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ABSTRACT:

Vegetation height plays a crucial role in various ecological and environmental applications, such as biodiversity assessment and
monitoring, landscape characterization, conservation planning and disaster management. Its estimation is traditionally based on in situ
measurements or airborne Light Detection And Ranging (LiDAR) sensors. However, such methods are often proven insufficient in
covering large area landscapes due to high demands in cost, labor and time. Considering a multispectral image from a passive satellite
sensor as the only available source of information, we propose and evaluate new ways of discriminating vegetated habitat species
according to their height, through calculation of texture analysis measures, based on local variance, entropy and local binary patterns.
The methodology is applied in a Quickbird image of Le Cesine protected site, Italy. The proposed methods are proven particularly
effective in discriminating low and mid phanerophytes from tall phanerophytes, having a height of less and more than 2 meters,
respectively. The results indicate a promising alternative in vegetation height estimation when in situ or LiDAR data are not available
or affordable, thus facilitating and reducing the cost of ecological monitoring and environmental sustainability planning tasks.

1 INTRODUCTION

Estimation of canopy structure and vegetation height is funda-
mental for a series of ecological studies, including biodiversity
monitoring, conservation planning, fire modeling and biomass es-
timation (Hyde et al., 2006, Dong and Wu, 2008). In addition, in
various landscape mapping applications, certain land cover and
habitat categories are discriminated based on their height, thus its
measurement is of fundamental importance. Characteristic ex-
amples of such categories are included in the Land Cover Clas-
sification System (LCCS), proposed by the Food and Agricul-
ture Organization of the United Nations (Di Gregorio and Jansen,
1998), and the General Habitat Categories (Bunce et al., 2008),
for land cover and habitat mapping, respectively, both adopted
by the BIO SOS (BIOdiversity Multi-Source Monitoring System:
from Space To Species) European project, concerned with biodi-
versity monitoring.

Numerous studies have been proposed in the literature on vegeta-
tion height measurement through field campaigns with hand-held
devices (Payero et al., 2004, Weltz et al., 1994, Buckley et al.,
1999), considered as the most accurate approach. In cases where
in situ measurements were not available or possible, LiDAR data,
mainly from airborne sensors, have been recorded as the most ef-
ficient alternative (Nilsson, 1996, Kwak et al., 2007, Dubayah
et al., 2010, Lefsky et al., 2005). Airborne Synthetic Aperture
Radar (SAR) data have also been used to a lesser extent (Praks
et al., 2009). However, such methods provide coverage to a re-
stricted spatial extent and can be particularly expensive and time
and labor demanding.

Satellite data, on the other hand, mainly from passive sensors,
providing a large area coverage often at a reasonable cost, seem to
constitute a rational potential alternative. Different studies have
been conducted recently, trying to investigate potential correla-
tion of the spectral characteristics of areas captured in satellite
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images with their vegetation height, usually in a synergy with
airborne LiDAR data. Stojanova et al. (2010) calculated statistic
measures in the segments of Landsat imagery and, together with
LiDAR, tried to extract vegetation height in a Slovenian forested
area. Various vegetation indices were calculated from Landsat
data by Dong and Wu (2008) and, in combination with LiDAR
satellite data, were used to estimate vegetation height in a moun-
tainous protected region in China. Similar vegetation indices
from Landsat were used by Yanhong et al. (2010) to approxi-
mate height in a Chinese inland river basin. Hyde et al. (2006)
used airborne LiDAR and SAR and satellite Landsat and Quick-
bird data and compared their potential in height estimation in a
forested site in USA. LiDAR clearly outperformed all other sin-
gle sensors in height estimation accuracy; when data from other
sensors, especially Landsat, were combined with LiDAR, the re-
sults were further improved. Data from the Moderate Resolution
Imaging Spectroradiometer (MODIS) sensor have also been used
recently for large area vegetation height estimation in forests of
USA and Costa Rica (Wang et al., 2011).

In all the aforementioned studies, where data from passive sen-
sors were used, only reflectance-based characteristics were em-
ployed. In this paper, we introduce the use of textural charac-
teristics in vegetation height estimation through passive satellite
sensors. Textural characteristics are expected to reveal spatial
structural properties of the studied areas. The main idea behind
this approach is the fact that in areas with short and shrubby vege-
tation the texture of the image appears more homogeneous than in
areas with high vegetation, where vegetation canopy, tree trunks
and bare ground alternate, making the texture variant and inho-
mogeneous. Different texture measures are proposed and evalu-
ated as far as their efficiency in discriminating habitat types based
on their vegetation height, is regarded. In particular, the discrimi-
nation of low and mid from tall phanerophyte habitats, according
to the GHC scheme, is regarded.

In addition, extended in situ measurements and LiDAR data are
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considered absent in our study. Thus, another aim of the paper
is to extract surrogate measures of vegetation height extraction
through Remote Sensing, in case primary data are not available
or affordable. For the extraction of the texture measures, a mul-
tispectral Quickbird image of the Italian Natura 2000 protected
site of Le Cesine is used.

2 MATERIALS

2.1 Study area

The methods discussed in the paper are tested at the Le Cesine
site. Le Cesine is a Natura 2000 protected site located on the
Adriatic site of the south eastern part of Apulia region, Italy (Fig-
ure 1). It covers around 3.48km2 and is one of the oldest pro-
tected areas in Apulia. The area comprises a complex of coastal
lagoons, as well as various canals, marshes and humid grasslands.
Helophytic, halophilous and dry therophytic vegetation alternate
and create interesting mosaics. Cladium mariscus communities
are the most common helophytic vegetation species. The woody
vegetation is mainly characterized by Pinus halepensis and Quer-
cus ilex, while the scrubby vegetation by Erica forskalii.

2.2 Data

The only available data source for height estimation in our study
is a very high resolution multispectral image from the Quickbird
sensor, acquired in mid July 2005. The image is of 2.4m spatial
resolution and contains four bands, lying in the spectral areas of
blue (450–520nm), green (520–600nm), red (630–690nm) and
near-infrared (760–900nm).

For validation purposes, a habitat map of Le Cesine, expressed
in the GHC scheme, from the same period is used. GHC, a tree-
structure classification system proposed to include all European
habitats, is based on life forms. It consists of five main classes,
each of which is further split into several subclasses, resulting
in a total of 160 habitat categories (Bunce et al., 2008). For
certain main classes, e.g. Trees and Shrubs, vegetation height
is not only fundamental for the recognition of the habitat class
of landscape patches from remote sensors, but, often, the only
way, since the spectral reflectance properties of the patches may
not be particularly distinctive. An indicative example includes
the discrimination between the low and mid phanerophyte class
(LPH/MPH), being shorter than 2m, and the tall phanerophytes
(TPH), with above 2m height. The discrimination between these
(semi-)natural habitats is important, since they have distinct char-
acteristics causing or revealing different ecological properties and
functions.

Figure 1 presents the location of Le Cesine in Italy and the avail-
able Quickbird image, where the green band is drawn in gray-
scale. The boundaries of the protected area overlay the Quick-
bird image. The areas of LPH/MPH habitats, as extracted from
the habitat map, are indicated as white dotted patches, the TPH
habitats as dark dotted patches, while all the rest habitats remain
transparent and let the image intensity appear underneath.

3 METHODS

In our study, Quickbird image alone is used to characterize habi-
tats based on their height and discriminate between LPH/MPH
and TPH categories. Vegetation height is approximated indirectly
by quantifying the homogeneity of the ground through the pro-
posed texture analysis measures. The high spatial resolution of

the image allows the extraction of such measures able to cap-
ture local variations in the ground structure and provide an ac-
curate indication of the homogeneity of the ground. The patches
of interest characterized as LPH/MPH and TPH are detected in
the Quickbird image, based on the GHC habitat map. For these
patches, the proposed texture measures are calculated on a per
pixel basis. For each measure, its average value in the pixels of
the patch is extracted. For the tall phanerophyte patches these
values are expected to be significantly larger than those for the
low/mid phanerophyte patches, reflecting their larger heterogene-
ity. The texture measures are calculated for all bands of the
Quickbird image, in order to examine the discriminatory capa-
bility of each band. Local variance, as a measure of energy, local
entropy and local binary patterns are employed in the calculated
measures.

3.1 Local Variance

The first measure we apply to capture local variations in texture
is based on local variance. Around each pixel of the selected
LPH/MPH or TPH patch, a small neighborhood is considered.
The neighborhood is defined as a square window of predefined
size around the central pixel. The variance of the pixel intensi-
ties in the neighborhood is calculated and assigned to the central
pixel. Since the discrimination of habitats is meaningful on a per
patch basis, the average value of the variance values of the pixels
of the patch is extracted, providing an indication of the intra-patch
heterogeneity and, indirectly, a surrogate of the patch vegetation
height. The same procedure is applied for all Quickbird bands.

3.2 Local Entropy

In order to detect local variations in texture, entropy-based mea-
sures can be employed. Entropy, as introduced in information
theory by Shannon (1949), offers, in general terms, an indication
of randomness in the studied data; in that sense, heterogeneous
patches as far as their pixel brightness is regarded, as the ones
depicting tall vegetation habitats, are expected to have higher en-
tropy values than patches with low vegetation. Similarly to vari-
ance, a local measure of entropy is calculated on a per pixel basis.
For each pixel c of a selected patch, entropy is calculated in a sur-
rounding window, using

H(c) = −
k∑

i=1

p(i) log2
(
p(i)
)
, (1)

where k is the total number of different pixel intensities, or gray
values, present in the window and p(i) the frequency of appear-
ance of value i in the window, i.e. the ratio of the number of pix-
els with value i in the window to the total number of pixels of the
window. An interesting trade-off takes place: on the one hand,
the window needs to be rather small in order to increase spatial
resolution and capture local variations in the texture. On the other
hand, in order to have reliable and meaningful statistical analysis,
the number of gray levels has to decrease, through further quan-
tization of the pixel values, as the window size decreases. As an
example, for a window of dimensions 9 × 9 pixels, the image
should be requantized to at most 8 gray levels, so that we have
81 pixels to populate the 8 gray level bins when forming the his-
togram of the window under consideration. Two schemes were
tested, one with the entire region of interest being requantized to
8 gray levels, and one with each window being requantized indi-
vidually.

3.3 Local Entropy Ratio

Aiming at capturing local variations of a small neighborhood
around each pixel compared with the existing variations in the
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Figure 1: LPH/MPH and TPH habitats in Le Cesine protected site.

extent of a larger surrounding area, we introduce the Local En-
tropy Ratio (LER) measure. Two concentric windows of different
sizes are considered around each pixel. A local entropy value is
extracted for each window, Hi and Ho for the inner and outer
windows, respectively, and their ratio

LER =
Hi

Ho
(2)

is assigned to the central pixel. The smaller the ratio, the more
homogeneous the close neighborhood of the central pixel, com-
pared with its broader surroundings. Two versions of the measure
are produced: in the first case, the pixels of the small window are
included in the calculation of the entropy of the large one, while
in the second a more unbiased approach is offered by excluding
the pixels of the inner window from the entropy calculation of the
outer one. A point of particular importance in the latter case is
that the outer window should be large enough to allow for sensi-
ble statistical analysis. Therefore, since a statistically meaningful
number of pixels has to be at least one order of magnitude larger
than the number of gray levels, in case of image quantization in
eight gray levels and a small window size of 9× 9 pixels, a large
window of a minimum dimension of 13 × 13 pixels needs to be
created around the central pixel, thus having 169−81 = 88 pixels

after the exclusion of the central window. As previously, quanti-
zation can be performed for either the whole region or separately
for each window.

3.4 Local Binary Patterns

Local binary patterns (Petrou and Garcı́a-Sevilla, 2006) are also
tested in capturing local changes in texture. As all previous mea-
sures, local binary patterns are computed on a per pixel basis. For
each pixel, its surrounding pixels in a circle of predefined radius
are considered. Each such pixel is flagged with a value of 1 if it
is larger than the central pixel, or 0 otherwise. Scanning the sur-
rounding pixels in a clockwise order, a binary number is formed
from their assigned values. This number is converted to the dec-
imal system and assigned to the central pixel. The value of the
measure for a specific patch is calculated through averaging the
resultant pixel values for all pixels of the patch.

The measure can be converted to rotation invariant if all possi-
ble binary numbers, formed by changing the starting point of the
clockwise counting for each pixel, are considered, and the largest
or smallest of them is finally assigned to the central pixel. Homo-
geneous regions are expected to be characterized, in general, by
smaller binary numbers than heterogeneous regions, since more

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B8, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

323



bits with 0 values are likely to be found in the former numbers,
because of the existence of more surrounding pixels having the
same intensity as the central one. However, 0 values dominate
also in case of heterogeneous neighborhoods having a central
pixel with larger intensity values than its surrounding pixels.

To counterbalance this drawback, a variation of the local binary
patterns algorithm is also tested, termed local ternary patterns
(Tan and Triggs, 2007), with the incorporation of a third value in
labeling neighboring pixels. In this case, if a pixel intensity dif-
fers within a predefined range ±d from the central pixel it takes
value 1. If it is larger or smaller than the central pixel by more
than d, it takes value 2 or 0, respectively. In addition, depending
on the value of range d, the measure may handle noise and poten-
tial inaccuracies of the data, up to a certain degree. The created
number is now expressed in the ternary system instead of the bi-
nary, i.e. having number three as basis. The more homogeneous
textures are expected to be represented by numbers close to the
one having all its bits equal to 1.

Following the same notion, another variation can be introduced
from the combination of local binary and ternary patterns, by as-
signing value 0 to the pixels whose intensity differs less than a
range ±d from the central one and value 1 otherwise. In this
measure, the more homogeneous a patch, the smaller its measure
value is expected to be.

4 RESULTS AND DISCUSSION

To evaluate the performance of the proposed measures in esti-
mating vegetation height and discriminating between LPH/MPH
and TPH habitat classes, different versions of the measures were
applied to all patches of low/mid and tall phanerophytes on Le
Cesine site, extracted from the available habitat map, for each
band of the Quickbird image. 52 LPH/MPH and 99 TPH patches
were totally considered. For each patch, each measure was calcu-
lated on a per pixel basis and then averaged for the pixels of the
patch.

The discriminatory power of each measure for a specific band
was tested in two ways. At first, Student’s t-tests were applied
to compare the measure values for LPH/MPH and TPH patches.
Under the null-hypothesis that the values of LPH/MPH and TPH
patches come from the same distribution, one-tailed tests were
performed to assess our expectation that LPH/MPH patch values
are significantly smaller than TPH ones. In addition, the ability of
the measures to create correct classification of the LPH/MPH and
TPH patches was evaluated with a decision tree classifier based
on the CART (Classification And Regression Tree) methodology
(Breiman et al., 1984). A CART tree consists of binary nodes,
each one examining whether the value of a patch for a specific
measure is smaller or larger than a certain value. In addition, at
the end of the training process, CART trees are pruned, i.e. the
number of their nodes is reduced to a certain degree, in order to
increase their generalization performance with data non belong-
ing to the training set.

Table 1 summarizes the results of the evaluation of the texture
analysis measures. Different parameters were tested for each ap-
proach, resulting in different instances of each measure. A clas-
sification tree was created for each measure in each band. For
the training of each tree a random subset of 30 LPH/MPH and 50
TPH patches was selected; the non-selected patches were used
for testing the classification accuracy of the tree. The ratio of
the correctly classified patches to the total number of the test set
patches is recorded in the table. In addition, the p-value resulting

from each t-test is drawn, indicating the probability that a differ-
ence between the LPH/MPH and TPH mean values as large as or
larger than the one observed can occur, assuming that the null hy-
pothesis is true. The lower the p-value, the larger the probability
that the null hypothesis is wrong and, thus, the measure values
for the LPH/MPH patches do not come from the same distribu-
tion and are significantly smaller than the TPH ones.

Two versions of the local energy measure appear in Table 1: in
LE1, a window of 3×3 pixels around each pixel was used for the
calculation of the variance, while in LE2, a window of 5×5 pixels
was used. In LH1 and LH2 versions, the local entropy was calcu-
lated in 9 × 9 pixel windows. The data were quantized in 8 bins
for each individual window in LH1, while in LH2 quantization
in 8 bins was applied to the whole region from the beginning. A
quantization in 8 bins of the whole region and a selection of 9×9
pixel windows as the small ones, were applied in ‘LHR’ versions
of the calculation of the local entropy ratio. In LHR1 and LHR2
the small windows were included in the calculation of the local
entropy of the large windows. In LHR1, 13 × 13 pixel windows
were selected as the large ones, while in LHR2 their dimensions
were 21×21 pixels. In LHR3 and LHR4, the same parameters as
in LHR1 and LHR2, respectively, were used, with the difference
that the inner window pixels were excluded from the calculation
of the local entropy of the outer windows. Rotation invariant and
rotation variant local binary patterns were calculated for radius 1
in LBP1 and LBP2, respectively. In LBP3 and LBP4, the same
parameters were used, with the radius changing to 2. The ‘LTP’
and ‘LTBP’ versions were the same as the respective ‘LBP’ ones,
with the only difference being that the ternary system and the
modified binary approach were adopted, respectively.

As observed, most p-values resulting from the t-tests are signif-
icantly smaller than the 5% level of significance usually used in
assessing the null hypothesis (Chatfield, 1983). This provides a
strong evidence against the null hypothesis that the mean values
of the measures for LPH/MPH and TPH patches are almost the
same and strongly supports our theoretical assumption that the
values of the LPH/MPH patches are significantly smaller than
the TPH ones. The smaller the p-value for a specific measure
instance, the higher the confidence that this instance can lead to
clear discrimination of low/mid and tall phanerophyte patches.
As far as the used Quickbird bands is concerned, it is observed
that all visible ones performed almost equally well and outper-
formed the near-infrared (NIR) band in discriminatory power.
Among them, values extracted from the green band, seem to pro-
vide better results for most measures. Regarding the measures
tested, the local ternary patterns, ‘LTP’, and the modified local
binary patterns, ‘LTBP’, instances seem to outperform all other
measures in the visible bands, with the latter appearing slightly
better. The local entropy ratio measure, on the other hand, ap-
pears robust in all bands and provides satisfactory results even
in the NIR band, especially in the implementations where the
outer window is significantly larger than the inner one, LHR2
and LHR4.

The top performing measures as far as the t-test is concerned,
include the implementation of the rotation invariant local ternary
patterns with radius 1, LTP1, as well as the modified rotation vari-
ant local binary patterns approach with radius 2, LTBP4, both cal-
culated in the green band, with p-values of the order of magnitude
of 10−20. As expected, these results are in accordance with the
CART classification assessment results, where LTP1 and LTBP4
instances in the green band present the highest rates in correctly
classifying LPH/MPH and TPH patches based on their height.
The instance that outperforms all others in classification accu-
racy is the modified rotation variant local binary pattern approach
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Table 1: Evaluation of texture analysis measures through t-tests and classification.
Blue band Green band Red band NIR band

Method CART p-value CART p-value CART p-value CART p-value
LE1 0.8429 1.66E-05 0.8571 2.03E-05 0.7 3.15E-08 0.6857 0.01
LE2 0.7 7.43E-06 0.7429 5.09E-06 0.8286 8.09E-09 0.6857 0.0156
LH1 0.7571 2.09E-19 0.7714 1.87E-16 0.6857 1.07E-04 0.6857 0.2447
LH2 0.7286 4.67E-09 0.7714 3.40E-11 0.6429 1.75E-13 0.6857 7.09E-04
LHR1 0.7286 2.50E-05 0.6857 1.32E-05 0.7143 3.50E-08 0.6857 2.31E-04
LHR2 0.6857 1.94E-06 0.6 4.75E-07 0.7143 2.77E-09 0.6429 1.46E-04
LHR3 0.6286 2.60E-03 0.6857 3.09E-05 0.6857 2.81E-07 0.6857 3.08E-03
LHR4 0.6857 3.35E-06 0.6571 1.65E-07 0.7 2.53E-09 0.6857 1.89E-04
LBP1 0.7571 8.71E-12 0.7429 4.02E-14 0.7714 2.67E-11 0.6857 0.8751
LBP2 0.7714 1.53E-08 0.7571 7.57E-11 0.8 9.95E-08 0.6857 0.0652
LBP3 0.7286 3.80E-08 0.7429 4.37E-09 0.6714 1.30E-07 0.6857 0.9499
LBP4 0.6714 1.37E-03 0.7857 6.00E-04 0.6857 7.00E-03 0.6857 0.3399
LTP1 0.8286 7.95E-17 0.9143 6.21E-19 0.7714 6.57E-16 0.6857 1.42E-02
LTP2 0.8 2.66E-14 0.9143 3.80E-15 0.8143 2.04E-14 0.6857 2.69E-02
LTP3 0.8143 2.42E-13 0.8143 2.91E-13 0.6571 9.75E-09 0.6857 0.0177
LTP4 0.6857 2.88E-02 0.6857 5.20E-02 0.6857 5.71E-02 0.6857 0.6509
LTBP1 0.7857 5.93E-14 0.8286 3.25E-15 0.8857 7.74E-15 0.6857 3.36E-03
LTBP2 0.9 4.94E-16 0.9857 6.23E-17 0.8286 1.99E-16 0.6857 6.28E-03
LTBP3 0.8571 7.09E-14 0.8714 1.14E-16 0.8 5.26E-18 0.6857 7.16E-03
LTBP4 0.8286 2.32E-17 0.9429 1.52E-21 0.8286 1.56E-16 0.6857 0.0109

with radius 1, LTBP2, having also a very low p-value and reach-
ing an accuracy of 98.57%. The local variance instance of 3× 3
size window, LE1, shows a high classification rate in the green
and blue bands and outperforms the local entropy, local entropy
ratio and local binary patterns approaches. As previously, data
from the green band seem to provide the best classification for
almost all measures, apart from the local entropy ratio instances,
for which better classification rates are achieved in the red band.
Similarly to the t-tests, instances based on local ternary and the
modified local binary patterns in the green band are the top per-
forming ones, while data from the NIR band result in the lowest
classification performance for almost all measures.

In general, the lower the p-value of a method, the highest its clas-
sification rate. Therefore, comparing two measures, the one with
the lowest p-value is expected to provide the highest classifica-
tion accuracy. However, as seen in Table 1, this general idea is
not always true. This is caused by the random split of the data
into training and test data, where the existence of outliers may
influence the results of the t-test and classification to a different
degree.

5 CONCLUSIONS AND FUTURE WORK

Considering a multispectral Quickbird image as the only source
of data to discriminate between low and high vegetation habitats,
a series of texture analysis measures, quantifying the degree of
homogeneity of the texture, were proposed and evaluated. The
approach is based on the idea that the shorter and smaller the
vegetation, the more homogeneous the texture of the area will
appear. On the contrary, in areas with tall vegetation, inhomoge-
neous texture appears because vegetation canopy, tree trunks and
ground alternate.

Local variance, local entropy and local binary patterns served as
the basis for the extraction of the proposed measures. Several
variations and different parameters were tested for each measure
for all the available Quickbird bands. It was found that, in gen-
eral, measures calculated from data from the green band outper-
formed the ones from the other bands. As far as the methods

are concerned, a modification of the local binary patterns ap-
proach, assigning a 0 value to the pixels differing within a pre-
defined range from the central pixel of the window under con-
sideration, the value of 1 otherwise, seemed to outperform the
other approaches in most bands. Among the tested instances of
the method, the rotation variant one with a window radius equal
to 1 calculated in the green band, was the most able to capture
local texture variations and showed the best classification results.
Some instances of another variation of the local binary patterns,
forming ternary numbers, performed similarly well.

In general, instances of different measures performed well in dis-
criminating habitats with vegetation lower or higher than 2m. The
results are promising for future extension to the discrimination
of more height categories. The efficiency of the measures with
other passive sensors can be part of future research tasks, as well
as their application to other spectral bands or combinations of
bands. The results encourage future research in texture analysis
methods as alternatives in vegetation height estimation without
the use of active sensors, such as LiDAR, or the need of exten-
sive field campaigns. This can reduce the cost of land cover and
habitat mapping through the use of less data and facilitate eco-
logical monitoring and environmental sustainability planning.
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