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ABSTRACT: 
 
As an active remote sensing instrument, lidar provides a high spatial resolution vertical profile of aerosol optical properties. But 
the effective range and data reliability are often limited by various noises. Performing a proper denoising method will improve the 
quality of the signals obtained. The denoising method based on ensemble empirical mode decomposition (EEMD) is introduced, 
but the denoised results are difficult to evaluated. A dual field-of-view lidar for observing atmospheric aerosols is described. The 
backscattering signals obtained from two channels have different signal-to-noise ratios (SNR). To overcome the drawback of the 
simulation experiment, the performance of noise reduction can be investigated by comparing the high SNR signal and the denoised 
low SNR signal. With this approach, some parameters of the denoising method based on EEMD can be determined effectively. The 
experimental results show that the EEMD-based method with proper parameters can effectively increase the atmospheric lidar 
observing ability. 
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1. INTRODUCTION 

1.1 General Instructions 

Aerosol can directly affect climate change by scattering and 
absorption of solar and other radiation, and also indirectly 
affect the radiation by affecting cloud formation. As an active 
remote sensing instrument, lidar provides a high spatial 
resolution vertical profile of aerosol optical properties[1]. But 
the effective range and data reliability are often limited by 
various noises. Unfortunately, the lidar data inversion is 
sensitive to the lidar data at a far distance, which are under low 
signal-to-noise ratio conditions. Performing a proper denoising 
method will improve the quality of the signals obtained.  
 
The measured lidar signal contains the laser backscattering 
signal from aerosol and various noises. It can be expressed 
simply as 
 
 

( ) ( ) ( ) ( )measured b eV r V r N r N r                          (1) 

 
 
where   Vmeasured (r) = signal actually measured 
            V(r) = signal from aerosol backscattering 
            Nb(r) = noise due to background light 
            Ne(r) = noise due to dark current and read out 
electronics.  
 
Nb and Ne can be statistically estimated by the signal obtained 
from a very far distance where the laser backscattering signal 
is negligible. 

 
The power of the received signal typically falls with an 
increase in range, but noise is usually considered as Gaussian 
white noise, which is stable with range. The signal-to-noise 
ratio (SNR) falls as the range increases, and the solution for 
the lidar equation becomes unstable and even fails because of 
the negative value produced by noise. So the signal must be 
denoised before data retrieval for the aerosol properties.  
 
There are several signal analysis methods widely adopted for 
the noise reduction in the lidar signal. Most lidar systems 
employ the multiple pulses averaging to enhance SNR. This 
method can be considered as a low pass filtering process at the 
cost of temporal resolution, high frequency backscattering 
signal is also smoothed. Wavelet analysis is developed rapidly 
as an effective tool for noise reduction[2]. A main drawback of 
the wavelet analysis is that the basis functions are fixed, and 
no such a basis function is proposed to correspond with the 
features of lidar signals currently. The selection of the best 
basis function is also a hard work. 
 
 

2. DENOISING METHOD 

2.1 Empirical mode decomposition 

Huang et al. introduced the empirical mode decomposition 
(EMD) for analyzing signals from non-stationary and non-
linear processes in 1998. The EMD method is proved to 
address completeness, orthogonality, locality, and adaptivity 
which are necessary to describe non-stationary and non-linear 
processes. The major advantage of the EMD is posteriori 
adaptive, because the basis functions are derived from the 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B8, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

127



 

 

signal itself. Through a sifting process described by Huang et 
al., the signal can be decomposed into a series of intrinsic 
mode functions (IMF) and the residual through the sifting 
process.  
 
 

1

( ) ( ) ( )
n

measured j n
j

V r IMF r R r


                        (2) 

 
 
Where  IMF = a series of intrinsic mode functions 
            Rn = residual 
 
Each IMF satisfies two conditions: the number of extrema and 
the number of zero crossings must either be equal or differ at 
most by one, and the mean of the upper and lower envelopes 
derived from local extrema is zero at any point. This allows for 
physically meaningful instantaneous frequency and amplitude 
calculation through the Hilbert transform performed on the 
IMFs. And any IMF represents a simple oscillatory mode. The 
low-order IMFs represent high frequency oscillation 
components, while high-order IMFs represent low frequency 
oscillation components. The noise and signal are traditionally 
characterized by high frequency and low frequency, 
respectively, so they can be distinguished by the empirical 
mode decomposition method. While the EMD technique has 
been applied to various fields, although the theoretical base is 
empirical, some research has shown that the EMD-based signal 
denoising method is effective in the analysis of a lidar signal . 
 
2.2 Ensemble empirical mode decomposition 

The empirical mode decomposition results sometimes become 
invalid because of mode mixing, which is defined as either a 
single IMF consisting of more oscillatory modes, or an 
oscillatory mode residing in different IMF.  
 
To overcome the phenomena of mode mixing, the ensemble 
empirical mode decomposition (EEMD) method has been 
proposed. This method is a noise assisted data analysis method. 
The It repeatedly decomposes the signal into IMFs by using the 
EMD method. During each trial of the decomposition process, 
white noise is added to the original signal. The final results are 
obtained as the mean of corresponding IMFs of the  
 
The mode mixing can be effectively eliminated by the EEMD 
process.  
 
2.3 EEMD-based denoising method 

The EEMD-based signal denoising method is achieved as 
follows. 
 
Step 1: Decompose the signal with the EEMD method. At last 
the original signal is decomposed into a series of IMFs and a 
trend. 
 
Step 2: Reconstruction. In the time domain, the lower order 
and higher order IMFs represent the fine scales and coarse 
scales, respectively. It is assumed that low-order IMFs contain 
little value of the backscattering signal, and the denoising 
method is performed by obtaining the residual with the 
removal of some low-order IMFs.  

 
 
 

3. DATA 

3.1 The dual field-of-view lidar 

A dual field-of-view lidar (DFL) system was developed by the 
State Key Laboratory of Information Engineering in Surveying, 
Mapping and Remote Sensing (LIESMARS), Wuhan 
University. The lidar has two independent receiving channels 
to solve the problem of the dynamic range of lidar. The field-
of-view of the near-range and far-range channels is 10 and 1 
mrad, respectively. The laser beam fully enters the field-of-
view of the near-range and far-range channels from a distance 
of about 360 m and 1000 m, respectively.  
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Fig. 1. The schematic diagram of the DFL system. 

 
3.2 data 

Three pairs data are shown in Fig. 2. They are obtained by the 
dual field-of-view lidar at 20:10 and 20:12 Aug. 3, and 01:40 
Aug. 5.  
 
The comparison of these two simultaneous signals within the 
range from 1.5km to 3.0km indicates similar useful signals and 
obviously different noise. The signals obtained from the two 
channels are similar because of simultaneous measurements 
and the same altitude of the atmosphere, and this is evidenced 
by long-term observing data. The noise intensity of the near-
range channel is higher because of the large field-of-view and 
low efficiency of the optics and electronics. First, the larger 
field-of-view means more interference from background light. 
Second, the signal of the near-range channel is restricted to 
avoid saturation of the receiver. 
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International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B8, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

128



 

 

1.5 2 2.5 3
0

20

40

60

Range (km)

S
ig

n
a
l 
In

te
n
s
it
y
 (

m
V

)

1.5 2 2.5 3
0

20

40

60

Range (km)

S
ig

n
a
l 
In

te
n
s
it
y

 (
m

V
)

 
             c. Near (20:12)                        d. Far (20:12) 
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             e. Near (01:40)                        f. Far (01:40) 
 

Fig. 2. Near and far range signal 
 
 

4. RESULT AND DISCUSSION 

The performances of noise reduction are evaluated by overall 
signal-to-noise ratio (SNR).  
 
 

2

2

( )
10 log

[ ( ) ( )]

far

denoised far

V r
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V r V r
 






    (3) 

 
 
where  SNR = overall signal-to-noise ratio 
            Vfar  = far range signal intensity 
            Vdenoised = denoised near range signal intensity 
 
Three pairs data show in Fig.2 are analyzed. ‘Near’ is 
considered as original SNR. ‘R2’ and ‘R3’ are EMD-based 
denoised results by subtracting the first two or three IMFs. 
‘wavelet’ is the wavelet-based denoised result. ‘EEMD’ is 
EEMD-based result. Firstly, the SNR of the original signal is 
relatively low, the SNRs are less than 27, and denoised results 
by most method are more than 29. Secondly, SNRs of the 
‘EEMD' are better than ‘EMD’ and ‘wavelet’ method. Finally, 
the ‘EMD’ results in Aug. 5 is even less than original data 
because the aerosols of lower atmosphere changed rapidly in 
that day. But ‘EEMD’ method is still effective.  
 
 

 20:10 
Aug.3 

20:12 
Aug. 3 

01:40 
Aug.5 

Near 24.03 24.03 26.57 
R2 29.54 30.56 26.18 
R3 29.65 29.44 8.59 

wavelet 29.26 30.13 30.14 
EEMD 30.22 31.73 30.29 

 
Table 1. SNR of different denoising algorithms 

 
 

 
 

5. CONCLUSIONS 

The primary result shows that the EEMD-based method can 
effectively increase the lidar observing ability. The result is 
promising and further work is required to evaluated the 
performance of noise reduction in different lidar system and 
atmospheric environment. 
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