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ABSTRACT: 
 
INS/GPS integration scheme can overcome the shortcoming of GPS or INS alone to provide superior performance, thus this study 
implements a tightly-coupled INS/GPS integration scheme using AKF as the core estimator by tuning the measurement noise matrix 
R adaptively. The AKF is based on the maximum likelihood criterion for choosing the most appropriate weight and thus the Kalman 
gain factors. The conventional EKF implementation suffers uncertain results while the update measurement noise matrix R and/or the 
process noise matrix Q does not meet the case. The primary advantage of AKF is that the filter has less relationship with the priori 
statistical information because R and/or Q vary with time. The innovation sequence is used to derive the measurement weights 
through the covariance matrices, innovation-based adaptive estimation (IAE) in this study. The covariance matrices R are adapted in 
the study when measurements update with time. A window based approach is implemented to update the quality of GPS pseudo-
range measurements by adaptively replace the measurement weights through the latest estimated covariance matrices R. 
The use of odometer is particularly recommended when a low cost and precise vehicle localization system has to be implemented and 
there is the risk of GPS coverage failure, which is prone to happen when the vehicle enters a tunnel or cross deep valleys. Odometers 
are applied in land-vehicle navigation to provide augmented host velocity observations for standalone INS system in this study. 
There are two non-holonomic constraints (NHC) available for land vehicles. Land vehicles will not jump off the ground or slid on 
the ground under normal condition. Using these constraints, the velocity of the vehicle in the plane perpendicular to the forward 
direction is almost zero. EKF and AKF based tightly-coupled scheme with NHC is implemented in the study. 
To validate the performance of AKF based tightly-coupled INS/GPS integration scheme with odometer and NHC, field scenarios 
were conducted in the downtown area of Tainan city. The data fusion of INS/GPS/Odometer/NHC can be used as stand-alone 
positioning tool during GPS outages of over 1 minute, and AKF based tightly-coupled INS/GPS integration scheme can be more 
stable combined with odometer and NHC during GPS outages of over 1 minute likewise. 
 
 

                                                                 
*  Corresponding author: C.A. Lin 

1.  INTRODUCTION 
Global Positioning System (GPS) receivers require direct line of 
sight signals to the GPS satellite to provide navigation solutions with 
long-term stability; consequently, it is capable of providing 
continuous navigation solutions with uninterrupted signal reception. 
However, GPS leaves two scenarios to be considered in the land 
environment. The first one is intermittent signal reception, as for 
instance in heavily forested areas or in urban canyons. The other 
one is no signal reception at all, as for instance in buildings, tunnel 
or underground. In the first case, GPS has to be integrated with other 
sensors to bridge periods of no signal reception. In the second case, 
GPS has to be replaced by another navigation system that can 
provide continuous navigation solutions in above environments 
during no GPS signal reception. 
 
On the contrary, Inertial Navigation System (INS) is widely 
used in many applications for navigating of moving platforms. 
Low-cost INS can experience large position and attitude errors 
over short term duration in comparison with high-grade systems. 
It has been proved through numerous researches that the 
INS/GPS integrated is the ideal technique for seamless 
vehicular navigation. 
 

The stand-alone INS is self-contained and independent of 
external signals. Providing acceleration, angular rotation and 
attitude data at high sampling rates is the primary advantage of 
using INS in land vehicles. However, the disadvantage of using 
INS is that its accuracy degrades rapidly with time because of 
the accumulations of nonlinear errors and noises from 
accelerometers and gyros, as shown in Figure 1. Therefore, INS 
is used in the short-term case if no other navigation system or 
navigational aids is available. 
 

 
Figure 1. The limitations of INS based navigation systems 

 
The integrated system consisted of INS and GNSS takes 
advantage of the complementary attributes of both systems and 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B7, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

481

mailto:p66004057@mail.ncku.edu.tw�
http://www.isprs2012.org/abstractsVII7III2V1V3ICWGVILowcostUAVsUVSsandmobilemappingsystems.asp�


 

 

outperforms either stand-alone system operated (Yang, 2008). 
There are different integrated schemes including loosely-
coupled, tightly-coupled, and ultra-tightly coupled INS/GPS 
integrated strategies, have been researched and developed since 
the last decade (Petovello, 2003). 
 
The sustainability of INS/GPS integrated system using current 
commercially available micro-electro-mechanical systems 
(MEMS) inertial technology in typical GPS denied 
environments is fragile. However, the progress of MEMS 
inertial sensors is advanced rapidly thus the inclusion for 
general land vehicular navigation is bright in the future. In 
addition to waiting for the advanced development process of 
MEMS inertial sensor, some measures have been taken to 
increase the sustainability of MEMS INS/GPS integrated 
systems for vehicular applications during frequent signal 
blockages in software aspect (Chiang et al, 2003; Chiang and 
Huang, 2008). In other words, aiding the INS with other 
complementary sensors is critical to improve the accuracy of 
inertial based navigation systems. Choosing an appropriate 
estimation method is a key issue in developing an aided INS 
(Shin, 2005). 
 

2.  PROBLEM STATEMENTS 
It is common practice to use Extended Kalman Filter (EKF) to 
accomplish the data fusion. Several architectures for EKF 
implementations are known (Wendel and Trommer, 2004). The 
most common integration scheme used today is loosely-coupled 
(LC) integration scheme. It is the simplest way of integrating a 
GPS processing engine into an integrated navigation system. 
The GPS processing engine calculates position fixes and 
velocities in the local level frame and then send the solutions as 
measurement update to the main INS EKF. By comparing the 
navigation solutions provided by INS mechanization with those 
solutions provided by GPS processing engine, those navigation 
states can be optimally estimated, as shown in Figure 2, the 
primary advantage of LC architecture is the simplicity of its 
implementation, because no advanced knowledge of GPS 
processing is necessary. The disadvantage of implementation is 
that the measurement update of the integrated navigation system 
is only possible when four or more satellites are in view. 
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Figure 2. Loosely-coupled INS/GPS integration architecture 

 
On the other hand, the tightly-coupled (TC) integration scheme 
uses a single KF to integrate GPS and IMU measurements. In 
the TC integration, the GPS pseudo-range and delta-range 
measurements are processed directly in the main KF, as shown 
in Figure 3. For some references, the aiding of the receiver 
tracking loops using velocity information provided by the INS 

is an essential characteristic of tightly-coupled scheme, too. The 
primary advantage of this integration is that raw GPS 
measurements can still be used to update the INS when less 
than four satellites are available. This is of special benefit in a 
hostile environment such as downtown areas where the 
reception of the satellite signals is difficult due to obstruction 
when the vehicle navigates in urban or suburban area. 
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Figure 3. Tightly-coupled INS/GPS integration architecture 

 
However, according to Chiang and Huang (2008), the EKF 
implemented with a TC scheme may come with serious 
problems concerning the quality of GPS raw measurements. In 
other words, EKF based TC architecture is sensitive the quality 
of GPS raw measurements. This scenario usually takes place in 
urban and suburban areas because of the impact of reflected 
GPS measurements. Therefore, this study applied the Adaptive 
Kalman Filter (AKF) as the core estimator of a tightly-coupled 
INS/GPS integrated scheme by tuning the measurement noise 
matrix R adaptively. The idea of AKF is based on the maximum 
likelihood criterion for choosing the most appropriate weight 
and thus the Kalman gain factors. The conventional EKF 
implementation suffers uncertain results while the update 
measurement noise matrix R and/or the process noise matrix Q 
does not meet the case. 
 

3.  THE IMPLEMENTAION OF AKF SCHEMES 
The AKF can be implemented by Multi model adaptive 
estimation (MMAE) and Innovation-based adaptive estimation 
(IAE), respectively. Those methods need to calculate the 
innovation sequence, which is obtained by the difference 
between real measurement received by the filter and predicted 
value. At the current epoch k, not only the new measurement 
but the predicted value provides the new information. Hence, 
the innovation sequence represents the information satisfy the 
new measurement and considered as the most relevant source of 
the adaptive filter. See Genin (1970), Kailath (1972) and 
Kailath (1981) for more details. The primary advantage of AKF 
is that the filter has less relationship with the priori statistical 
information because the R and/or Q matrices vary with time. 
 
According to Schwarz and Mohamed (1999), the IAE scheme is 
more efficient than MMAE scheme. Therefore, the IAE scheme 
is chosen in this study. The innovation sequence is used to 
derive the measurement weights through the covariance matrix 
R in this study. In the IAE method implemented in study, the 
covariance matrix R is adapted when measurements update with 
time. A window based approach is implemented to update the 
quality of GPS pseudo-range measurements by adaptively 
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replace the measurement weights through the latest estimated 
covariance matrices R.  Figure 4 depicts the implementation of 
IAE procedure. 

 
Figure 4. IAE computing procedure 

 
In the IAE approach, the measurement covariance matrix R and 
system noise covariance matrix Q are tuned by measurements of 
different time. The study focuses on the influence of the 
qualities of measurements, so only the measurement covariance 
matrix R is variable. The formulations of AKF are shown below 
(R-only) (Schwarz and Mohamed, 1999). 
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Where kv represents the innovation sequence and
kvĈ is the 

covariance of innovation sequence at epoch k. j0 is the first 
epoch of estimation window, and it would be calculated 
by 10 +−= Nkj  and N is the size of window. 
 
The integrated algorithm in this study is applied for land vehicle 
navigation. Therefore, the velocity of land vehicle navigation 
constraints is derived assuming that the vehicle does not slip, 
which is a close representation for travel in a constant direction. 
A second assumption is that the vehicle stays on the ground, i.e. 
it does not jump of the ground. If both assumptions are true, 
non-holonomic constraints (NHC) are defined as the fact that 
unless the vehicle jumps off the ground or slides on the ground, 
the velocity of the vehicle in the plane perpendicular to the 
forward direction is almost zero (Sukkarieh, 2000; Nassar et al., 
2006; Godha, 2006). Figure 5 shows the scenario of non-
holonomic constraints in the b-frame. Therefore, two constraints 
can be considered as measurement updates to the Kalman 
filtering navigation: 
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Figure 5. The two non-holonomic constraints in the b-frame 

 
The body frame velocity can be given as: 
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Perturbing Equation 5 expresses: 

))(()(])[( nvnvnEIb
nCnvnvTn

bCnEIbvbv δδδ +−=+−=+     (6) 
Collecting terms to the first order, the velocity error dynamics 
can be written as: 
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Cij: the (i , j) elements from the DCM n
bC  

 
In general, the velocity output of the inertial navigation 

mechanization nv  can be transformed to the body frame 

velocity bv  by the attitude error dynamics DCM n
bC . And the 

NHC
kz  is used as the measurements in the Kalman filter. The 

estimated errors will be fed back to the mechanization then. 
Finally, the implementation of the Kalman filters with non-
holonomic constraints in INS-based tightly-coupled integrated 
systems can be illustrated as Figure 6. 
 

 
Figure 6. INS-based tightly-coupled integrated systems with NHC 

 
4.  RESULTS AND ANALYSIS 

To validate the performance of proposed algorithm, the field 
scenario of the land vehicle was conducted in the downtown 
area of Tainan. Reference and test systems were installed on the 
test vehicle. The geodetic GPS receiver with double frequency 
board and the low-cost GPS receiver with single frequency 
board were applied in the field scenario. In the case of INSs, the 
two tactical grade INSs were applied. 
 
4.1 Test Instrument 
Table 1 and Table 2 show the specifications of the GPS 
receivers and INSs used in the field scenario.  
 

Table 1. The specifications of the GPS receivers 
 NovAtel OEMV-3 

(Geodetic) 
U-blox AEK-4T 

(Low-cost) 

Receiver 
Type 

Channels 14 L1,14 L2,6 L5 16 L1 

Data type C/A code, P code, 
Carrier Phase C/A Code 

Accuracy 
(RMS) 

SPP (m) L1:1.8   L1+L2:1.5 3.0 
DGPS (m) 0.45 2.4 

 
Table 2. The specifications of the INSs 

Type of IMU Grade Gyro Drift Acc. Drift 
SPAN-CPT Tactical 1 deg/hr 0.75 

C-MIGITS III Tactical 3 deg/hr 0.2 
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The reference system is the SPAN-CPT with NovAtel OEMV-3 
integrated system. The reference solutions were computed by 
the single point positioning (SPP) solutions with Rauch-Tung-
Striebel (RTS) smoother. The test systems are the C-MIGITS III 
with NovAtel OEMV-3 integrated system and C-MIGITS III 
with U-blox AEK-4T integrated system. And the test systems 
are implemented by the SPP solutions and the Kalman filters 
with non-holonomic constraints to integrate. 
 
4.2 Field Scenario 
The field scenario of the land vehicle was conducted in the 
downtown area of Tainan, and the total trajectory distance is 5 
kilometers and the work time is 20 minutes. The trajectory is 
displayed in Google Earth as shown in Figure 7, and Figure 8 
shows the building distribution and scenes beside the roads 
went through in the field scenario. The installed instruments on 
the top of the land vehicle can be shown as Figure 9. 
 

 
Figure 7. Trajectory of the field scenario 

 

 
Figure 8. Building distribution and scenes in the field scenario 

 

 
Figure 9. Installation of the instruments 

 
4.3 Results 
The testing system is composed of the tactical INS (C-MIGITS 
III) with low-cost GPS receiver (U-blox) and a geodetic grade 
dual frequency GPS receiver, respectively. The integration 
algorithms to deal with the data fusion in this study are EKF, 
AKF, EKF with NHC and AKF with NHC. The reference 
system is the SPAN-CPT with geodetic GPS receiver integrated 

system and the integrated algorithm is RTS smoother processed 
in post-mission with differential carrier phase measurements. 
For testing system, the GPS solutions are proceed with the SPP 
solutions. The PDOP values and visible satellite numbers of the 
geodetic GPS receiver and the low-cost GPS receiver in the 
field scenario are shown in Figure 10 and Figure 11. 
 

 
Figure 10. PDOP and visible satellites of the geodetic GPS receiver 
 

 
Figure 11. PDOP and visible satellites of the low-cost GPS receiver 
 
 4.3.1 Tactical INS & Geodetic GPS receiver 
The first scenario is to demonstrate the results of tactical INS 
and geodetic GPS receiver processed by EKF, EKF with NHC, 
AKF and AKF with NHC, respectively. Figure12 shows the n-
frame trajectories of the integration algorithms, and positional 
solutions errors in local level frame (East, North and Up 
directions) are shown in Figures 13 to 15. 
 

 
Figure 12. The trajectories of the first test integrated system 
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Figure 13. E-errors of the first test integrated system 
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Figure 14. N-errors of the first test integrated system 
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Figure 15. U-errors of the first test integrated system 

 
Generally speaking, the positional errors estimated by NHC are 
significantly smaller than those estimated by EKF and AKF in 
East direction in most of the cases. On the other hand, the 
position errors of north components estimated by AKF+NHC 
are slightly smaller than those estimated by EKF in North 
direction in most of the cases. Similar trend can be founded in 
height components. Tables 3 and 4 illustrate the error statistics 
of the first test. 
 

Table 3. Maximum errors of the first test integrated system 

KF Maximum Error (m) 
E N U 

EKF 355.810 180.105 147.532 
EKF+NHC 255.815 49.031 112.717 

AKF 37.028 27.934 90.271 
AKF+NHC 65.163 66.763 108.849 

 
Table 4. RMS values of the first test integrated system 

KF RMS (m) 
E N U 

EKF 51.902 21.956 32.976 
EKF+NHC 28.731 12.065 30.034 

AKF 10.927 15.521 26.981 
AKF+NHC 9.576 9.422 20.137 

 
 4.3.2 Tactical INS & Low-cost GPS receiver 
The second testing scenario is to analyze the results of the 
tactical INS with the low-cost GPS receiver proceed with EKF, 
EKF with NHC, AKF and AKF with NHC integration 
algorithms. Figure 16 shows the n-frame trajectories of the 
integration algorithm. The position errors can be plotted as 
shown in Figures 17 to 19, and their error statistics are 
illustrated in Tables 5 and 6. 
 
 

 
Figure 16. The trajectories of the second test integrated system 
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Figure 17. E-errors of the second test integrated system 
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Figure 18. N-errors of the second test integrated system 
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Figure 19. U-errors of the second test integrated system 

 
Table 5. Maximum errors of the second test integrated system 

KF Maximum Error (m) 
E N U 

EKF 510.536 237.857 174.561 
EKF+NHC 321.329 61.588 141.583 

AKF 48.014 41.810 95.237 
AKF+NHC 76.359 77.690 157.707 

 
 
 
 
 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B7, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

485



 

 

Table 6. RMS values of the second test integrated system 

KF RMS (m) 
E N U 

EKF 67.214 30.703 43.888 
EKF+NHC 36.088 16.557 37.725 

AKF 14.169 16.019 28.464 
AKF+NHC 11.222 10.963 22.721 

 
4.4 Analysis 
The first test integrated system implements AKF with NHC can 
achieve 25% in horizontal position error and 25% in vertical 
position error in comparison with AKF based algorithm. The 
second test integrated system implements AKF with NHC can 
achieve 26% in horizontal position error and 20% in vertical 
position error from AKF based algorithm. 
 
Comparing to the results of the first test integrated system 
(geodetic GPS receiver) and the second test integrated system 
(low-cost GPS receiver), similar improvement ration can be 
obtained. In the case of EKF based INS/GPS tightly-coupled 
integration with non-holonomic constraints, all the results in 
this field scenario have 40% up improvement in horizontal 
position error and 30% averaged improvement in 3D position 
error from EKF to EKF with non-holonomic constraints. In the 
other case of AKF based INS/GPS tightly-coupled integration 
with non-holonomic constraints; the results show the 25% 
averaged improvement in 3D position error.  
 
From the results of EKF, EKF with NHC, AKF and AKF with 
NHC applied in the integrated systems, the non-holonomic 
constraints can improve the EKF and AKF based integration 
algorithms. Therefore, the aid of non-holonomic constraints to 
the Kalman filters applied in land vehicles can be reveal here, 
especially during no GPS signals. 
 

5.  CONCLUSION 
The objective of this study is to implement EKF and AKF based 
tightly-coupled INS/GPS integrated system with non-holonomic 
constraints for land vehicles. 17-state EKF and 17-state AKF 
with non-holonomic constraints can raise the position accuracy 
especially during GPS signal obstructions for land vehicles. 
 
The case of the 17-state EKF based tightly-coupled INS/GPS 
integrated system can reach 30% averaged improvement in 3D 
position error with non-holonomic constraints. The other case 
of 17-state AKF based tightly-coupled INS/GPS integrated 
system can reach 25% averaged improvement in 3D position 
error with non-holonomic constraints. Especially, the non-
holonomic constraints can be the aid for the stand-alone INS to 
decrease the position drift during the GPS obstructions over 1 
minute in those two cases of the INS integrated with the 
geodetic GPS receiver and the low-cost GPS receiver. Therefore, 
the AKF based INS/GPS tightly-coupled integrated algorithm 
with non-holonomic constraints can provide more stable 
navigation solutions than EKF and AKF based integration 
algorithms applied in a hostile environment. 
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