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ABSTRACT: 
 
Vegetation responses and ecosystem function are spatially variable and influenced by climate variability. The Spatial and Temporal 
Adaptive Reflectance Fusion Model (STARFM) was used to combine MODIS (Moderate Resolution Imaging Spectrometer) and 
Landsat TM/ETM+ (Thematic Mapper/ Enhanced Thematic Mapper plus) imagery for an 8 year dataset (2000-2007) at 30m spatial 
resolution with 8 day intervals. This dataset allows for a functional analysis of ecosystem responses, suitable for heterogeneous 
landscapes. Derived vegetation index information in form of the NDVI (Normalised Difference Vegetation Index) was used to 
investigate the relationship between vegetation responses and gridded rainfall data for regional ecosystems. A hierarchical 
decomposition of the time series has been carried out in which relationships among the time-series were individually assessed for 
deterministic time-series components (trend component and seasonality) as well as for the stochastic seasonal anomalies. While no 
common long-term trends in NDVI and rainfall data in the time period considered exist, there is however, a strong concurrence in 
the seasonally of NDVI and rainfall data. This component accounts for the majority of variability in the time-series. On the level of 
seasonal anomalies, these relationships are more subtle. The statistical analysis required, among others, the removal of temporal 
autocorrelation for an unbiased assessment of significance. Significant lagged correlations between rainfall and NDVI were found in 
complex Queensland savannah vegetation communities. For grasslands and open woodlands, significant relationships with lag times 
between 8 and 16 days were found. For denser, evergreen vegetation communities greater lag times of up to 2.5 months were found. 
The derived distributed lag models may be used for short-term NDVI and biomass predictions on the spatial resolution scale of 
Landsat (30m). 
 
 
 

1. INTRODUCTION 

The vegetative surface cover has an important function in the 
earth system  (Steffen and Tyson 2001) which is linked via 
several feedback mechanisms to hydrological and 
climatological processes. Identifying and quantifying these 
linkages delivers important insight for environmental 
modelling, management and informed decision making.  
Satellite earth observation data with high temporal repeat 
intervals such as AVHRR (Advanced Very High Resolution 
Radiometer) or MODIS (Moderate Resolution Imaging 
Spectroradiometer) deliver spatially dense information about 
the earth surface and are well-suited for monitoring continental 
scale surface processes.  
Vegetation indices derived from earth observation systems have 
proved to be useful to describe surface vegetation behaviour 
(Tucker 1979). The most prominent of these is the Normalised 
Difference Vegetation Index (NDVI) which is proportional to 
the amount of photosynthetically active radiation absorbed by 
green vegetation (Asrar et al. 1984). Spectral information from 
the AVHRR sensor in channel 1 (0.58 to 0.68 micrometers) and 

channel 2 (0.75 to 1.1 micrometers) are combined to formulate 
the NDVI as follows: 
 
  NDVI=(ch2-ch1)/ch1+ch2 
 
The NDVI is widely used to monitor vegetation (Tucker 1979) 
and ecosystem processes (Pettorelli et al. 2005). For example, 
Lotsch et al. (2005) used AVHRR time series data (1981-1999) 
to monitor responses of terrestrial ecosystems to drought in the 
northern hemisphere. Nemani et al. (2003) have studied the 
climate-driven increase in global terrestrial net primary 
production using AVHRR data, building bioclimatic indices 
and vegetation growth limiting factors. Examples where NDVI 
and rainfall were related are widespread in the literature (e.g. 
Ecklundh, 1998, Anayamba & Tucker, 2005; Udelhoven et al., 
2009; Schmidt et al., 2010a).  
At regional or local scales are data with higher spatial 
resolution required. Landsat Thematic Mapper (TM) imagery 
have proven to be useful in many vegetation monitoring 
applications at  regional scale (Xie et al, 2008, Danaher, 2010). 
A combination of MODIS and Landsat imagery via data fusion 
have successfully be used to establish a temporally dense (e.g. 
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8-day interval) time series of Landsat type imagery (Gao et al, 
2006, Roy et al, 2008). On a regional level these data contribute 
to a better ecosystem understanding and an improved estimation 
of carbon fluxes for vegetation communities (Linderholm et al, 
2006, Schmidt et al, 2012). 
In this contribution we link a regular spaced (8-day interval) 
time series of MODIS-Landsat fused imagery via the STARFM 
algorithm (Gao et al, 2006) for a period of 7.5 years using 322 
observations of NDVI imagery and rainfall surfaces. The data 
are first analysed classically with a lagged correlation and 
subsequently with a more complex distributed lag model 
including trend and noise removal. The objective of this 
contribution is a) to investigate if the synthetic high 
spatiotemporal NDVI time series and rainfall time series exhibit 
a significant correlation in a test region in an Australian 
Savanna and; b) investigate the influence of the seasonality of 
the correlation.  
 
 

2. DATA AND METHODS 

 
2.1 Data 

Regional setting 
A 12 km x 10 km sample region in a typical Australian northern 
savanna region was chosen. The area includes homogeneous 
woody forests vegetation, grasslands and heterogeneous areas 
with a mixture of surface covers, such as a palustrine wetland 
and riparian vegetation. Regional ecosystem (RE) data of 
Queensland are generally mapped at 1:100,000 scale 
(http://www.derm.qld.gov.au/REDATA). The major forested 
communities in the test region are shown in Figure 1 and are 
mapped by RE data as a) low open-woodland to occasionally 
low open-forest of Eucalyptus shirleyi (silver-leaved ironbark), 
b) semi-evergreen vine thicket with many codominant species 
on young igneous rock, Woodland to open-woodland of 
Eucalyptus platyphylla (poplar gum), Corymbia clarksoniana 
(Clarkson's bloodwood), Corymbia tessellaris (Moreton Bay 
ash) and Eucalyptus tereticornis (bluegum). The northern part 
of the subset is part of the Great Basalt Wall national park and 
has undergone very little change in the recent history (e.g. no 
fire history). 
 

 
Figure 1.  Study area in a Landsat true color composite, 

superimposed is a subset of the regional ecosystem 
classification. 

 
Satellite imagery 
 
Satellite imagery of the Landsat and MODIS sensors were 
utilised to create a 8-day regularly interval time series, see 
Schmidt et al (2012) for details.  

 
 Start date Stop date Num. of obs. Interval 
MODIS 02/2000 09/2007 322 8-day 
Landsat 12/1999 09/2007 90 irregular
STARFM 02/2000 09/2007 322 8-day 
Rainfall 02/2000 09/2007 322 8-day 

 
Table 1.  Time span and resolution of the raster data used.  

 
NDVI data were extracted from this time series of STARFM 
generated Landsat type imagery as a representation for 
vegetation greenness. 
 
Rainfall data 
 
Rainfall data were extracted form the SILO interpolated 
surfaces (Jeffery, et al., 2001) as 8-day rainfall totals. 
 
Foliage Projective Cover 
Foliage Projective Cover (FPC) data were extracted for the 
study region. FPC is defined as the horizontal percentage cover 
of photosynthetic foliage of all strata and provides a 
biophysically meaningful description of vegetation cover, 
particularly for Australian vegetation communities (Armston, et 
al. 2009).  
 

 
 
Figure 2.  FPC as a measure of overstorey foliage cover in the 

study area. 
 
 
2.2 Methods 

A lagged correlation analysis was performed on a per pixel 
basis of z-transfomed NDVI and rainfall data for the common 
time series from 02/2000-09/2007. This type of analysis is 
commonly applied, but leads in problems with significance 
assessment if two autocorrelated time-series are regressed are 
regressed against each other. In this case the ordinary least 
square (OLS) estimator results in a autocorrelated residual 
structure, which constitutes a severe violation of the assumption 
of OLS-regression, since the risk of a type I error in the 
significance assessment of (lagged) regression coefficients is 
increased.   
Thus, in a second step of the analysis a distributed lag model 
has been applied, in which OLS-estimator was substituted by a 
generalized least square (GLS) parameter estimation. To this 
end were first long term trends and seasonal components were 
eliminated from both datasets and only seasonal anomalies were 
retained. Than a regression analysis in form of a distributed lag 
model (Udelhoven et al, 2009) is applied to the anomalies as 
follows using simple OLS-regression for parameter estimation:  
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where t is the time, a is the, bi are the regression coefficients at 
lag i. 
In a second step an autoregressive moving average (ARMA) 
model is fitted to the error term  to assess the temporal 
autocorrelation structure of the series. The next step is to filter 
the original time-series (NDVI and rainfall anomalies) using the 
identified ARMA-model. The last step is to repeat the OLS-
regression of the anomalies. This results in a distributed lag 
model in which the residuals are “white noise” and to an 
unbiased assessment of the significance of the regression 
coefficients (Udelhoven et al., 2009).   
 
 
A Durbin-Watson test was applied to detect the presence of a 
remaining autocorrelation in the time series. 
 

3. RESULTS 

A time series plot of rainfall and NDVI in a forested area (open 
woodland) displays the seasonality within the NDVI data. 
 

 
Figure 3: Time series of rainfall (blue line) and NDVI (black 
line) for a location in an open woodland. 
 
 
3.1 Simple lagged correlation 

A smoothing filer with a window length of 5 was applied to 
both time series. The maximum correlation at the respective lag 
was reported on a per pixel basis (Figure 4).  
 

 
Correlation Lag (orange=0, yellow=1,

red=2, white =4, black=neg.) 
Figure 4: Lagged correlation between rainfall and NDVI. 

 
The response times lag times appear to have very little spatial 
pattern with generally quick vegetation response with a lag of 0. 
In the forested areas appear a lag of 1 and a lag of 2 along the 
riparian areas. 

 
3.2 Distributed lag model 

Raster layers of the 5% significance level demonstrate the 
difference in the response times in the different land types. In 
this 14 day aggregation it appears that no significant response 
of the NDVI exists after a lag period of 4 (56 days). In the 
grasslands or open woodlands with low tree cover appears a 
significant response at lag times of 0 to 3. The distinct pattern 
visible in Figure 3 between forest and grasslands are less 
pronounced, but visible in Figure 5 (T0 to T3).  
 

 
 
Figure 5: NDVI vs Rainfall anomalies significance (t-test) at the 
5% significance level of the regression coefficients at times T0 
to T5. 
 
3.3 Test for autocorrelation 

 
A simple test for temporal autocorrelation in the residual is the 
Durbin-Watson (DW) statistics. The outcome of this test is 
shown in Figure 6. A series without serial no autocorrelation 
results in a DW-value of 2.0. Smaller values (0 in the 
minimum) indicate positive autocorrelation whereas higher 
values (4.0 in the maximum) indicate negative autocorrelation. 
Figure 6 demonstrates that the residuals of the distributed lag 
model are indeed white noise using GLS-parameter estimation, 
except for singular, scattered pixels. 
 

  ntnttt RFbRFbRFbaNDVI ...121
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Figure 6: Durbin-Watson test – green means no significant 
autocorrelation (values between 1.8 and 2.2). 
 
 

4. DISCUSSION AND CONCLUSIONS 

4.1 Input data 

The quality of the SILO interpolated surfaces is largely 
depending on the distribution and density of rainfall stations 
across the State. In remote areas, such as the study site, 
localised rainfall events might be missed or mis-represented. 
Hence the relationships described in this contribution could 
possibly improved with improved rainfall datasets. 
The 8-day interval NDVI imagery are based on a data blending 
algorithm (STARFM) that merges coarse spatial scale imagery 
with higher resolution imagery. Despite that Schmidt et al. 
(2012) report good results with this method are potential biases 
and errors inherit in the dataset. NDVI it self is a vegetation 
index which has been used widely, but poses some problems so 
that other vegetation descriptions, such as outputs from s 
spectral mixture analysis (Schmidt & Scarth, 2009; Schmidt et 
al. 2010b) might give a more accurate representation of the 
vegetation behaviour.  
  
4.2 Lagged correlation and distributed lag model 

The results presented here show the general potential of 
utilising high temporal resolution imagery on a regional or local 
scale. However, is a study over a larger area desirable and 
potentially also the integration of other climatic variables such 
as temperature, water vapour content or potential 
evapotranspiration. The potential for non linear distributed lag 
models might be beneficial. The results presented here are work 
in progress and further analysis is required to draw solid 
conclusions. 
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