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ABSTRACT: 
This paper presents the first demonstration of high precision very high resolution tomographic SAR inversion with the assistance of 
TanDEM-X data. The data quality of TerraSAR-X and TanDEM-X is investigated. TomoSAR algorithms such as SVD-Wiener, 
Nonlinear Least Squares and SL1MMER are extended for mixed repeat- and single-pass data stacks. A systematic approach is 
proposed for the fusion of TerraSAR-X and TanDEM-X data in which the different data quality provided by the TerraSAR-X and 
TanDEM-X data are taken into account by introducing a weighting according to the noise covariance matrix. The proposed approach 
is evaluated with simulated data. The simulation result shows that the reconstruction accuracy of tomographic SAR inversion can be 
improved significantly by using jointly fused TerraSAR-X and TanDEM-X data. 
 

1. INTRODUCTION 

Tomographic SAR Inversion (Lombardini, 2003; Fornaro et al., 
2009; Zhu and Bamler, 2010a), including SAR tomography 
(TomoSAR) and differential SAR tomography (D-TomoSAR), 
aims at real and unambiguous 3D, 4D (space-time) or even 
higher dimensional SAR imaging and is one of the most 
advanced SAR techniques. 
TomoSAR uses typically 20~100 multi-pass SAR 
interferometric data sets of the same area taken from 
approximately the same, but slightly different, orbits to 
establish a synthetic aperture in the elevation direction. It aims 
at deriving the full scattering density, i.e. the reflectivity 
profile, in elevation by spectral analysis with special 
consideration of the difficulties caused by sparse and irregular 
sampling of the aperture. From this reconstructed profile in 
elevation multiple scatterers in any azimuth-range pixel are 
separated, and hence the full 3D (azimuth, range and elevation) 
reflectivity distribution is obtained. Therefore, TomoSAR is the 
strictest way of 3D SAR imaging while classical InSAR can be 
regarded as the limiting case of parametric TomoSAR. D-
TomoSAR uses the fact that the different acquisitions are taken 
at different times and introduces new dimensions to the 
TomoSAR system model attributing to the possible motion of 
the scatterers, linear and nonlinear, single component or multi-
component. By means of higher dimensional spectral analysis, 
D-TomoSAR is capable of retrieving elevation and deformation 
information even of multiple scatterers inside a single SAR 
pixel. Persistent Scatterer Interferometry (PSI) is a special case 
of D-TomoSAR where only a single scatterer inside a pixel is 
assumed. 
The new generation of SAR sensors, such as TerraSAR-X and 
Cosmo-Skymed, have proven to open up new opportunities for 
tomographic SAR inversion. Among all other advantages, such 
as high absolute geometric accuracy, precise orbit 
determination and short revisit time, this new class of SAR 
sensors deliver SAR data with a very high spatial resolution of 
up to 1 m compared to the medium (10~30 m)- and high (3~10 
m)-resolution SAR systems available so far. For the first time, 
the 3D shape and complex motion of single buildings can be 
reconstructed and enables tomographic SAR inversion to 

monitor urban infrastructure from space (Zhu and Bamler, 
2010; Zhu and Bamler, 2012b). 
The estimation accuracy of the 3D position and motion 
parameters depends on the signal-to-noise ratio (SNR), number 
of images used (typically 20~100), motion model assumption 
and the coupling effect between the spatial baseline and 
temporal base functions (Zhu and Bamler, 2012a; Zhu and 
Bamler, 2011). The state-of-the-art reconstruction accuracy of 
tomographic SAR inversion is limited, since: 
− The SNR of many pixels is very low, typically 0~10dB; 
− Although the underlying motion is complex, the motion 

model order is limited and assumed to be up to 2, e.g. a 
geodynamically induced linear motion and a thermal 
dilation induced seasonal motion, which must be 
estimated, although it is often regarded as a nuisance 
parameter.  

− The coupling effect between the phases attributed to the 
underlying topography and motion cannot be neglected 
using repeat-pass data stack acquired by a single antenna 
SAR sensor. 

Fig.1 presents a 3D view of the scatterers reconstructed by 
TomoSAR of city blocks in downtown Las Vegas, using a stack 
of 30 images acquired by TerraSAR-X. This limited accuracy 
can be obviously observed from the outliers and noisy building 
surfaces.  
Along with the launch of TanDEM-X in 2010, for the first time 
(after SRTM) there is a real multi-antenna system in space, 
even though only with a single baseline. It enables us to acquire 
data pairs simultaneously and repeatedly in time. The 
TanDEM-X data pairs are free of motion, atmosphere and 
temporal decorrelation, and hence possess much higher data 
quality. The fusion of TerraSAR-X and TanDEM-X data, i.e. 
adding a couple of TanDEM-X acquisition pairs to the 
TerraSAR-X data stacks, can be used to improve the result of 
tomographic SAR inversion from the above mentioned three 
aspects on the one hand, and to explore the limits of 
tomographic reconstruction on the other hand.  
This paper presents the first demonstration of high precision 
very high resolution tomographic SAR inversion with the 
assistance of TanDEM-X data. The data quality of TerraSAR-X 
and TanDEM-X is investigated (Section II). TomoSAR 
algorithms such as SVD-Wiener, Nonlinear Least Squares and 
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SL1MMER are extended for mixed repeat- and single-pass data 
stacks in Section III. A systematic approach is proposed for the 
fusion of TerraSAR-X and TanDEM-X data in which the 
different data quality provided by the TerraSAR-X and 
TanDEM-X data are taken into account by introducing a 
weighting according to the noise covariance matrix. The 
proposed approach is evaluated with simulated data in Section 
IV. The simulation result shows that the reconstruction 
accuracy of tomographic SAR inversion can be improved 
significantly by using jointly fused TerraSAR-X and TanDEM-
X data. 

2. DATA QUALITY ANALYSIS 

2.1 TanDEM-X Data 

Due to the simultaneous data acquisition of the TanDEM-X 
image pairs, the TanDEM interferograms possess much higher 
data quality. For instance, Fig.2 shows the example building, 
the Fashion Show Mall in Las Vegas. The right image is the 
mean intensity map from a stack of high resolution TerraSAR-
X images. The left image is the corresponding optic image in 
Google-earth. From the optic image, it is evident that the roofs 
of the building blocks are flat. Fig.3 compares the TanDEM-X 
interferogram and TerraSAR-X interferogram generated from 
two images with a time lag of 33 days. Severe phase variation 
on the flat surfaces can be only observed in the right image (i.e. 
repeat-pass TerraSAR-X inteferogram) that indicates the phase 
distortion caused by temperature change induced motion, 
atmosphere and temporal decorrelation. 
 
2.2 Noise Model Analysis 
In VHR X-band data, the common noise sources of repeat-pass 
and single pass data are: 
- The calibration errors in amplitude: The radiometric 

stability of TerraSAR-X/TanDEM-X, i.e. the amplitude 
variations within one stack, is 0.14 dB and is therefore 
negligible compared to the typical SNR of a SAR system. 

- Thermal noise: It can be estimated from background 
pixels and is typically in the order of -20dB. 

Besides, the repeat-pass data have the following additional 
noise sources: 
- Temporal decorrelation: The corresponding noise 

covariance increases exponentially with the temporal 
baseline. E.g. Fig.4 compares the coherence histogram 
estimated by means of non-local means filter (Deledalle 
et al., 2011) over the whole scene (10km × 5km) of the 
aforementioned single-pass TanDEM-X interferogram 
and repeat-pass TerraSAR-X interferogram. It is obvious 
that the single-pass TanDEM-X interferogram is much 
coherent than the repeat-pass TerraSAR-X interferogram. 

- Phase errors caused by atmospheric delay and unmodeled 
motion: The distribution of such an error is unknown. 
Among them the phase error caused by atomospheric 
delay is normally roughly corrected through the 
Atmospheric Phase Screen (APS) estimates from the PSI 
processing. 

Although the above mentioned noise resources cannot be fully 
modeled as circular Gaussian noise, yet as the best asymptotical 
one the Gaussian model is still favoured for conveniences in the 
estimation (i.e. only the covariance is needed). As a 
consequence, the different data quality possessed by repeat- and 
single-pass data can be therefore characterized by different 
noise variance. A key issue is to approperiately estimate the 
noise covariance matrix εεC . This will be addressed in a 

separate study. 
 

3. TOMOGRAPHIC SAR INVERSION FROM MIXED 
REPEAT- AND SINGLE-PASS DATA STACKS  

3.1 System Model 

In presence of noise ε , the discrete-TomoSAR system model 
can be written as: 
    g R γ ε   (1) 

where g  is the measurement vector with N  elements, γ  is the 
reflectivity function uniformly sampled in elevation at 

ls ( 1, ,l L  ). R  is an N L  ( N L ) irregularly sampled 

discrete Fourier transform mapping matrix and the sampling 
position n  is a function of the elevation aperture position bn, 

i.e.  2n nb r   , where   is the wavelength and r  is the 

range distance. 
In the space-borne case, the multi-pass acquisitions are taken 
over a time of from several weeks to years (depending on the 
revisiting time of the satellite and the number of stacked 
images). Therefore, the long-term motion of the scattering 
object during the acquisition period must be considered by 
adding a motion-induced phase term to the system model, also 
refered to as D-TomoSAR system model. This renders 
tomographic SAR inversion to higher dimensional spectral 
estimation problem. Of course, its system model can also be 
approximated by a discrete version sharing the same expression 
as eq. (1). 
Tomographic SAR inversion aims at resolving the coherent 
targets γ . According to the scattering mechanism, the coherent 
targets, i.e. the signal, to be resolved can be categorized as 
discrete scatterers and volumetric scatterers. The reflected 
power of discrete scatterers can be characterized by several δ-
functions, i.e. the signal can be described by a deterministic 
model with a few parameters. Volumetric scatterers have a 
continuous backscatter profile associated with completely 
random scattering phases, i.e. the signal can only be described 
by stochastic models. Our target application is urban 
infrastructure monitoring, i.e. to resolve discrete scatterers with 
motion. 
There are numerous tomographic SAR inversion methods, 
including the conventional beamforming (BF), singular value 
decomposition (SVD), adaptive beamforming, multiple signal 
classification (MUSIC), nonlinear least squares (NLS) and 
algorithms exploiting the sparsity of the signal such as  M-
RELAX and the newly developed sparse reconstruction based 
SL1MMER algorithm. Since spatial resolution is essential for 
urban applications, to maintain the full range and azimuth 
resolution, we focus on single-looking methods that are based 
on the stacked measurements of single azimuth-range pixels 
and do not explore the correlation between the surrounding 
pixels. In this section, we will introduce the standard maximum 
a posteriori (MAP) estimator, NLS and the SL1MMER 
algorithm with Gaussian white noise and extend those 
estimators to the colored noise case. The description of the 
methods is based on single polarization TomoSAR.  

3.2 Tomographic SAR Reconstruction with White Noise 

3.2.1 MAP Estimator  
For Gaussian stationary white measurement noise, i.e. 

2εεC I , and a white prior, i.e. γγC I , the MAP estimator 

for γ  from equation (1) is given by: 

    1H 2 Hˆ MAP 


 γ R R I R g   (2) 
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In general, MAP estimator is computationally efficient and is 
not sensitive to irregular sampling. However, it obeys the 
Rayleigh resolution limit, i.e. it has almost no super-resolution 
capability. 
 
3.2.2 Nonlinear Least Squares (NLS) 
Assuming the presence of K scatterers inside a pixel with 
elevations of  1 2 , , Ks s ss  , the under-determined 

system model (1) reduces to the following over-determined 
problem: 

      1H Hˆ NLS


γ R s R s R s g   (3) 

For Gaussian white noise, NLS is identical to the maximum 
likelihood estimator (MLE). It is therefore theoretically the best 
estimator for our application if and only if the data closely 
agree with the assumed model. Due to the large computational 
effort to the multi-dimensional search, the NP-hard NLS is not 
recommended for practical data processing. 
 
3.2.3 SL1MMER 
The "Scale-down by L1 norm Minimization, Model selection, 
and Estimation Reconstruction" (SL1MMER, pronounced 
"slimmer") algorithm is a spectral estimator firstly proposed in 
(Zhu and Bamler, 2010b). It consists of three main steps: 1) a 
dimensionality scale-down by L1 norm minimization, 2) model 
selection and 3) linear parameter estimation. In case there is no 
prior knowledge about the number of scatterers inside the pixel 
and in the presence of measurement noise, the sparse 
reconstruction of (1) is give by the following L1- L2 norm 
minimization: 

  2

SL1MMER 2 1
ˆ arg min K  

γ
γ g Rγ γ  (4) 

The L1-L2 norm minimization step shrinks R  dramatically and 
gives a first sparse estimate of γ. Due to the fact the following 
two effects (Zhu, 2011): 1)  for our application, RIP and 
incoherence are violated for several reasons 2) - The L1 norm 
approximation of the NP-hard L0 norm regularization 
introduces amplitude bias, This estimate may still contain the 
outliers. Therefore, a further model order selection and 
parameter estimation step are followed to refine the sparse 
estimates obtained from (5). 
SL1MMER offers an aesthetic non-parametric realization of the 
NP-hard NLS estimator. As an efficient estimator, it is 
demonstrated to provide a super-resolution capability reaches 
the fundamental bounds of all spectral estimators. 
 
3.3 Tomographic SAR Reconstruction with Colored Noise 

Based on the discussion in Section 2.2, i.e. the different data 
quality possessed by repeat- and single-pass data can be 
therefore characterized by the noise variance matrix εεC , the 

aforementioned estimators are extended to the colored noise 
case as following: 

 MAP Estimator  

   1H 1 H 1ˆ MAP

  εε εεγ R C R I R C g   (5) 

 Nonlinear Least Squares (NLS) 

       1H 1 H 1ˆ NLS

  εε εεγ R s C R s R s C g  (6) 

 SL1MMER 

    H 1
SL1MMER 1

ˆ arg min K
   εε

γ
γ g Rγ C g Rγ γ  (7) 

 

3.4 Cramér-Rao Lower Bound of the Elevation Estimates 

Under colored noise, the Cramér-Rao Lower Bound (CRLB) of 
the elevation estimates in presence of only a single scatterer is 
given by: 

 
4 2

s

n b
n

r

SNR


 


 

  (8) 

where nSNR  stands for the signal-to-noise ratio (SNR) of the 

nth acquisition ( 1, ,n N  ). b  is the re-weighted standard 

deviation of the baseline distribution: 
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Compared to the CRLB under Gaussian white noise 0 (i.e. all 
data possesses the same SNR ), the N SNR  dependent factor is 

replaced by n
n

SNR  to account for variant data quality and the 

standard deviation of the baseline distribution b  is 

accordingly replaced by the b  depends on the sampling 

position nb  re-weighted according to the data quality nSNR . It 

tells that, in case of adding several high quality TanDEM-X 
data to an existing TerraSAR-X stack, the elevation estimation 
accuracy improvement depends not only on the number of 
TanDEM-X images, but also the corresponding baseline 
distribution. I.e. widely spread baselines are preferred.  
Considering a mixed stack consisting of 1N  images with a 

higher SNR  of 1SNR  and 2N  images with a lower SNR of 

2SNR , let’s assume the standard deviation of the baseline 

distribution for each sub-stack are ,1b and ,2b , eq. (8) can be 

approximated by: 

  
2 2
,1 ,2

1

1 1
s

s s


 




  (10) 

where, 
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,
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 

 
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4. EXPERIEMENNTAL RESULTS 

A reasonable data quality assumption for a mixed repeat- and 
single-pass data stack is that we have a mixed stack consisting 
of 1N  images with a higher SNR  of 1SNR  and 2N  images 

with a lower SNR of 2SNR .  

The data is simulated using the regularly distributed elevation 
aperture shown in Fig.5 (25 images, elevation resolution 

40.5s m  ) with the following two cases: 

 TSX: multi-pass data stack case, i.e. 25 images with 
SNR=5dB; 

 TDX: mixed stack, 20 images with SNR of 5dB 
(elevation aperture positions marked as black) and 5 
images with SNR=20dB (marked as green).  

Fig.6 shows comparison of the reflectivity profiles along 
elevation direction reconstructed by MAP (blue) and 
SL1MMER (red) using the data stack of TSX and TDX cases 
(right). The true elevations of the two scatterers are 10 and 25 
meter, respectively, an i.e. elevation distance is 0.4 times of the 
Rayleigh resolution limit. It is obvious to see the better sidelobe 
suppression for the non-parametric estimator and better super-
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resolution for the sparse reconstruction based SL1MMER 
algorithm while using TDX data stack. 
As multiple scatterers inside one resolution cell most likely 
occur in high rise urban areas, the situation that two scatterers 
inside one resolution cell (one from the building façade and 
another from the ground) is simulated as an another example to 
evaluate the performance of the spectral estimation methods. 
The building is assumed to have an elevation of 80 m where 
ground is at zero elevation. 
Fig.7 shows the estimated elevation values of the two scatterers 
with MAP (left), NLS (middle) and SL1MMER in TSX (upper) 
and TDX (lower) cases. The x-axis refers to the true elevation 
of scatterers on the building facade. The y-axis shows their 
estimated elevations. The ideal image would be two straight 
lines (one horizontal and another one diagonal). The better 
estimation accuracy shown in the lower plots confirms the fact 
that reconstruction accuracy of tomographic SAR inversion can 
be improved significantly by using jointly fused TerraSAR-X 
and TanDEM-X data. 
 

5. CONCLUSION & OUTLOOK 

This paper presents the first demonstration of high precision 
very high resolution tomographic SAR inversion with the 
assistance of TanDEM-X data. The data quality of TerraSAR-X 
and TanDEM-X is investigated. TomoSAR algorithms such as 
SVD-Wiener, Nonlinear Least Squares and SL1MMER are 
extended for mixed repeat- and single-pass data stacks. A 
systematic approach is proposed for the fusion of TerraSAR-X 
and TanDEM-X data in which the different data quality 
provided by the TerraSAR-X and TanDEM-X data are taken 
into account by introducing a weighting according to the noise 
covariance matrix. The proposed approach is evaluated with 
simulated data. The simulation result shows that the 
reconstruction accuracy of tomographic SAR inversion can be 
improved significantly by using jointly fused TerraSAR-X and 
TanDEM-X data. 
Future work will concentrate on real data demonstration: the 
system approach for measurement noise matrix estimation of 

mixed TerraSAR-X/TanDEM-X data stacks will be 
investigated; real data processing examples of mixed 
TerraSAR-X/TanDEM-X data stacks will be presented, the 
estimation accuracy increment will be quantitatively studied.  
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Figure.1. 3-D view of the scatterers reconstructed by TomoSAR reconstruction of city blocks in downtown Las Vegas, using a 
stack of 30 images acquired by TerraSAR-X. Height is color-coded. 
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Figure 3. Comparison of single-pass TanDEM-X interferogram (left) and repeat-pass TerraSAR-X interferogram generated 

from two images with a time lag of 33 days (right). 
 

 
Figure 2. Example building: the Fashion Show Mall. Left: optic image in Google-earth; right: Mean intensity map from a 

stack of high resolution TerraSAR-X images 

 
Figure 4. Coherence histogram comparison of single-pass TanDEM-X interferogram and repeat-pass TerraSAR-X 

interferogram generated from two images with a time lag of 33 days.  

 
Figure 5. Elevation aperture positions [m]  
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Figure 6. Comparison of the reflectivity profiles along elevation direction reconstructed by MAP (blue) and SL1MMER 
(red) using the data stack of TSX (left) and TDX cases (right). The true elevations of the two scatterers are 10 and 25 

meter, respectively, an i.e. elevation distance is 0.4 times of the Rayleigh resolution limit. 

     (a)               (b)          (c) 

     (d)               (e)           (f) 
 

Figure 7. Estimated elevations [m] of two scatterers of equal reflectivity of increasing elevation distance. Shown are the results 
of MAP, (a), (d), NLS estimation (b), (e), and SL1MMER  (c), (f). Upper plots: TSX case; lower plots: TDX case. The true 
positions are a horizontal line referring to the ground and a diagonal line referring to the scatterer at variable elevation. 

(Blue: detected single scatterer; red: detected two scatterers) 
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