classification results which are achieved from the
pansharpened images.

2 ESTABLISHED PANSHARPENING METHODS

In the last three decades, a lot of algorithms have been devel-
oped which are, however, based on only few elementary prin-
ciples. In any case, high-frequent panchromatic information is
merged into spatially low resolution but spectrally differentiated
data. We briefly outline the principles of some of the most com-
mon pansharpening methods. Here we follow the more detailed
representation in (Pohl and van Genderen 1998) or (Hirschmugl
et al. 2005).

2–1 Gram-Schmidt Fusion

The Gram-Schmidt Fusion workspixelwise. It was developed
and described in detail by (Laben and Brower 2000). In a first
step, a low resolution panchromatic channel is constructed as a
weighted average of the original hyperspectral channels. Based
on this first new channel, subsequently further linear combina-
tions are formed by orthogonalization of the original bands with
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respect to their covariance as metric, exactly in the vein of the
classical Gram-Schmidt-orthogonalization:

Ḡī = (Gi − µi)−

i−1∑

k=1

Ci,k̄

Ck̄,k̄

Ḡk̄

HereGi denotes the greyvalue of an individual pixel in the orig-
inal channeli, Ḡk̄ the greyvalue of the same pixel in the (trans-
formed) Gram-Schmidt channelk̄. µi is the mean greyvalue of
channeli taken over all pixels. The covarianceCi,j between two
original channelsi, j is empirically determined by

Ci,j =

∑
Pixels

(Gi − µi)(Gj − µj)

N

whereN denotes the total number of pixels. Due to construction,
the Gram-Schmidt channels are all uncorrelated.
The histogram of the high-resolving panchromatic image is matched
to the histogram of the artificial, low-resolving panchromatic im-
age. In this way at least theglobal (if not the local) grey value
distribution of the panchromatic image is adjusted to the intensity
distribution of the hyperspectral data. Then, the low-resolution
panchromatic is replaced by the high resolution panchromatic,
the remaining hyperspectral channels are upsampled and adopted.
Finally, the Gram-Schmidt transform is inverted.

2–2 PCA Fusion

This method resembles very much the Gram-Schmidt Fusion. In
contrast to the latter, the “artificial” low resolution panchromatic
channel is constructed as that linear combination of all bands,
which corresponds to the maximal eigenvalue of the principal
component analysis. The eigenvectors of the PCA are by con-
struction orthogonal; the corresponding combination bands are
uncorrelated. The further processing is the same as with the
Gram-Schmidt Fusion.
Obviously, PCA Fusion is based on the assumption that the pan-
chromatic image corresponds best with the linear combination of
bands which features the highest variance. As in the case of the
Gram-Schmidt Fusion, aglobalhistogram matching is employed.

2–3 Wavelet Fusion

Wavelet Fusion is based on the concept of image pyramids, see
e.g. (Ranchin and Wald 2000). Given a high resolution im-
age, the base of the pyramid is just the image itself, whereas
the higher levels of the pyramid consist in successive approxima-
tions, i.e. each level consists in an approximation of the previous
level. In a second pyramid the difference images between con-
secutive approximations are represented. For the purpose of pan-
sharpening, the high resolution panchromatic image is approxi-
mated successively until the resolution of the hyperspectral data
is reached. Then for each individual channel, the approximation
of the panchromatic image is replaced by the respective hyper-
spectral data. High resolution images are constructed by succes-
sively adding the difference images of the panchromatic image to
each individual channel.
Whereas many approximation methods are imaginable for this
process, the Discrete Wavelet Transform constitutes a particu-
larly elegant and – in view of the famous Mallat algorithm – also
efficient possibility, see e.g. (Mallat 2009). The workflow of
the wavelet fusion reminds to the workflow of PCA Fusion. For
the former method, however, the transformations (forward and in-
verse wavelet transform) act on the panchromatic image, whereas
for the latter the transformations (forward and inverse PCA) work
on the hyperspectral data.

Pan-
chrom.
Image

❤ Pan-
sharp.
channel

wavelet transform Inverse wavelet
transform

Hyperspectral
Color Channel

Histogram
matching Replace

✲ ✲ ✲ ✲

❄

Figure 1: Workflow of Wavelet Fusion according to (Hirschmugl
et. al 2005)

Different from PCA and Gram-Schmidt Fusion, onlylocal varia-
tionsof the panchromatic image affect the pansharpening result.
This is due to the fact that only the wavelet coefficients (i.e. the
difference images) of the panchromatic image remain, whereas
the approximation coefficients of the low resolution level are re-
placed by the corresponding coefficients of the respective hyper-
spectral channel.

3 A SEGMENTATION-BASED PANSHARPENING
METHOD

In a common RGB image the absolute grey and color values may
differ noticeable from exposure to exposure. Hyperspectral data
in contrast are usually calibrated in such a way, that the grey val-
ues represent the absolutereflectivity of the respective surface
materials for the respective wavelength, i.e. the ratio between
reflected and incident radiation. The reflectivity is a property of
the surface material alone; it is of particular value for the distinc-
tion of surface materials. Therefore we aim at a pansharpening
method which respects as much as possible the original hyper-
spectral data. In a first step, we perform a segmentation of the
high resolution panchromatic image. The segments are assumed
to be homogeneous, ideally each segment should feature one ma-
terial only. In a second step, the hyperspectral data are interpo-
lated by means of an inverse distance method on the finer grid.
Hereby only such pixels of the original hyperspectral image are
used, which are locatedcompletelyin the same segment as the
interpolation position.

3–1 Segmentation of the Panchromatic Image (RGB-image)

The segmentation of the panchromatic image was performed by
the well-known eCognition software, see (eCognition User Guide).
This software enables the simultaneous processing of multiple
channels in a hierarchical way. eCognition successively aggre-
gates pixels with similar grey values to segments. Criteria for the
aggregation of adjacent objects are on the one hand the hetero-
geneity of the grey values of the combined object, on the other
hand its geometric form. These criteria can be balanced by three
parameters: “scale”, “color” and “shape”. Adequate parameters
have to be selected by trial and error. Focused on application
in urban areas, in most cases a one-to-one relation between seg-
ments and building regions will be optimal, though roofs also
may consist of different materials.
As for our test area RGB orthophotos and in addition ALK vec-
tor data (parcels, buildings) were available, the segmentation was
performed hierarchically. The borders as given by the vector data
already imply a segmentation. This segmentation was refined by
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the orthophotos in the sense of a further subdivision; i.e. the bor-
ders defined by the vector data are not changed, only additional
borders introduced. For the parameters “scale”, “shape”, “com-
pactness” the values 100, 0.2, and 0.9 were selected.

3–2 Interpolation of the Hyperspectral Channels on the Finer
Grid by Inverse Distance Interpolation

For the interpolation on the finer grid we have chosen the In-
verse Distance Method. This method on the one hand requires
less computational effort than e.g. Minimum Curvature Interpo-
lation, on the other hand avoids undesired oscillations as might
appear with Kriging or Linear Prediction. The pixel centers of
the hyperspectral image are considered as data points, whereas
the pixel centers of the panchromatic grid (finer resolution) are
considered as interpolation points. The workflow of the interpo-
lation is as follows:

We run through all the segments and determine for each segment
S a list of pixels of the finer grid which are contained inS; the
centers of these pixels define the interpolation points. In addition,
we select all the pixels of the coarser grid which arecompletely
contained inS - they will give us the data points. The Inverse
Distance Interpolation for any interpolation point and channel is
performed according to the formula

ŷi =

K∑

k=1

yk wik∑
l
wil

wherewik =
√

(ri − rk)2 + (ci − ck)2 + α

Herey denotes the observation vector, i.e. the grey values of
the data pixels for the respective channel,α is a regularizing
parameter,K is the number of data points within the segment.
ri, rk, ci, ck are the row and column indices of the interpolation
or data point with respect to the finer grid.
Higher powers of the distance are common for Inverse Distance
Interpolation. As our data are somewhat noisy, we appreciate the
smoothing effectwithin the segments due to the low power 1 of
the distance.

For many small segments no pixel in the low resolution was en-
countered, which was located completely inside the segment. For
such cases all grey values in the pansharpened image were set to
the corresponding values of the original hyperspectral image.

4 TEST DATA

For the evaluation of the pansharpening methods we use hyper-
spectral data of Ludwigsburg, Germany. The data was recorded
on August, 20 2010 with the HyMap sensor within the annual
HyEurope-campaign of the German center of aviation and space
flight (DLR); it comprises 125 channels in the range of0.45 −
2.49µm. The ground resolution is 4 m. The test area consists in
6 strips with an overall extension of9.6×9.0 km2. The panchro-
matic image was derived from an RGB-orthophoto which was
registered in the spring of 2010. The ground resolution of this
orthophoto amounted originally to 25 cm; it was degraded to 1m
in order to keep the pansharpening factor moderate.

5 EVALUATION OF THE PANSHARPENING
METHODS

5–1 General Visual Impression

The most obvious criterion for the quality of a pansharpening re-
sult is the visual impression. This criterion might be misleading

in some cases, hoewever, human vision is quite perceptive for im-
age sharpness and color differences. Figures 2 – 6 show the RGB
orthophoto, RGB-channels of the original HyMap data and the
pansharpened data, achieved with three different methods, for a
small region in the downtown in Ludwigsburg. In the lower left
corner the station and some railway tracks are visible. As the re-
sults of the PCA Fusion and the Gram-Schmidt Fusion can hardly
be distinguished with bare eyes, only one of them is reproduced.

Figure 2: Original RGB-orthophoto

Figure 3: RGB channels of the original hyperspectral image

At first glance, unambiguously the result of the Gram-Schmidt
Fusion looks best. The Wavelet Fusion shows some undesired
“ghost-” or “staircase-” artefacts. This phenomenon is also re-
ported by (Hirschmugl et al. 2005); it might be due to the com-
bination of different spatial wavelength ranges from different im-
ages. A sharp edge in the space domain corresponds to strong
short-wave components in the frequency domain with well-defined
ratios between amplitudes of different wavelengths. If long- and
short-wave components are assembled from different data sources,
these ratios might be distorted, which results at best in unsharp
edges, at worst in “staircase-” or even oscillation effects, so that
the edge appears to be “echoed”. The segmentation-based pan-
sharpening on the other hand features a pronounced terrace- or
“sycamore-bark”-like pattern; the edges clearly reflect the seg-
mentation borders. Whereas the visual impression might be un-
satisfactory, this “sharpening” of edges turns out to be beneficial
when it comes to classification.
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Figure 4: RGB channels of the Gram-Schmidt Fusion image

Figure 5: RGB channels of the Wavelet Fusion image

Figure 6: RGB channels of the Segmentation-based Fusion image

5–2 Profiles

The progression of greyvalues along profiles represents a value-
able criterion for the evaluation of pansharpening methods. Par-
ticularly critical are profiles where the visible and infrared chan-
nels strongly diverge. (Hirschmugl et al. 2005) report for some
fusion methods even trend reversals in the greyvalue progression.

In Figures 7, 8 we consider two profiles in the original HyMap
data and three pansharpening methods. For each profile of a pan-
sharpened image we represent three visible (RGB) and one in-
frared channels, viz. 454nm, 544nm, 635nm and 1500nm wave-
lengths. The infrared channel is represented in pink in each case.

(a) Location of Profile 1 in the RGB
image

(b) Profile of RGB orthophoto

(c) Profile of the original hyper-
spectral image

(d) Profile of the Gram-Schmidt Fu-
sion image

(e) Profile of the Wavelet Fusion
image

(f) Profile of the Segmentation-
based Fusion image

Figure 7: Profile 1 for different Fusion Methods

The first profile (Figure 7) extends over a street which is on the
left side seamed by small bushes and by trees at the right. As
the RGB and the hyperspectral data have been registered at dif-
ferent seasons, the respective profiles show a different behaviour:
The RGB image was registered at early springtime, so there was
only little foliation on the trees; the corresponding profile shows
a gradual decay from left to right. The hyperspectral data were
recorded in summer, the foliation was fully developed and the
trees overhanging to the street; the profile shows a more abrupt
decay already in the middle of the road. In particular the Gram-
Schmidt Fusion, but to a lower extent also the Wavelet Fusion re-
flects the behaviour of the RGB image, because the overall bright-
ness is (completely or partly) adapted from there. The profile
of the segmentation-based method, on contrary, features sharper
edges between road and vegetation; as the vector data reflect the
actual border of the road on the ground, the segment extends fur-
ther to the right than the greyvalues in the images suggest, and
the low power of the inverse distance interpolation, which gives
relative high weight to far data points, provides an extension of
the characteristic “road signature” to the right. Gram-Schmidt
and Wavelet fusion feature both strong oscillations which are ob-
viously also inherited from the RGB image and which affect all
four channels in the same way; the segmentation-based interpo-
lation on contrary exhibits a strong smoothing effect within the
segments.
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The absolute values of the Wavelet Fusion and the Segmentation-
based Fusion are relatively close to the original HyMap data,
whereas the absolute values of the Gram-Schmidt Fusion exceed
the original ones by about 50%. This is evidently due to the fact
that the Gram-Schmidt Fusion adapts the overall brightness to
the panchromatic image (histogram matching is only performed
globally), whereas the Wavelet Fusion introduces mostly short-
wave components of the panchromatic image to the pansharpened
image.

(a) Location of Profile 2 in the RGB
image

(b) Profile of RGB orthophoto

(c) Profile of the original hyper-
spectral image

(d) Profile of the Gram-Schmidt Fu-
sion image

(e) Profile of the Wavelet Fusion
image

(f) Profile of the Segmentation-
based Fusion image

Figure 8: Profile 3 for different Fusion Methods

Profile 2 (Figure 8) is of special interest due to the different be-
haviour of the infrared channel in the Gram-Schmidt and the
Wavelet Fusion. The small dark strips between the inclined pan-
els (shadowy areas) on the left building are too small to be re-
solved in the hyperspectral image, whereas they do appear in the
panchromatic image. The depths of the corresponding sinks in
the Wavelet Fusion are more or less independent of the channel,
whereas for the Gram-Schmidt Fusion they appear to be propor-
tional to the “continuum” level of the respective channel. The
Segmentation-based method exhibits its “generalizing” tendency
again.

5–3 Quality Measures for the Comparison of the original
and the pansharpened data

Some authors propose quality measures based on the differences
between the original or upsampled hyperspectral data, respec-
tively, and the pansharpened data. Here we evaluate the root mean
square error, correlation coefficients and the universal quality in-
dex proposed by (Wang and Bovik 2002).

Root mean square error:

The root mean square error is used to quantify the average amount
of distortion in each pixel of the pansharpened images. The root
mean square is computed between the original hyperspectral im-
age (resampled to the resolution of the pansharpened hyperspec-
tral data) and the pansharpened hyperspectral images. The results
are shown in Table 1:

R G B I1 I2 I3
PCA 465 365 351 821 836 870
Gram-Schmidt 457 375 349 787 800 804
Wavelet 269 243 246 369 375 484
Seg.-based 231 195 193 365 371 490

Table 1: Root mean square error of different fusion methods com-
pared to the upsampled original hyperspectral image (reflectivity
values, range 0-10000)

The wavelengths of the represented bands are 0.635µm (R), 0.544
µm (G), 0.454µm (B), 1.50µm (I1), 1.805µm (I2) and 2.485µm
(I3). It is obvious that for the most wavelengths the grey values
of the Segmentation-based Fusion are least distorted.

Correlation Coefficients:

Table 2 compares the correlations between different channels and
the panchromatic image. PCA and Gram-Schmidt Fusion show
the highest correlation values, which means that for these two
methods the contribution of the panchromatic image is the high-
est. Particularly high are the correlation coefficients with the
three infrared channels. On the opposite, the Segmentation-based
Fusion image is closer to the original hyperspectral image which
is desirable as the differences between the individual channels are
levelled out to a lower extent.

R,P G,P B,P I1,P I2,P I3,P
Original data 0.53 0.51 0.48 0.46 0.44 0.33
PCA 0.80 0.75 0.70 0.97 0.98 0.82
Gram Schmidt 0.79 0.76 0.70 0.93 0.93 0.74
Wavelet 0.69 0.68 0.65 0.61 0.59 0.51
Seg.-based 0.52 0.49 0.47 0.43 0.41 0.33

Table 2: Correlation coefficients between the panchromatic im-
age and different bands of the original and the pansharpened im-
ages

Universal Quality Index:

Quite common is theUniversal Image Quality indexQ given by
(Wang and Bovik 2002):

Q :=
4σxy x̄ ȳ

(σ2
x + σ2

y)[x̄2 + ȳ2]
=

σxy

σxσy

·
2x̄ ȳ

x̄2 + ȳ2
·

2σxσy

σ2
x + σ2

y

Herex = {xi|i = 1, 2, · · · , N}, y = {yi|i = 1, 2, · · · , N} de-
note the original and test image signals, respectively,i is the pixel
index.Q can be applied to each channel individually. As the last
term in the defining formula shows,Q can be decomposed into
three factors which comprise a) the correlation coefficient (corre-
lation between the two images), b) a similarity measure between
the arithmetic means̄x andȳ and c) a similarity measure between
the standard deviationsσx andσy.
The “optimal”Q value of 1 e.g. is achieved if the imagesx andy
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are identical. Table 3 shows that by this criterion the Segmentation-
based Fusion has the highest rank.

R G B I1 I2 I3
PCA 0.26 0.27 0.27 0.18 0.17 0.23
Gram Schmidt 0.26 0.26 0.27 0.19 0.19 0.26
Wavelet 0.49 0.34 0.32 0.45 0.15 0.42
Seg.-based 0.51 0.50 0.50 0.50 0.50 0.25

Table 3: Universal Quality Index according to (Wang and Bovik
2002) for different channels of the pansharpened images

5–4 Classification Results

As we use hyperspectral data mostly for material classication, we
prefer to compare the pansharpening methods with respect to the
result of a supervised classification which they provide. Here we
present only first results of an ongoing research.

Before classifying the different pansharpened images, training re-
gions for different surface materials were defined. We have used
18 training regions for 12 roof materials plus vegetation. In or-
der to determine the accuracy of the classification, the results are
compared with ground truth information. As test regions for the
evaluation we use the training regions plus 33 additional regions.
The ground truth has to be improved in the future, however.

(a) RGB Image (b)

(c) PCA Fusion (d) Gram-Schmidt Fusion

(e) Wavelet Fusion (f) Segmentation-based Fusion

Figure 9: Classification Example

Figures 9 gives an impression about the results of a SAM clas-
sification. As expected, the Segmentation-based Fusion yields
a good homogeneity of the segments. More significant are the
evaluation measures which are reported in Table 4. The Overall
Accuracy gives the ratio between correctly classified pixels and

the total number of pixels. The so-called kappa coefficient addi-
tionally takes into account possible chance correct classifications
(Cohen 1960). The results in Table 4 favour the Wavelet and the
Segmentation-based Fusion – inspite of their minor visual qual-
ity.

Fusion κ Overall
Method Accuracy
PCA 0.70 74.7 %
Gram Schmidt 0.72 76.7 %
Wavelet 0.82 85.3 %
Seg.-based 0.80 84.0 %

Table 4: Accuracy Measures of the Classification Results based
on different Fusion Methods

6 CONCLUSIONS AND FUTURE WORK

Pansharpening in general not only affects the overall brightness
of hyperspectral data, but also the shape of the hyperspectral sig-
natures, which is important for material classification. In order
to distort the original data as few as possible, we propose to per-
form in a first step a segmentation of the panchromatic image,
employing map vector data in addition if available. In a second
step the data are resampled on the finer grid, whereby the inter-
polation is performed only by means of data pixels which are
located completely in the respective segment. A comparison of
different pansharpening methods reveals very different rankings
dependent on the quality criteria. We think that our method has a
good potential for the pansharpening for classification purposes.
Further investigations will be based on better ground truth in-
formation and more sophisticated classification methods. They
should also comprise a more detailed scrutiny of misclassified
regions.
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