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ABSTRACT: 
 
A quality prediction method is proposed to evaluate the quality of the automatic reconstruction of building models. In this study, 
LiDAR data and topographic maps are integrated for building model reconstruction. Hence, data registration is a critical step for  
data fusion. To improve the efficiency of the data fusion, a robust least squares method is applied to register boundary points 
extracted from LiDAR data and building outlines obtained from topographic maps. After registration, a quality indicator based on 
the tensor analysis of residuals is derived in order to evaluate the correctness of the automatic building model reconstruction. Finally, 
an actual dataset demonstrates the quality of the predictions for automatic model reconstruction. The results show that our method 
can achieve reliable results and save both time and expense on model reconstruction. 
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1. INTRODUCTION 

The airborne LiDAR technique has been extensively adopted 
for the purpose of quickly acquiring a large number of highly 
qualitative point clouds, and it has become widely implemented 
in 3D building models. LiDAR data provides an accurate 
representation of building surfaces, but since it has poor texture 
information, accurate building boundary extraction from 
LiDAR data may be difficult to obtain (Maas and Vosselman 
1999). Therefore, the building boundaries can be implemented 
by using additional data sources, such as 2D topographic maps.  
 
Since a data fusion of LiDAR data and 2D map information 
takes advantage of both surface and boundary information, a 
great many researchers have investigated it in order to 
reconstruct buildings (Maas and Vosselman 1999; Vosselman 
and Dijkman 2001; Filin 2002; Overby et al. 2004). In general, 
building roof patch features are first extracted from LiDAR data. 
Next, building models are reconstructed by combining the 
building boundaries obtained from ground plans and the 
intersection lines of adjacent planar faces derived from LiDAR 
data. 
 
However, the coordinate systems of LiDAR data and 2D maps 
are often different. To overcome the problem of coordinate 
systems of various data sources, data registration is a critical 
step for fusion of LiDAR data and the topographic map 
information (Schenk and Csatho 2002; Filin et al. 2005; Gruen 
and Akca 2005; Park et al. 2006).  
 
In this study, plane segments in LiDAR data are extracted in the 
feature space based on the tensor voting computational 
framework (Medioni et al. 2000). The tensor voting algorithm 
implements features such as faces, lines and points through a 
symmetric tensor field directly derived from data. All geometric 
structures (surfaces, lines and points) can therefore be inferred 
simultaneously. 
 

For data registration, the transformation parameters between 
LiDAR data and topographic maps are estimated using a robust 
least squares method (RLS). After registration, height 
information derived from LIDAR data is involved in 
topographic maps and then the spatial positions of building 
outlines can be reconstructed. To completely reconstruct a 3D 
building model, the roof ridges extracted from LiDAR data 
should be added (You and Lin 2011a). 
 
To achieve reliable results, a quality indicator derived from 
tensor analysis based on the residuals of the boundary point is 
introduced. The indicator can be use for checking the 
correctness of the building model in an automatic 
reconstruction process. Therefore, both time and expense on 
model reconstruction can be saved. 
 
In the following, the feature extraction based on the tensor 
voting method is first described. In section 3, the data 
registration and residual tensor analysis are address. Finally, the 
residual tensor on different building cases of actual airborne 
LiDAR dataset is analyzed. 
 
 

2. FEATURE EXTRACTION BASED ON TENSOR 
VOTING METHOD 

In this study, the tensor voting method (TVM) is adopted to 
extract roof faces from LiDAR data since this method can 
sufficiently consider the geometric relationships between 
surrounding points. In the TVM, a second order tensor field 
should be first constituted, and then planar features, namely 
roof faces, can be extracted from irregularly distributed LiDAR 
point clouds (You and Lin 2011a). 
 
The geometric feature of a point can be described by a second-
order symmetric tensor which is expressed as follows: 
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where e1, e2 and e3 indicate three independent and orthogonal 
eigenvectors; λ1, λ2, and λ3 are eigenvalues with respect to the 
eigenvectors e1, e2 and e3. The eigenvalues are real and 
λ1≥λ2≥λ3 if T is a positive-semidefinite tensor.  
 
The tensor voting method is used for deriving the implied 
vector information in LiDAR point clouds. The kernel of the 
tensor voting is the tensor communication among points. Each 
point receives vector information from its surrounding points 
and stores the vector information by the tensor addition rule. 
The resultant tensor can be expressed as follows: 
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where w is a Gaussian decay function depending on the 
Euclidean distance between the receiving site and the voting 
site. 
 
After the tensor communication is completed, the geometric 
feature information, such as planar, linear and corner features, 
can now be captured according to the rules of geometric 
features mentioned in Medioni et al.(2000). However, the points 
in the border region receive fewer votes than the points in the 
central region do, so that eigenvalues λ1, λ2, and λ3 are 
generally smaller in the border region of an object than in the 
central region of the same object. To reduce the effect of the 
number of points, the planar feature indicators λ1-λ2 may be 
normalized as 
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The normalized value of planar strength is introduced for the 
planar feature extraction and the region growing in this study, 
since it is the sensitive indicator for planar features (You and 
Lin 2011b). 
 
The region-growing method is adopted for the segmentation of 
the points with similar planar features. The region-growing 
method used here is based on the homogeneity of the principal 
features. The principal features are the normalized planar 
feature strength c and the corresponding normal vectors in this 
study. In region-growing, only the points with a normalized 
planar feature strength c greater than a threshold can be adopted 
as seed points. The threshold is recommended to be 0.96 or 
larger in our experiments. 
 
First, the point that has the largest c-value is chosen as the seed 
point for the planar feature extraction. A point is merged into 
the region if both the c-value and the directional difference of 
the normal vector of that point are less than the corresponding 
thresholds. Then, the point with the second largest c-value in 
the LiDAR data, excluding all extracted points in the segment 

associated with the first seed point, is adopted as the second 
seed point for growing the next segment. This region-growing 
procedure proceeds until no more seed points are available. 
Figure 1 illustrates segmentation result after region growing. 
 
In this study, ridge lines are inferred by the intersection of two 
adjacent roof faces segmented from LiDAR data, as 
recommended by Maas and Vosselman (1999). According to 
the rule that the triangles on the outer boundary of a triangular 
irregular network (TIN) mesh have only one or two neighboring 
triangles (Pu and Vosselman 2007), a TIN structure is adopted 
to extract boundary points. 
 
 

 
(a) 

 
(b) 

 
Figure 1. (a)LiDAR points and (b)the segmentation result. 

 
 

3. DATA REGISTRATION AND TENSOR ANALYSIS 
OF RESIDUALS 

3.1 Data registration 

In this study, LiDAR data and topographic maps are integrated 
for building model reconstruction. Hence, data registration is 
intended to transform these two datasets into a common 
coordinate system. The discrepancies between boundary points 
and building outlines before data registration are shown in 
Figure 2. To determine the transformation parameters, the 
robust least squares (RLS) matching of boundary points and 
building outlines on a local xy-plane are used (You and Lin 
2011a). 
 
 

 
 

Figure 2. Boundary points and ridge lines. 
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In order to register the boundary LiDAR points of buildings to 
the corresponding outline segments, a 2D similarity trans-
formation is adopted: 
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where (x,y) are the horizontal coordinates of a LiDAR point in 
a local coordinate system; (x',y') are the new coordinates in the 
map system after the transformation and (r,s) are the shifts of 
the origin. w = m cosα and u = m sinα, where α is the rotation 
angle, and m is the scale factor. 
 
Assume that boundary LiDAR points with the new coordinates 
should fall exactly on an outline segment L: ax'+by'+c=0. 
Substitution of Eq. (5), followed by introducing measurement 
errors in the coordinates of the boundary points, leads to: 
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where (a,b,c) can be calculated from the corresponding polygon 
data of an outline segment, and the residuals vx and vy represent 
two components of the distance vector v from a LiDAR point to 
the corresponding outline segment. 
 
The registration process is performed using the iterative RLS 
method (Klein and Foerstner 1984). The objective function in 
RLS consists of the sum of squares of the distances from 
boundary points to building outlines on a local xy-plane. In 
each iteration of the RLS adjustment, the corresponding outline 
segment for each boundary LiDAR point located now by new 
transformed coordinates must be re-determined. The procedure 
proceeds until the estimated standard deviation of the distances 
is convergent. 
 
3.2 Tensor analysis of residuals 

A resultant tensor Tr is used to analyze the registration result of 
each building (You and Lin 2011a).  
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where the residual tensor Ti for each boundary point is obtained 

from the estimated residual vector T]ˆˆ[ˆ
ii yxi vvv , and then the 

residual tensors of all boundary points of a building are added 
together to form a resultant tensor Tr . To reduce the influence 
of the number of the points, the resultant tensor is normalized 
by dividing the number of the boundary points in this study. 

 
Based on the fact that the boundary points of a building 
surround the closed building polygon, it is evident that the 
resultant tensor Tr is positive semi-definite and a rank-2 tensor. 
The eigenvalues (λmax, λmin) and eigenvectors (emax, emin) of the 
normalized resultant tensor can be derived by tensor 
decomposition as follows: 
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where λmax≥λmin≥0. This tensor can be geometrically visualized 
as an ellipse [22]. The eigenvectors represent the orientation of 
the ellipse, and the root square values of the eigenvalues 
represent the lengths of the principal axes.  
 
After registration, the tensor ellipse of each building polygon 
can be determined. If the tensor ellipse is beyond the tolerance 
circle, it means that the boundary LiDAR points are not 
sufficient to match the building outlines. This implies that these 
discrepancies may influence the results of the reconstruction. 
Therefore, it is possible to identify which building models are 
not reconstructed well using residual tensor analysis. 
 
3.3 Building model reconstruction 

After registration, an automatic reconstruction of 3D building 
models is applied. In this procedure, the height of each building 
outline node can be determined by the plane equation of a 
LiDAR surface segment, and then the structural lines derived 
from LiDAR data and the building outlines are automatically 
connected according to following rules (Lin et al. 2010): 

1. The 3D structural lines projected on the local xy-
plane should be first extended to the boundary lines 
when they are shorter than they should be. 

2. If the intersection point of a structural line and a 
boundary line is near a node point within a small 
region, the structural line is directly connected to the 
node point (case A in Figure 3). 

3. If the height of a structural line at the intersection 
point is not different from the height of the boundary 
line, the structural line is directly connected to the 
boundary line and a new node of the boundary line is 
added (case B in Figure 3). 

4. If the height of a structural line at the intersection 
point is significantly different from the height of the 
boundary line, two new additional structural lines 
may be needed(case C in Figure 3).  

Then a 3D building model can be reconstructed. 
 
 

4. EXPERIMENT AND ANALYSIS 

An airborne LiDAR dataset for a 350 500 m2 experimental 
area was acquired by an Optech ALTM 30/70. The flying 
height for the laser scanning was 500 m AGL. The average 
LiDAR point density was 6 pts/m2. The horizontal and vertical 
precision was about 25 cm and 15 cm, respectively. This dataset 
was referred to Taiwan geodetic datum 1997.0. The topographic 
map with a scale of 1:1000 for this area was produced from  
aerial images and is based on Taiwan geodetic datum 1967. 
 
After registration, a resultant tensor can be determined to 
analyze the registration result. If the tensor ellipse is beyond the 
tolerance circle, it means the discrepancy between the boundary 
points and the outlines of that building is obvious. In an actual 
experimental dataset, we illustrate some cases as mentioned 
above and present how the resultant tensor analysis can identify 
the incorrect reconstruction model. These cases can be divided 
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into two categories: (1) There are not enough boundary points 
from the LiDAR data to depict the complete building outlines, 
as shown in Cases I. (2) The building outlines are not detailed 
enough, as shown in Cases II. These two categories indicate 
that boundary LiDAR points do not sufficiently match the 
building outlines. 
 
Case I: There are not enough boundary points from the LiDAR 
data to depict the complete building outlines. 
 
(1) Building with a horizontal or slanted roof plane. In these 
buildings, the roof faces are partly or fully covered by 
neighboring building or trees. 
 

 
Figure 3. Building with a horizontal or slanted roof plane. 

 
(2) Building with a ridge or hips. In these buildings, the 
important structural lines, like hips, are partly or fully covered 
by trees etc. 
 

 
Figure 4. Building with a ridge or hips. 

 
Case II: Building outlines are not detailed enough. 
 
(1) Two adjoining buildings with flat or slanted roof planes or 
roofs with two different ridges. In these buildings, the building 
outlines of these two buildings are drawn together with one 
outline. The border line between these two buildings is not 
drawn in the topographic map. 
 

 
Figure 5. Two adjoining buildings with flat or slanted roof 

planes or roofs with two different ridges. 
 
(2) Some small buildings on top of a big building. In this case, 
the outlines of the small buildings are not drawn on the 
topographic map. 
 

 
Figure 6. Some small buildings on top of a big building. 

 
 
According to these case analyses, the tensor ellipse is available 
for checking the incorrectly reconstructed models when the 
automatic reconstruction is completed. In our experience, it is 
good enough that the radius of the tolerance circle is set to 2 
times the

 
estimated standard deviation of the discrepancy. 

 
After reconstruction, some of the building models may be 
incorrect when the discrepancy between the tensor ellipse and 
the tolerance circle at the buildings is significant. In Case I-1, a 
building with a single roof plane, the building models can be 
still reconstructed correctly, since the roof planes and the 

heights of the nodes can be determined by the LiDAR surface 
segments. In Case I-2, a building with multiple intersecting roof 
planes, the building model can be also reconstructed correctly 
as long as all of the structural lines of the building are extracted 
exactly or inferred correctly from the LiDAR data. The 
structural line can be still inferred correctly when a part of it is 
covered. However, if the structural line is completely covered, 
the reconstructed building model will be incorrect. A building 
with multiple non-intersecting roof planes, such as buildings 
with different heights of roof planes that are close to one 
another (Case II-1), or small structures on the roofs (Case II-2). 
The reconstructed building models are always wrong in these 
cases, since these small structures are usually not shown on the 
topographic map or the closely adjacent buildings are drawn 
with a single outline. All these incorrect cases can be observed 
in the tensor analysis stage. 
 
Incorrect building models may occur in the results of the 
automatic reconstruction due to either insufficient LiDAR data 
or topographic map information. Hence manual refinement of 
the reconstructed building models may be necessary after the 
automatic procedure. Since the incorrectly reconstructed 
building models can be detected according to the tensor 
analysis developed in this study, it reduce both the time and 
cost of building reconstruction. 
 
The quality of reconstructed building models is evaluated by 
tensor analysis. In Figure 5, a closed polygon represents a 
building. The results show that a total of 33 of 108 buildings are 
incorrect building models as shown with gray polygons in 
Figure 5. 
 
 

 
 

Figure 7.  Incorrect building models (gray polygons) in the test 
area. 

 
 
In Figure 7, a closed polygon represents a building. Our results 
have shown that in total, 41 tensor ellipses are beyond the 
tolerance circle. There are 6, 5 and 30 buildings with single roof 
planes, multiple intersecting roof planes and multiple non-
intersecting roof planes respectively. These building models 
should be manually checked after the automatic reconstruction 
procedure. The 6 buildings with single roof planes are 
automatically reconstructed very well, as mentioned before, and 
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one of the five buildings with multiple intersecting roof planes 
is also reconstructed very well, since its ridge lines are 
completely inferred from Lidar data. The other 33 buildings 
cannot be reconstructed correctly since the important structural 
lines on their roofs are covered by trees or the outlines of small 
structures are not drawn on the topographic map. All of these 
incorrect models should be refined manually, by 
photogrammetry, outline estimation from Lidar data, and even 
field work, for instance. 
 

5. CONCLUSIONS 

The residual tensor ellipses presented here can be regarded as 
indicators to evaluate the quality of registration and to show 
where manual modification may be needed during model 
construction. The experiments have shown that the proposed 
method for the building reconstruction procedure with Lidar 
data and topographic map information, including feature 
extraction, registration, reconstruction and quality analysis, can 
be processed automatically and yields reliable results. Although 
manual editing is needed in order to achieve refined 3D 
building models, the results have shown that our method can 
save time and expense for model construction by using tensor 
ellipses. 
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