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ABSTRACT:

Image processing techniques that involve multispectral remotely sensed data are considered attractive for bathymetry applications as 
they provide a time- and cost-effective solution to water depths estimation. In this paper the potential of 8-bands image acquired by 
Worldview-2 satellite in providing precise depth measurements was investigated. Multispectral image information was integrated 
with available echo sounding and GPS data for the determination of the depth in the area of interest. In particular the main objective 
of this research was to evaluate the effectiveness of high spatial and spectral resolution of the new imagery data on water depth 
measurements using the Lyzenga linear bathymetry model. The existence of sea grass in a part of the study area influenced the linear 
relationship between water reflectance and depth. Therefore the bathymetric model was applied in three image parts: an area with sea 
grass, a mixed area and a sea grass-free area. In the last two areas the model worked successfully supported by the multiplicity of the 
imagery bands. 

1. INTRODUCTION

Accurate bathymetric measurements are considered of 
fundamental importance towards monitoring sea bottom and 
producing nautical charts in support of marine navigation. Until 
recently, bathymetric surveying of shallow sea water has been 
mainly based on conventional ship-borne echo sounding 
operations. However, this technique demands cost and time, 
particularly in shallow waters, where a dense network of 
measured points is required. Taking all these under 
consideration, during the last decades remotely sensed data have 
provided a cost- and time-effective solution to accurate depth 
estimation (Lyzenga, 1985; Stumpf et al., 2003; Su et al., 2008). 

The initial attempts for automatic estimation of water depth 
were based on the combination of aerial multispectral data and
radiometric techniques (Lyzenga, 1978). With the advent of 
Landsat images, the methods of monitoring sea floor were 
increased and ameliorated, so as to be efficiently applied on 
optical satellite images (Lyzenga, 1981; Spitzer and Dirks, 
1987; Philpot, 1989; Van Hengel and Spitzer, 1991). In the 
following years, the advance of remote sensing technology 
expanded the use of these methodologies to data with improved 
spatial and spectral resolution, i.e. Ikonos (Stumpf et al., 2003; 
Mishra et al. 2006; Su et al., 2008), Quickbird (Conger et al., 
2006; Lyons et al., 2011) and Worldview-2 data (Kerr, 2010, 
Bramante et al. 2010). The main hindrances while applying 
these processes were reflectance penetration and water turbidity 
(Conger et al., 2006; Su et al., 2008). However, the bathymetric 
approaches involving satellite imagery data are regarded as a 
fast and economically advantageous solution to automatic water 
depth calculation in shallow water (Stumpf et al., 2003; Su et 
al., 2008).

A wide variety of empirical models has been proposed and 
evaluated for bathymetric estimations by establishing the 
statistical relationship between image pixel values and field-

measured water depth values. The most popular approach was 
proposed by Lyzenga (1978, 1981, 1985) and was based on the 
fact that the bottom-reflected reflectance is approximately a 
linear function of the bottom reflectance and an exponential 
function of the water depth. Jupp (1989) introduced an 
algorithm for determining firstly the depth of penetration (DOP) 
zones for every band and then for calibrating depths within 
DOP zones. Stumpf et al. (2003) presented an algorithm using a 
ratio of reflectance and demonstrated its benefits to retrieve 
depths even in deep water (>25m) contrary to standard linear 
transform algorithm. Moreover a modified version of Lyzenga’s 
model has been proposed by Conger et al. (2006) employing a 
single colour band and LIDAR bathymetry data rather than two 
colour bands in rotating process.

The aim of this paper was to evaluate the contribution of the 
eight bands of Worldview-2 imagery in the estimation of sea 
depths. High spectral and spatial image resolution was tested in 
shallow waters by using the well known and time-tested 
Lyzenga’s linear model. Particularly, three critical issues in 
shallow water bathymetry were investigated concerning a) the 
removal of the sun glint that exists on imagery data of very high 
resolution and depends mainly on the solar and image 
acquisition angles, b) the atmospheric correction over the sea 
surface and c) the confrontation of the bottom reflectance 
variations effects on the bathymetry model, taking advantage of 
the multiplicity of the imagery bands.  

2. SUN GLINT REMOVAL AND ATMOSPHERIC 
CORRECTION

Sun glint removal and atmospheric correction of remotely 
sensed data are essential processes prior to the application of a 
bathymetry model. There are not rules about the sequence of 
these two procedures. Many researchers begin with the sun glint 
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removal and the atmospheric correction follows, while others 
apply the procedures vice-versa (Kay et al., 2009). 

2.1 Sun glint removal

The available sun glint removal methods are categorized
depending on the water area applied, i.e. open ocean or shallow 
waters. Kay et al. (2009) provide a thorough review of 
deglinting methodologies. A popular one for shallow waters 
deglinting was proposed by Hochberg et al. (2003) and it was 
based on the exploitation of the linear relationships between 
NIR and every other band in a linear regression by using 
samples of two isolated pixels from the whole image. Hedley et 
al. (2005) simplified the implementation of this method and 
made it more robust by using one or more samples of image 
pixels. The linear regression runs between the sample pixels of 
every visible band (y-axis) and the corresponding pixels of NIR 
band (x-axis). All the image pixels are deglinted according to 
the following equation (Hedley et al., 2003):

'
i i i NIR NIRR R b (R Min )     (1)

where    '
iR = the deglinted pixel value

            Ri = the initial pixel value
bi = the regression line slope
RNIR = the corresponding pixel value in NIR band
MinNIR = the min NIR value existing in the sample

The effectiveness of the method relies on the appropriate choice 
of the pixel samples from an image region that is relatively dark, 
reasonably deep, and with evident glint (Green et al. 2000, 
Hedley et al., 2005, Edwards, 2010a).

2.2 Atmospheric correction

There is a wide variety of methods for atmospheric correction 
above the sea surface. However, they usually require some input 
parameters concerning atmospheric and sea water conditions 
that are difficult to be obtained (Kerr, 2011). For this reason the 
simplified method of dark pixel subtraction is usually preferred 
for this kind of application (Benny and Dawson, 1983;Green et 
al., 2000; Mishra et al., 2007). The atmospherically corrected 
pixel value Rac is then:

Rac= Ri – Rdp   (2)

where   Ri = the initial pixel value
             Rdp = the dark pixel value

According to Benny and Dawson (1983) the dark pixel value 
subtraction is valid if the atmospheric behaviour is constant for 
the whole study area. The disadvantage of this crude method is 
the fact that the dark pixel value can be determined in various 
ways (e.g. Lyzenga, 1981, Benny and Dawson, 1983, Green et 
al., 2000, Edwards, 2010b) that result in different correction 
values. An unsuccessful determination of Rdp may affect the 
depth estimation (Stumpf et al., 2003). An additional drawback
appears in cases where the bottom reflectance is lower than the 
dark pixel value, for instance when the bottom is covered with 
sea grass, and the difference in equation (2) becomes negative. 

Consequently equation (4) in §3 cannot be satisfied as the 
natural logarithm of a negative quantity is not defined. 

3. THE LINEAR BATHYMETRIC MODEL

Lyzenga (1978) described the relationship between an observed 
reflectance Rw and the corresponding water depth z and bottom 
reflectance Ad as:

Rw=(Ad - Rw)exp(-gz) + Rdp   (3)

where Rdp= dark pixel value
g = a function of the attenuation coefficients.
                  

Rearranging equation (3) depth z can be described as (Stumpf et 
al., 2003):

z = g-1[ln(Ad - Rw) - ln(Rw - Rdp)]    (4)

where Rw - Rdp>=0

This single band method for depth estimation assumes that the 
bottom is homogeneous and the water quality is uniform for the 
whole study area. Lyzenga (1978, 1985) showed that using two 
bands could correct the errors coming from different bottom
types provided that the ratio of the bottom reflectance between 
the two bands for all bottom types is constant over the scene. 
The proposed model is (Lyzenga, 1985):

z = a0 + aiXi + ajXj (5)

where  Xi = ln(Rwi-Rdpi) 
Xj = ln(Rwj-Rdpj) 
a0, ai, aj = coefficients determined through multiple 
regression using known depths and the corresponding 
reflectances.

If imagery data have already been atmospherically corrected,
according to §2.2, then Xi = ln(Raci) and Xj = ln(Racj), where Raci

and Racj are the corrected reflectances (Green et al., 2000). In 
1983 Paredes and Spero proved that if there are at least as many 
bands as the existing bottom types in a study area, an 
independent from bottom types depth can be estimated.
Lyzenga et al. (2006) proved that the n-band model 

N

0 i ii 1
z a a X


   (6)

where Xi is described above, although derived under the 
assumption that the water optical properties are uniform 
(Lyzenga 1978, 1985) gives depths that are not influenced by 
variations in water properties and/or bottom reflectance. This 
means that the more the available bands are, the better the depth 
estimation. According to Bramante et al. (2010) imagery data 
with multiplicity of bands, e.g. Worldview-2, should produce 
better results over heterogeneous study areas.
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During the last three decades several bathymetry applications 
were accomplished based on the above model. Two or more 
bands of low or high resolution passive images were tested in an 
effort to remove errors due to bottom and/or water quality 
differences producing quite satisfying results (Lyzenga, 1985;
van Hengel and Spietzer, 1988; Papadopoulou and Tsakiri-
Strati, 1998; Hatzigaki et al., 2000; Stumpf et al., 2003;
Lyzenga, 2006; Bramante et al., 2010; Liu et al., 2010; Lyons et 
al., 2011).

4. DATA AND PRE-PROCESSING 

4.1 The multispectral imagery and echo sounding data

The depth estimation concerns the coastal area of Nea 
Michaniona, Thessaloniki, in the northern part of Greece. The 
sea bottom changes smoothly and the water is clear. The 
shallower parts are covered with dense sea grass while the 
deeper area is sandy.  

Figure 1. The study image area (R:4, G:3, B:2)

The imagery data set included the eight (8) bands of 
Worldview-2 multispectral image. The image was acquired in 
16 June 2010 with spatial resolution of 2m. Despite the water 
clarity, the depths estimation was constrained by image noise 
that sun glint caused by appearing sparsely in a great part of 
image scene. The available data were georeferenced to UTM 
(zone 34) system and WGS84. The study area included only the 
water region of the image (fig.1). From now on, the 8 bands of 
the image will be symbolized as: band 1 (coastal), 2 (blue), 3 
(green), 4 (yellow), 5 (red), 6 (red-edge), NR1 (first near-
infrared) and NIR2 (second near-infrared).

The linear bathymetric model was calibrated using echo 
sounding data. The survey of the bottom was accomplished 
through 719 measurements of depths (from 3.5 m to 15.0 m)
and GPS corresponding horizontal positions on a calm sea 
surface. The echo sounding device was a CODEN CVS106 and 
the GPS pair of dual frequency receivers was the model system 
300 of Leica. The internal accuracy of depth measurments 
reached 10cm. The horizontal position was determined using 
the kinematic method (Tziavos, 1996, Andritsanos et al., 1997, 
Fotiou and Pikridas, 2006) with a final accuracy of 5-6cm. The 
all data process was performed using manufacturer processing 
software and horizontal coordinates were georeferenced to the 
system of the multispectral data.

4.2 Imagery data pre-processing

The conversion from radiometrically corrected image pixels to 
spectral reflectance (Updike and Comp, 2010) was realized 
prior to deglinting process and atmospheric correction for every 
band. The given equation required the absolute radiometric 
calibration factor and the effective bandwidth for a certain band 
that were available in the image metadata file.

The technique of Hedley et al. (2005) was implemented on the 
‘glint’ image bands towards the correction of sun-glint effect. 
Three image samples with size 50x50 pixels were carefully 
selected from glinted areas at different locations on the image. 
The critical at this point was the definition of the proper band 
combination of NIR (two bands) and visible (six bands) 
available bands that would be involved in linear regression 
model. Experimental results demonstrated that there was a 
strong linear relationship among the ‘new’ bands, i.e. band 1, 
band 4 and band 6 with the NIR2, and among the ‘traditional’ 
bands, band 2, band 3 and band 5 with the NIR1. Thus the de-
glinting process was twofold, one for each set of images. As 
soon as the regression slope was defined for every band 
combination, the equation (1) was used to determine the 
deglinted pixel. 

The atmospheric correction through the subtraction of the dark 
pixel value followed the glint correction. In order to avoid 
negative differences between the image pixels and the dark 
pixel value, the histogramme of every band was examined and a 
cut-off at its lower end was spotted. The value corresponding to 
this cut-off was considered as the dark pixel value (Benny and 
Dawson, 1983). A very small proportion of pixels had values 
less than the dark pixel value but this fact did not affect the 
correction procedure. For the implementation of the linear 
bathymetric model (eq. 6) the natural logarithm of the corrected 
pixel values was calculated. 

5. DEPTH ESTIMATION

5.1 Depth estimation

The linear model was firstly implemented over the total study 
area for the corrected bands of the Worldview-2 image. Bands 
1, 2, 3, 4 and 5 were used. For this particular step of the study 
as well as for all the following steps, band 6, NIR1 and NIR2 
were excluded as their spectral information is generally conside-
red insignificant for bathymetry applications. Using 250 control 
points with known depth, the linearity between the depth 
(dependent variable) and corresponding pixel values 
(independent variables) of every band was firstly tested. The 
scatterplots showed that the relationship between depth and 
band values was not linear. The linearity was affected by small 
pixel values existing in swallow water area due to the presence 
of sea-grass. Together the high spatial image resolution accents 
the differences in bottom types since the detailed and clear 
information. Thus, the study area was separated by optical 
interpretation into three different areas according to their 
bottom type: area A where the bottom is sandy (depths about 
6.0 m to 15.0 m), area B where the bottom is mostly sandy with 
sparsely distributed sea grass (depths about 2.5 m to 6.0 m) and 
area C where the bottom is densely covered with sea grass.
(depths about 2.0 m to 6.0 m). For every area and every band a 
new dark pixel value was defined as described in §4. 
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5.1.1. Model of area A: A stepwise multiple regression was 
performed on 103 control points of known depth over the area, 
for bands 1, 2, 3, 4 and 5. After sequential statistical tests and 
the removal of leverages the final valid model of 89 control 
points was defined (eq. 7). The statistic parameters that imply 
the validation and optimization of the model (Lafazani, 2003) 
are given in table 1. Band 1 and 4 do not satisfy the model.

z = 8.999 + 1.13X2 – 5.241X3 + 4.491X5 (7)

where z = the estimated depth
X2, X3, X5 = the natural logarithms of the 
corresponding pixel values of bands 2, 3 and 5.

The model was tested with 230 points of known depths. The 
depth estimation was considered satisfactory for the test points 
that lied inside the zone of confidence interval of the estimated 
individual values (fig. 2). A number of 58 points lie outside the 
zone while 172, that is 75% of the total, lie inside it. The 
absolute differences between known depths and estimated 
depths at these points vary from 0.01 m to 1.52 m (fig. 3) with a 
mean value equal to 0.6 m and a standard deviation equal to 0.4 
m. The estimated zone depths vary from 6.4m to 14.0m. The 
former statistical analysis indicates a very sufficient 
performance of the model in this area despite the absence of 
bands 1 and 4.

Figure 2. The graphic expression of model in area A. The red 
lines represent the limits of confidence interval of 
estimated individual values. Blue circles depict the 
control points and green circles depict the depth 
estimation points. Estimated depths are on y-axis.

Figure 3. The histogramme of absolute differences between 
measured and estimated depths (area A). 74% of the 
differences are under 1.0 m

5.1.2. Model of area B: The stepwise regression was performed 
for the five bands on 67 initial control points over the area. The 
final valid model of 45 points is given in equation (8) and its 
statisticparameters in table 1. This model is not satisfied by 
band 5 and the contribution of band 1 and 4, although 
statistically significant, is small.

z = 5.347 + 0.302X1 + 1.011X2 –1.673X3 – 0.553X4 (8)

where z = the estimated depth
X1, X2, X3, X4 = the natural logarithms of the 
corresponding pixel values of bands 1, 2, 3 and 4.

The model was tested with 25 points of known depths. Six 
points lie out of the confidence zone while 19, that is 76% of 
the total, lie inside it (fig. 4). The absolute differences between 
known depths and estimated depths at these points vary from 
0.02 m to 0.36 m, (fig. 5) with a mean value equal to 0.17 m 
and a standard deviation equal to 0.08 m. The zone’s estimated 
depths vary from 2.7 m to 4.6 m. According to equation (8)
more bands satisfied the model that handled very sufficiently 
the bottom reflectance variations.

Figure 4. The graphic expression of confidence zone in area B. 
The symbolisms are given in figure 2.

5.1.3. Model of area C: A strong correlation among the 
independent variables Xi was observed that led to a factor ana-
lysis. The statistical analysis gave one factor and therefore, 
rather than the five image bands, the principal component (PC1) 

X-axis:
Absolute differences 

between measured 
and estimated 

depths
Y-axis:

Frequency
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was used. A new simple regression analysis took place. The 
independent variable was the natural logarithm of the first 
principal component values. The regression was performed on 
75 points and the final valid model of 55 points is given by 
equation (9):

z = -0.031 + 2.01(lnPC1)   (9)

Figure 5. The histogramme of absolute differences between 
measured and estimated depths (area B). All of the 
differences are under 0.4m.

The statistical parameters of the regression models in areas A, B 
and C (for the parameters see Mallows, 1973, Myers, 1990, 
Stevens, 2002) are presented in table 1.

R R2 R2
est DW VIF Rval Cp

A 0.94 0.88 0.87 1.85 <=1,7 0.954 4
B 0.97 0.93 0.93 1.82 <=3.1 0.965 5
C 0.88 0.78 0.77 1.55 ------ 0.939 2

Table1. The statistical parameters

The model was tested with 178 points of known depths. The 48 
of them lie outside the confidence zone while the 130 that is 
73% of the total lie inside it (fig.6). The absolute differences 
between known depths and estimated depths at these points vary 
from 0.04 m to 0.93 m (fig. 7) with a mean value equal to 0.24 
m and a standard deviation equal to 0.37 m. The zone’s 
estimated depths vary from 2.0 m to 5.8 m. According to 
statistical parameters and tests a very sufficient performance of 
the model was remarked.

Figure 6. The graphic expression of confidence zone in area C. 
The symbolisms are given in figure 2.

Figure 7. The histogramme of absolute differences between 
measured and estimated depths (area C). 67% of the 
differences are under 0.5m.

6. CONCLUSIONS

The linear bathymetric model was applied on the image after the 
sun glint removal and atmospheric correction. The image was 
integrated with the available echo sounding and GPS data for 
the calibration of the model as well as for the analysis of the 
corresponding depths in the area of interest. The presence of sea 
grass in a part of the study area and the high resolution of the 
image affected the linear relationship between water reflectance 
and depth and hindered the implementation of the model on the 
whole image. Thus, the water area was divided into three parts: 
an area with sea grass (depths about 2.0 m to 6.0 m), a mixed 
area with sea grass and sand (depths about 2.4 m to 6.0 m) and 
a sea grass-free area (depths about 6.0 m to 15.0 m). Bands 1, 2, 
3, 4, and 5 of the image were used in the linear model. The 
outcomes of the statistical analysis indicated that the model 
provided very good results for the mixed and sea grass-free 
area, unlike the ‘sea grass’ area where the first principal 
component was used instead of the five image bands. In all 
areas the majority of the estimated depths (73-76 %), differed 
adequately from the soundings. The model in the mixed and the 
sea grass-free area was mainly influenced by the green band. 
The contribution of the blue band in these two areas was 
significant but less than the contribution of the green. The red 
band had a significant contribution only in the sea grass-free 
area that is in depths >= 6.0 m. The coastal and yellow band 
satisfied only the linear model of the mixed area and their 
contribution, although it was statistically significant, was very 
small. To conclude, the green band proved to be the most 
effective for bathymetry applications. The blue band contributed 
less while the red band participated only in the sea-grass free 
area. In general the bathymetric model involving the imagery 
data of high spectral and spatial resolution produced fairly 
accurate results. However a thorough statistical analysis was 
required to optimize the selection of the appropriate spectral 
bands.
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