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ABSTRACT: 
 
Data fusion techniques have been widely researched and applied in remote sensing field. In this paper, an integrated fusion method 
for remotely sensed images is presented. Differently from the existed methods, the proposed method has the performance to 
integrate the complementary information in multiple temporal-spatial-spectral images. In order to represent and process the images 
in one unified framework, two general image observation models are firstly presented, and then the maximum a posteriori (MAP) 
framework is used to set up the fusion model. The gradient descent method is employed to solve the fused image. The efficacy of the 
proposed method is validated using simulated images. 
 
 

1. INTRODUCTION 

In order to get more information, image fusion techniques are 
often used to integrate the complementary information among 
different remote sensing images. By far, a great number of 
fusion methods for remote sensing images have been developed 
(Luo et al., 2002; Pohl and van Genderen, 1998). Classical 
remote sensing image fusion techniques include 
panchromatic(PAN) / multi-spectral(MS) fusion (Joshi and 
Jalobeanu, 2010; Li and Leung, 2009), MS / hyper-spectral(HS) 
fusion (Eismann and Hardie, 2005) and multi-temporal (MT) 
fusion (Shen et al., 2009) etc. However, most fusion methods 
were developed to fuse images from two sensors, and little 
work attempted to solve the fuse problem of more sensors. In 
this paper, we propose an integrated fusion method for multiple 
temporal-spatial-spectral scales of remote sensing images. This 
method is based on the maximum a posteriori (MAP) 
framework, which has the performance to fuse images from 
arbitrary number of optical sensors. 
 
 

2. IMAGE OBSERVATION MODELS 

The image observation models relate the desired image to the 
observed images. Let 1 2[ , ...., ]

x
T

Bx x x=x  denote the desired 
image with xB  being the total band number. Generally, the 
band numbers of the observed images are less than or equal 
to xB . Here we use y  to denote the images whose band number 
is equal to xB and use z to denote the images whose band 
number is less than xB . Thus, the thb band of the thk image of 
y  can be denoted as ,k by , and the thb band of the thk image 

of z  can be denoted as ,k bz .  
The observation model in terms of ,k by  is represented as 

                     , , , , , , ,k b y k y k y k b b y k b= +y D M S x n                    (1) 

where , ,y k pS represents the blur matrix, ,y kM  is the motion 

matrix, ,y kD  is down-sampling matrix, and , ,y k bn  represents 
the noise vector. For convenience, equation (1) can be rewritten 

as (2) by substituting the product of matrices , ,y k bS , ,y kM  and 

,y kD  with , ,y k bA  

          , , , , ,k b y k b b y k b= +y A x n                            (2) 
The second image observation model relates the desired 
image x to the observed image z . Generally the band of z  is 
wider than that of x . It has been proved that a wide-band image 
is almost a linear combination of several narrow-band images 
when the wide band approximately covers the narrow bands 
(Boggione et al., 2003; Li and Leung, 2009; Vega et al., 2009). 
Thus, if the spatial resolutions of x  and z  are same, the 
spectral combination model can be denoted as  

, , , , ,
1

( , ) ( , ) ( , )
xB

k b k b p p k b k b
p

z i j c x i j n i jτ
=

= + +∑         (3) 

where , ,k b pc  is the corresponding weight of the pth band value 

( , )px i j , ,k bτ  is an offset, and , ( , )k bn i j  is the noise. It can be 
expressed in matrix vector form as 
                      , , , , , ,k b z k b k b z k bτ= + +z C x I n                          (4) 

In more general case, the model can be rewritten as  
, , , , , , , , , , ,( )k b z k z k z k b z k b z k b z k bτ= + +z D M S C x I n     (5) 

Simplifying this equation by multiplying corresponding 
matrices and vectors 

, , , , , , , , ,k b z k b z k b z k b z k bτ= + +z A x B n                   (6) 
 
 

3. THE FUSION METHOD 

The proposed method is based on the maximum a posteriori 
(MAP) framework. For the MAP model, given the 
images y and z , the desired image can be estimated as:  

 ˆ arg max ( | )p=
x

x x y,z   (7) 

Applying Bayes’ rule, equation (7) becomes: 

 ( ) ( | )ˆ arg max
( , )

p p
p

=
x

x y,z xx
y z

 (8) 
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Since ( , )p y z  is independent of x , it can be considered a 
constant and removed from the maximum function: 

 

ˆ arg max ( ) ( , | )

   arg max ( ) ( | ) ( | )

   = arg max ( ) ( | ) ( | )

p p

p p p

p p p

=

=
x

x

x

x x y z x

x y x z x, y

x y x z x

  (9) 

Since z  and y  are both known quantities, so it is tenable 
for ( | ) ( | )p p=z x, y z x  in (9).  

The function ( | )p y x  provides a measure of the 
conformance of the estimated image x  to the observed image 
y  according to the observation model (2). Assuming that the 

noise is zero-mean Gaussian noise, and each image is 
independent 

                         
,

,
1 1

( ) ( )
y y kK B

k b b
k b

p p
= =

=∏∏y | x y | x                       (10) 

where yK is the image number of y , ,yB k is the band number 

of ,k by , and  

{ }, , , ,

2

, , , , , ,/ 2
, ,

1( ) exp /2
(2 ) y k h y k vk b b k b y k b b y k bN N

y k b

p α
πα

= − −y | x y A x (11) 

where , ,y k bα  is the variance of the noise , ,y k bn , , ,y k hN  and 

, ,y k vN  are the image dimensions of ky . 

The function ( | )p z x is determined by the probability density 
of the noise vector , ,z k bn  in (6), and is expressed as: 

                        
,

,
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z kz BK

k b
k b

p p
= =
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where , ,z k bα  is the variance of the noise , ,z k bn , ,yB k is the 

band number of ,k bz , and , ,z k hN  and , ,z k vN  are the image 

dimensions of kz .  
An edge-preserving Huber-Markov image model (Schultz and 
Stevenson, 1996; Shen and Zhang, 2009) is employed for 
density function ( )p x  

, ,
,/2

, ,1

1( ) exp ( ( ( , )))/2
(2 )
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where ,bαz  is the model parameter of the thb band, ξ  is a 
local group of pixels called a clique, and ψ  is the set of all the 
cliques, ,x hN  and ,x vN  are the image dimensions of x . The 

quantity ( ( , ))bd x i jξ is a spatial activity measure to 

pixel ( , )bx i j , and the following finite second-order differences 
are computed in two adjacent cliques for every location 
( , )i j in the image. 

1 ( ( , )) ( 1, ) 2 ( , ) ( 1, )b b b bd x i j x i j x i j x i j= − − + +ξ      (15) 

2( ( , )) ( , 1) 2 ( , ) ( , 1)b b b bd x i j x i j x i j x i j= − − + +ξ       (16)   

In (13), ( )ρ ⋅  is the Huber function defined as: 
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where μ is a threshold parameter separating the quadratic and 
linear regions. When μ  approaches+∞ , the prior becomes the 
Gauss-Markov, which has similar spatial constraints to the 
Laplacian prior.  
Substituting (10)–(14) in (9) and implementing the monotonic 
logarithm function, after some manipulation, ,x hN , ,x vN , 

, ,y k hN , , ,y k vN , , ,z k hN and , ,z k vN can be safely dropped, and 
the maximization of this posterior probability distribution is 
equivalent to the following regularized minimum problem: 
 ˆ arg min ( )E= ⎡ ⎤⎣ ⎦x x   (18) 
where 
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In this paper, we assume , ,y k bα , , ,z k bα  and ,x bα are invariable. 
Thus, minimum function can be simplified as  

, ,
2 2

1 , , , , , , , , , ,
1 1 1 1

( )
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where 1λ  and 1λ  are two regularization parameters. At last, the 
steepest gradient descent method(Shen and Zhang, 2009; Shen 
et al., 2010) is employed to solve the fusion images.  
 
 

4. EXPERIMENTAL RESULTS 

The proposed method was tested using simulated images, and 
the experimental images and results are illustrated in Fig.1. We 
used one HS image to simulate one PAN image, one MS image 
(four bands) and four degraded HS images. Fig.1(a)-(c) show 
the PAN image, the cubic interpolated versions of the MS 
image and HS image respectively. The fusion method were 
implemented in four cases that the input images are respectively 
four HS images, HS image + MS image, one HS image + PAN 
image, and all the simulated images. The fused results are 
shown in Fig.1(d)-(g). By visual inspection, each of the fusion 
results enhances the spatial resolution. Moreover, the image of 
the integrated fusion method has the best visual quality. 

The fused images are evaluated using five quality indices. 
These are the root mean square error (RMSE), correlation 
coefficient (CC), universal image quality index (UIQI), means 
relative dimensionless global error (ERGAS) and spectral angle 
(SA). They are defined by equations (21)–(25), respectively. 
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(a) PAN image             (b) Cubic version of MS image 

 

   
(c) Cubic version of one HS image              (d) MT fusion image                      (e) MS fusion image  

 

   
(f) PAN fusion image                    (g) Integrated fusion image                    (h) Original image 

 
Fig.1 Simulated experiment of different fusion methods. 
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Here, ˆbx  and bx  represent the thb  bands of the fused image 
and original image, ˆb b

σ x x is the covariance between ˆbx  and 
bx , ˆb

mx and
b

mx their means, and ˆb
σ x and 

b
σ x their standard 

deviations. The ideal values of the RMSE, CC, UIQI, ERGAS 
and SA are, respectively, 0, 1, 1, 0 and 0. The evaluation results 
are shown in Table 1. It is seen that the integrated fusion 
method obtains the best evaluation values in terms of all the 
indices. This verifies the proposed method has the performance 
to integrate the complementary information in multiple 
temporal-spatial-spectral images.  
 
Table 1. Evaluation of the fusion results  

 
5. CONCLUSIONS 

This paper presents a fusion method for multiple temporal-
spatial-spectral images based on the maximum a posteriori 
framework. Simulated experiments validated that the proposed 
method has good performance in terms of both visual inspection 
and quantitative evaluation. Future works would be carried out 
to test the proposed method using real remote sensing images.  
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 MT fusion MS/HS 
fusion 

PAN/HS 
fusion 

Integrated
fusion 

RMSE  20.040 20.460 16.012 8.818 
CC 0.952 0.945 0.969 0.990 

UIQI 0.950 0.943 0.967 0.990 
ERGAS 6.365 6.570 4.916 2.662 

SA 5.659 8.749 8.230 5.509 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B7, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

410


