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ABSTRACT:

The Deepwater Horizon oil spill occurred in the Gulf of Mexico in April 2010 and became the largest accidental marine oil spill in
history. Oil leaked continuously between April 20th and July 15th of 2010, releasing about780, 000m3 of crude oil into the Gulf of
Mexico. The oil spill caused extensive economical and ecological damage to the areas it reached, affecting the marine and wildlife
habitats along with fishing and tourism industries.
For oil spill mitigation efforts, it is important to determine the areal extent, and most recent position of the contaminated area. Satellite-
based oil pollution monitoring systems are being used for monitoring and in hazard response efforts. Due to their high accuracy, frequent
acquisitions, large area coverage and day-and-night operation Synthetic Aperture Radar (SAR) satellites are a major contributer of
monitoring marine environments for oil spill detection.
We developed a new algorithm for determining the extent of the oil spill from multiple SAR images, that are acquired with short
temporal intervals using different sensors. Combining themulti-polarization data from Radarsat-2 (C-band), Envisat ASAR (C-band)
and Alos-PALSAR (L-band) sensors, we calculate the extent of the oil spill with higher accuracy than what is possible from only one
image. Short temporal interval between acquisitions (hours to days) allow us to eliminate artifacts and increase accuracy.
Our algorithm works automatically without any human intervention to deliver products in a timely manner in time critical operations.
Acquisitions using different SAR sensors are radiometrically calibrated and processed individually to obtain oil spill area extent.
Furthermore the algorithm provides probability maps of theareas that are classified as oil slick. This probability information is then
combined with other acquisitions to estimate the combined probability map for the spill.

1 INTRODUCTION

Marine oil spills are a common threat to all sea bordering coun-
tries. The environmental and related economical losses dueto an
oil spill can be large, and many methods have been developed
to monitor oceans in operational conditions. In most cases it is
critical to respond to spills in a timely manner, and therefore it is
important for such operational systems to provide results in near
real time. Once a spill is detected, its behavior can be modeled
based on physical models.

Synthetic Aperture Radar (SAR) systems provide a viable option
of oil slick monitoring. SAR intensity images are sensitiveto
surface roughness which is altered in the case of an oil spill. The
scattering of oil-free ocean surface is dominated by Bragg scat-
tering (Bragg, 1913). A thin oil sheen covering the ocean will
reduce the ocean-atmosphere interaction, and alter the smooth-
ness of the surface. Therefore, oil slicks appear slightly darker in
moderate wind conditions in SAR imagery. SAR systems have
an ideal range of wind speed and direction where they are most
sensitive, and do not perform well for oil spill detection under
very windy or very calm conditions.

There are of course other methods to monitor oceans and detect
oil spills, such as optical and infra-red remote sensing, and hy-
perspectral imaging (Brekke and Solberg, 2005). No matter how
complex or advanced a method is single-handedly all have dif-
ferent levels of uncertainties. Therefore it is important to com-
bine many observations complementing each other’s weaknesses
providing the best possible information. Results from different

remote sensing sensors, as well as field observations can be com-
bined, and statistically provide an outcome better than anyindi-
vidual resource.

In this paper we develop a fully automatic oil spill monitoring
systems that is capable of combining data from multiple SAR
sources. The focus of this paper is on radar imagery, however
the algorithm can be then be expanded to optical imagery and
ground measurements as discussed later. A brief backgroundon
the technical aspects is provided in Section 2. Results obtained
from SAR data over the Deepwater Horizon oil spill are discussed
in Section 3.

2 BACKGROUND

Synthetic Aperture Radar imagery is sensitive to surface rough-
ness which is altered in case of an oil spill (Alpers and Hühnerfuss,
1988). Oil slicks change the smoothness of ocean surface and
appear darker compared to surrounding oil free ocean, however
the amount of damping is affected with wind and wave condi-
tions. Furthermore the speckle effect in SAR imagery limitsthe
reliability of point measurements in the image, causing spurious
results (Brekke and Solberg, 2005). In our approach we applya
multiple step processing to limit the adverse effects of speckle,
instead of filtering the data with a speckle filter.

There are many methods developed to detect oil spills from SAR
intensity images: (1) machine learning and neural-networkrecog-
nition (Kubat et al., 1998, Ozkan and Sunar, 2007), (2) frequency
spectrum attenuation (Lombardini et al., 1989, Gade et al.,1998,
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Kim et al., 2010), (3) segmentation techniques (Barni et al., 1995,
Solberg et al., 2007), (4) slick feature extraction (Fiscella et al.,
2000, Del Frate et al., 2000). Some algorithms also combine
ocean drift models to assist data analysis (Espedal, 1999, Cheng
et al., 2011). In addition to SAR intensity, co-polarization differ-
ences of multiple polarization SAR data is also suggested for oil
spill detection (Migliaccio et al., 2009).

In this paper, our focus is not on developing a method that per-
forms better than any one of the methods mentioned earlier, but
instead to develop a practical framework where results fromdif-
ferent methods and sources can be combined to provide a joint
solution, which is likely to have less uncertainty. The method
can be easily extended to include any geospatial observation (e.g.
optical remote sensing, ground measurements), however in this
paper our focus is on SAR imagery. The algorithm is composed
of three calculation steps: (1) Pixel (point) probability,(2) spatial
probability, and (3) spatio-temporal probability. Point probabil-
ity is calculated based on normalized radar cross section, where
darker pixels get higher probabilities for oil contamination (Barni
et al., 1995). Spatial probability is based on the damping ratio
given the current wind conditions and imaging parameters (Gade
et al., 1998, Kim et al., 2010). Point and spatial analysis results
are then combined to provide a joint probability for oil slick at
each acquisition. The spatio-temporal probability is estimated
from multiple SAR acquisitions separated shortly in time, result-
ing in a time varying probability of oil slick over target area. All
analysis in this paper is done over intensity calibrated, geocoded
SAR imagery. Images are calibrated to normalized radar cross
section (NRCS). The imagery is resampled to a common geome-
try using a sinc interpolator, and land-masked using Global, Self-
consistent, Hierarchical, High-Resolution Shoreline data (GSHHS)
(Wessel and Smith, 1996).

First and second steps of the algorithm are iterative, and are per-
formed at the same time. The first step of the algorithm is a sim-
ple dark-object selection routine based on intensity thresholding.
At this step, dark areas of the image are assigned a higher proba-
bility for an oil spill. The initial threshold for the first step is the
noise equivalent sigma zero (NESZ), which is the sensors noise
floor. A probability value for each pixel is assigned based onit’s
intensity such that:

P (W |σ0) = (σ0 −min(σ0))/(T −min(σ0)) (1)

P (O|σ0) = 1− P (W |σ0) (2)

whereP (W |σ0) is probability of oil-free water given the NRCS,
T is the threshold, andP (O|σ0) is the probability of oil given the
NRCS is the complement ofP (W |σ0). TheP (W |σ0) is modi-
fied by bringing all larger values to1, constraining the probability
values between0 and1. Furthermore, iterations start using a mul-
tilooked imagery, to reduce the effect of speckle noise. It is worth
noting that the multilooking operation changes the dynamicrange
of the radar imagery. In order to keep the thresholds equivalent at
each iteration, multilooked images are further calibratedto have
the same dynamic range as the full resolution image.

The second step of the algorithm starts with calculation of damp-
ing factor after Gade et al. (Gade et al., 1998, Kim et al., 2010).
The estimated damping factors at different wind speeds as a func-
tion of Bragg wavenumbers are shown in Figure 1. Figure 1 also
shows the maximum theoretical observation range for Radarsat-
2, Envisat-ASAR, and Alos-PALSAR SAR systems. The Bragg
wavenumber is defined as (Gade et al., 1998):

kB = 2k0 sin(φ) (3)

wherekB is the Bragg wavenumber,k0 is the radar wavenum-

ber, andφ is the incidence angle. Figure 1 shows the maximum
expected damping amount which would be observed when the an-
gle between the wind, and radar wave is zero. ALOS-PALSAR is
not expected to be effective in mild wind conditions, as shown
in the figure. The SAR sensors on-board Radarsat-2 and En-
visat are both C-Band, and therefore cover similar regions in the
wavenumber domain. The slightly larger coverage of Radarsat-2
is due to it’s larger range of incidence angles.

Figure 1: Estimated damping factor as a function of Bragg
wavenumber. The theoretical range of SAR systems used in the
system are marked with horizontal lines. Each curve represents a
different wind velocity.

Wind is an important factor to estimate the damping factor, which
is also dependent on the relative angle between radar wave and
wind direction. Figure 2 shows a plot of expected damping fac-
tors at speeds between2.5 m/s and 12.5 m/s. The relative
wind direction is plotted at counter-clockwise increasingangles,
starting from zero at the horizontal axis. In this study we use
wind speed, direction and ocean wave group velocity data from
National Data Buoy Center station 42040, located at 29.122N,
88.207W, about 40km NNW of the Deepwater Horizon oil rig.
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Figure 2: Estimated damping factor plotted against the relative
angle between radar and wind direction. Radial distance from the
center indicates the wind speed.

The first and second steps of the algorithm are run iteratively at
five different spatial resolutions. The analysis is performed in a
pyramid structure with five different stages. At each stage the im-
age is multilooked to the power of two, such that at the first stage
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the image is multilooked to25, and to24 at the second stage.
Both the intensity thresholding and damping factor methodspro-
vide results at each stage which are combined using:

JP (O) =
P (O|n) ∗ P (O|d)

P (O|n) ∗ P (O|d) + P (W |n) ∗ P (W |d)
(4)

whereJP (O) is the joint probability for oil,P (O|n), is the prob-
ability of oil given the NRCS,P (O|d) is the probability of oil
given the damping factor analysis,P (W |n) is the probability of
clear water given the NRCS, andP (W |d) is the probability of
clear water given the damping factor analysis. The main reason
for combining the two probability functions is that the damping
factor analysis will return low probabilities for the center of large
slicks. This is due to the fact that the damping factor is calculated
against a moving window average. For oil slicks larger than the
size of the moving window, the average and pixel values will be
very close, returning no dampening. Of course a larger window
size can be used to eliminate this problem, however, since that
would require human intervention. Contrary to the damping fac-
tor analysis, the NRCS based thresholding algorithm will return
high probabilities for the center of the slick.

The study area is shown in Figure 3, and is about350km×350km,
centered around the Deepwater Horizon oil spill. The locations
of the ALOS-PALSAR and Radarsat-2 imagery are shown in the
figure. It should be noted that even though the SAR imagery is
calibrated to NRCS, there is still a gradual change in intensity
along the range direction (Figure 3). The Gulf of Mexico oil spill
provides a great test case for the new algorithm, because it is lo-
calized and continuous over time. Furthermore there are many
published research and ground observations available for validat-
ing the method.

Figure 3: The black-box shows our designated study area.
GSHHS shoreline is shown in light green. The SAR intensity
images are from Radarsat-2, and the one on top is acquired on
April 24th 2010. Light green boxes show the footprints for the
ALOS PALSAR imagery. The legend shows distance in degrees.

3 RESULTS AND DISCUSSION

SAR images acquired from Radarsat-2 and Alos were processed
using the proposed method. Some of the imaging parameters
and environmental conditions are summarized in Table 1. Table
shows the observed wind-speed, relative angle between the wind
and radar wave, and the calculated damping factor (D.F.). The
damping factor calculation also takes into account the wavegroup
velocity, and radar incidence angle which are not listed in the ta-
ble. The damping factors listed for ALOS-PALSAR are rather
low, however they are still above the NESZ of the instrument,

which is about−29dB for the fine beam single (FBS) imaging
mode.

Date Sensor Wind Speed Wind Angle D.F.
[m/s] [degrees] [dB]

04-27 Radarsat-2 7.3 173.6 6.6
05-01 Radarsat-2 9.8 228.4 7.6
05-01 Alos-Palsar 7.8 77.0 -16.5
05-04 Alos-Palsar 3.2 50.3 -8.5

Table 1: Data Table

The results of oil spill detection algorithm is shown in Figure 4.
The probability maps calculated for the five iterative stepsus-
ing two different methods and their combination are presented.
The results are shown in ascending order of resolution, where the
25 multilooked image is located at the left hand side. The final
solution for the processed imagery is shown in the bottom right
corner. The joint probability (JP (O)) is calculated using the
NRCS based oil probability (P (O|n)) and damping factor based
oil probability (P (O|d)) as shown in (4).
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Figure 4: Results for the first (point probability) and second (spa-
tial probability) processing steps, for the Radarsat-2 data acquired
on April 27th, 2010.

The complementing behavior of the two methods can be seen in
Figure 4. While theP (O|n) has very little noise at high multi-
looking, the opposite is true forP (O|d), which becomes less and
less noisy with decreasing multilooking. Furthermore, thevoid
in the center of the oil spill is visible inP (O|d) results for level
five.

Final results of all the images processed in this study are shown in
Figure 5. The analysis using Radarsat-2 imagery obtained better
results compared to the Alos imagery. This is very likely dueto
the small damping factors that are obtained at L-band, as shown
in Figure 1. The current algorithm does not employ any weighting
to the data, therefore the combined probability of all observations
are inconclusive. This can be improved however, by implement-
ing a more complex filter to the final stage, such as a Kalman
filter, or by simply adding more C-band data to dominate the re-
sults. We recently acquired additional imagery from Envisat to
test our hypothesis. Utilizing a Kalman filter at the final step of
the algorithm will allow for utilizing a larger spectrum of methods
and data sets, which may only be useful under certain conditions.
It is also worth noting that the Alos-PALSAR imagery, acquired
on May 1st, 2010 at 04:10 UTC shows almost no brightness vari-
ation.
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Figure 5: Joint probabilities for the imagery processed in this
study. a)Radarsat-2 27-Apr, b)Radarsat-2 01-May, c)Alos 01-
May, d)Alos 04-May. Alos results are enlarged for clarity.

4 CONCLUSIONS AND FUTURE WORK

More and more remote sensing data is becoming available ev-
ery day, some of which are applicable to the the detection of oil
spills. In this paper, we presented a method to combine SAR data
from multiple sensors, acquired at different times from different
geometries, to obtain a combined oil slick probability map for
the Deepwater Horizon oil spill. Furthermore, it is also possible
to combine results from different algorithms applied to thesame
data set, to increase accuracy as presented in this paper.

Our fully automatic algorithm can be expanded to include other
sensors (e.g. optical, infra-red, hyperspectral), and canbe cus-
tomized to the operational needs. The algorithm can operatewith
any sensor and any algorithm that can provide a probability map.
The intuitive probability maps assist operators and groundper-
sonnel in determining which areas to prioritize. Expansionof the
algorithm to utilize MODIS imagery, and a neural-network based
SAR oil spill algorithm for a future study is currently undercon-
sideration.
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