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ABSTRACT: 

 

How to effectively describe ecological patterns in nature over broader spatial scales and build a modeling ecological framework has 

become an important issue in ecological research.  We test four modeling methods (MAXENT, DOMAIN, GLM and ANN) to 

predict the potential habitat of Schima superba (Chinese guger tree, CGT) with different spatial scale in the Huisun study area in 

Taiwan.  Then we created three sampling design (from small to large scales) for model development and validation by different 

combinations of CGT samples from aforementioned three sites (Tong-Feng watershed, Yo-Shan Mountain, and Kuan-Dau watershed).  

These models combine points of known occurrence and topographic variables to infer CGT potential spatial distribution.  Our 

assessment revealed that the method performance from highest to lowest was: MAXENT, DOMAIN, GLM and ANN on small spatial 

scale.  The MAXENT and DOMAIN two models were the most capable for predicting the tree’s potential habitat.  However, the 

outcome clearly indicated that the models merely based on topographic variables performed poorly on large spatial extrapolation 

from Tong-Feng to Kuan-Dau because the humidity and sun illumination of the two watersheds are affected by their microterrains 

and are quite different from each other.  Thus, the models developed from topographic variables can only be applied within a 

limited geographical extent without a significant error.  Future studies will attempt to use variables involving spectral information 

associated with species extracted from high spatial, spectral resolution remotely sensed data, especially hyperspectral image data, for 

building a model so that it can be applied on a large spatial scale. 

 

 

1.  NTRODUCTION 

 

Building ecological modeling framework has been the core of 

ecological research since the latter half of the 20th century 

(Guisan and Zimmermann, 2000).  It can provide a measure of 

a species’ occupancy potential in areas not covered by 

biological surveys and consequently is becoming an 

indispensable tool to conservation planning and forest 

management.  Technological innovation over the last few 

decades, especially in the fields of remote sensing (RS) and 

geographic information systems (GIS), greatly enhanced 

scientists’ capacity to meet this challenge by giving them the 

ability to describe patterns in nature over broader spatial scales 

and at a greater level of detail than ever before (Guisan and 

Zimmermann, 2000).  Besides, advances in statistical 

techniques enhance the ability of researchers to tease apart 

complex relationships, while effectively incorporated of RS and 

GIS tools permit more accurate descriptions of spatial patterns 

and suggest directions for species distribution.  Several 

alternative methods have been used to predict the geographical 

distributions of species (Elith et al., 2006).  We used 

maximum entropy (MAXENT), DOMAIN modeling 

(DOMAIN), generalized linear model (GLM) and artificial 

neural networks (ANN) to build model because they are easy to 

use and produce useful prediction in other research (Carpenter 

et al., 1993; Lek and Guegan, 1999; Guisan et al., 2002; Elith 

et al., 2006; Phillps et al., 2006; Phillps et al., 2008).   

 

Despite the extensive use of species distribution models, some 

important conceptual, biotic and algorithmic uncertainties need 

to be clarified in order to improve predictive performance of 

these models (Araújo and Guisan, 2006).  For instance, 

species ecological characteristics, sample size, model selection 

and predictor contribution (Araújo and Guisan, 2006).  Hence, 

it must be interpreted carefully of species’ occupancy potential 

in areas not covered by biological surveys.  Generally, models 

for species with broad geographic ranges and environmental 

tolerance tend to be less accurate than those for species with 

smaller geographic ranges and limited environmental tolerance 

(Thuiller et al., 2004; Elith et al., 2006).   

 

According to species characteristic, the target species chosen 

for this study was Schima superba (Chinese guger trees, CGT,), 

which are widespread with elevation ranging from 300 to 2,300 

m in central Taiwan, is one of the fine broad-leaf tree species 

and good for fitment.  CGTs have high water content and 

dense crown closure, and high dispersal ability; therefore, they 

have excellent fire resistance characteristics and can grow to 

form a fire line (Liu et al., 1994).  In this study, we consider 

different types of predictive models, as well as the complex 

environment of study area and the ways in which ecological 

relationships are affected by changes in scale.  Hence, it was 

intended to develop models for predicting the potential habitat 

of the tree species, and has the following five steps.  (1) 

In-situ data (CGTs) were collected from the Tong-Feng 

watershed, Yo-Shan Mountain area, and Kuan-Dau watershed 

in the Huisun study area in central Taiwan by using GPS.  (2) 

GIS technique was used to overlay the layer of CGTs with 

environmental variables.  (3) Three sampling schemes were 

created for model development and validation via different 

combinations of CGT samples taken from aforementioned three 

sites.  (4) MAXENT, DOMAIN, GLM, and ANN were used to 
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build predictive models.  (5) The multi-modeling assessment 

approach was performed in this study.  This included the 

application of a single model to data describing patterns at 

different spatial scales and the comparison of several models 

using a common dataset.  

 

 

2. STUDY AREA 

 

We chose a rectangular study area, encompassing the Huisun 

Forest Station, and it has a total area of 17,136 ha.  The 

Huisun Forest Station is in central Taiwan, situated within 

24
◦
2 –́24

◦
5  ́ N latitude and 121

◦
3 –́121

◦
7  ́ E longitude (Figure 

1).  This station is the property of National Chun-Hsing 

University.  The entire study area ranges in elevation from 454 

m to 3,418 m, and its climate is temperate and humid.  In 

addition, the study area has nourished many different plant 

species more than 1,100 and is a representative forest in Taiwan.  

It comprises five watersheds, including two larger watersheds, 

Kuan-Dau at west and Tong-Feng at east.  So far, all of the 

Chinese guger-tree samples (in situ data) were collected from 

the Tong-Feng, Yo-Shan, and Kuan-Dau sites in the Huisun 

study area by using a GPS. 

 

 
 

Figure 1. Location map of the study area 

 

 

3. MATERIALS AND METHOD 

 

3.1 Species occurrence data 

 

We collected in situ CGTs data by using a GPS linked with a 

laser range, and then performed a post-processed differential 

correction that makes them have an accuracy of sub-meters.  

The dataset was eventually converted into ArcView shapefile 

format for later use.  So far, CGT samples were collected from 

Tong-Feng (122), Yo-Shan (8), and Kuan-Dau (64) sites in the 

Huisun study area, respectively.  Pseudo-absences were 

generated for those models that required them (all except 

DOMAIN) by taking 500 samples randomly in study area.  

Three sampling designs (SD) were created for model 

development and validation through different combinations of 

CGT samples from aforementioned three sites (see figure 1).   

 

SD-1: we randomly selected two-thirds of Tong-Feng dataset 

for building “Tong-Feng base model” and the remaining 

one-third of that dataset for model validation.   

 

SD-2: we used the same base model built in SD-1 and only 

used samples taken from Yo-Shan about 0.5 km away from the 

Tong-Feng site to test the base model.  

 

SD-3: we still used the same base model in SD-1 and only used 

samples taken from the Kuan-Dau site about 5 km away from 

Tong-Feng site to test the base model.  Then we evaluated the 

spatial extrapolation ability of the four models. 

 

3.2 Environmental data 

 

We collected digital elevation model (DEM) of 5 m resolution, 

orthophoto base maps (1:10,000), and two-date SPOT images.  

DEM was acquired from the Aerial Survey Office, Forestry 

Bureau of the Council of Agriculture, Taiwan.  To meet the 

requirements of the study, the DEM was interpolated into 5  5 

m grid size, geo-referenced to the coordinate system, TWD67 

(Taiwan Datum, spheroid: GRS67) and Transverse Mercator 

map projection over two-degree zone with the central meridian 

121E.  The two-date SPOT-5 images were acquired from 

Center for Space and Remote Sensing Research, National 

Central University (CSRSR, NCU), Taiwan (©  SPOT Image 

Copyright 2004 and 2005, CSRSR, NCU).  System calibration 

and geometric correction with level 2B were performed on the 

images, and then they were rectified to the TWD67 Transverse 

Mercator map projection and resampled to 5 m resolution to be 

consistent with the layers from DEM.  We chose the two-date 

SPOT-5 images (07/10/2004 and 11/11/2005) because they 

have the best quality with the amount of clouds less than 10%. 

 

Elevation, slope, and aspect were generated from DEM by 

ERDAS Imagine software module, and hill-shade data layer by 

ArcGIS spatial analyst module.  The ridges and valleys in the 

study area were used together with DEM to generate terrain 

position layer.  The main ridges and valleys over the study 

area were directly interpreted from the orthophoto base maps; 

these lines were then digitized to establish the data layer by 

using ARC/INFO software for later use.  The data layer in a 

vector format was then converted into a new data layer in a 

raster format by ERDAS Imagine software module, and then 

combined with DEM to generate terrain position layer 

(Skidmore, 1990).  Vegetation indices were derived from the 

two-date SPOT images, one in autumn (11/11/2005), the other 

in summer (07/10/2004), based on the concepts stated in Hoffer 

(1978), and is expressed in equation (1): 

 

 

summersummer

autumnautumn

MIRNIR

MIRNIR



                 

 

 

3.3 Model development 

 

Predictive distribution models were formulated using the four 

different modeling algorithms.  The modeling algorithms are 

briefly described below.   

 

We implemented maxent entropy using version 3.3.3 of the free 

software developed by S. Phillips and colleagues 

(http://www.cs.princeton.edu/~schapire/maxent/). And other 

methods implemented ModEco by using version 1.0 of the free 

software (http://gis.ucmerced.edu/ModEco/). 

 

1) MAXENT can make predictions or inferences from 

incomplete information (Phillips et al., 2006), and may remain 

effective from small sample sizes (Kumar and Stohlgren, 2009).  

The principle of MAXENT is based on the concepts of 

thermodynamic entropy, and then is used to describe the 

probability distribution in several domains, and Bayesian 

statistics is for exploring the probability distribution of each 

(1) 
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pixel when the entropy reach the maximum that the state would 

be extremely close to uniform distribution.  That is, 

MAXENT would find out the type of probability distribution 

that is most likely occurring in the general state.  The formula 

for MAXENT is shown in following equation (2): 

 

 

ZlizerictorNormalinearPred
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where    
 

nn
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m i nm a x

m i nxf




 = hinge feature  

λn = weight coefficient  

        linear predictor normalize = a constant for numerical   

stability 

Z: a scaling constant that ensures that P sums to 1 

over all grid cells   

 

2) DOMAIN derives a point-to-point similarity metric to assign 

a classification value to a potential site based on its proximity 

in environmental space to the most similar occurrence.  The 

Gower metric (Gower, 1971) provides a suitable means of 

quantifying similarity between two sites. The distance of d 

between two points A and B in a Euclidean p dimensional space 

is defined as equation (3): 
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We define the complementary similarity measure RAB: 

 

 

RAB = 1 - dAB 

 

 

R is constrained between 0 and 1 for points within the ranges 

use in Equation 3,  

 

We define SA, the maximum similarity between candidate point 

A and the set of known record sites Tj as equation (5): 
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max
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By evaluating S for all grid points in a target area, a matrix of 

continuous varying similarity values is generated which are not 

probability estimates, but degrees of classification confidence 

(Carpenter et al., 1993).   

 

3) GLM is a generalization of general linear models.  General 

class of linear models are made up of three components: 

random, systematic, and link function.  Random component 

identifies response variable E(Y) and its probability distribution.  

Systematic component identifies the set of predictor variables 

(X1,...,Xk).  Link function identifies a function of the mean that 

is a linear function g(μ) of the predictor variables.  The 

formula for GLM is shown in following equation (3): 

 

 

kk XXgYE   11)()(   

 

where α  = constants 

β  = regression coefficients 

X = predictor variable 

 

By using a logit link function that transforms the scale of the 

response variable, being able to relax the distribution and 

constancy of variances assumptions that are commonly 

required by traditional linear models (McCullagh and Nedler, 

1989).  Consequently, the GLM model is particularly suitable 

for predicting species distributions, and has been proven to be 

successful in various ecological applications (Guisan et al., 

2002).   

 

4) Back-propagation artificial neural network (BPANN) 

consists of input, hidden, and output layers.  The input layer 

may contain information about individual training pixels 

including percent spectral reflectance in various bands and 

ancillary data such as elevation, slope, etc.   

Each layer consists of nodes that are interconnected.  This 

interconnectedness allows information to flow in multiple 

directions as the network is trained.  The weight of these 

interconnections is eventually learned by the neural network 

and stored.  These weights are used during the output layer 

might represent a single thematic map land-cover class. 

 

We set four layers (one input layer, one output layer, and two 

hidden layers) that can be trained using back propagation 

algorithm and particle swarm optimization (PSO) algorithm is 

implement.  The structure of back propagation neural network 

is shown in figure 2.  

 

 
 

Figure 2. The structure of back propagation 

 artificial neural network 

 

3.4 Model Validation 

 

Evaluation methods of the different samplings, we used 

split-sample validation.  The first one (training dataset) be 

used to build model; the other one (test dataset) be used to 

validate the model.  For each model, predicted the response of 

the remaining data, and calculated the error matrix (De’ath and 

Fabricius, 2000).  Some common statistical measurements 

included producer’s accuracy, user’s accuracy, overall accuracy 

and Kappa coefficient (Jensen, 2005; Lillesand et al., 2008).   

 

 

4. RESULSTS AND DISCUSSION 

 

Initially, we depicted and compared the effect of micro-terrain 

feature in two watersheds as shown in table 1 and figure 3.  

The Tong-Feng watershed has not only steep valley but also 

(2) 

(6) 

(3) 

(4) 

(5) 
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high ridge in its surrounding.  This U-shaped envelope makes 

solar radiation hard to totally reach all sites in Tong-Feng 

watershed.  Hence, most of the sites have relatively low 

evaporation and keep a high humidity for the entire watershed.  

In contrast, Kuan-Dau watershed has not only gentle sloping 

valley but also low ridge in its surrounding.  This incomplete 

V-shaped envelope makes the west side of valley receive 

enough amount solar radiation, and thereby has a stronger 

evaporation.  Hence, Kuan-Dau watershed was relatively drier 

and hotter than Tong-Feng watershed.  To sum up, the 

topographic attributes of the Tong-Feng watershed are quite 

different from those of the Kuan-Dau watershed.  Furthermore, 

table 2 summarizes the statistics of environmental variables for 

CGT samples in three sites (Tong-Feng, Yo-Shan and 

Kuan-Dau).  The table shows that species with broad 

elevation ranges and environmental tolerance.  Besides, 

hill-shade, by its definition, captures the effects of differential 

solar radiation due to a variation in slope angle, aspect and 

position, and shading from adjacent hills.  According SPOT 

summer images of the study area (07/10/2004), which sun 

elevation of 71 degrees and sun azimuth of 91 degrees will be 

used.  The output shaded raster considers both local 

illumination angles and shadows.  The output raster contains 

values ranging from 0 to 255, with 0 representing the shadow 

areas, and 255 the brightest.  Then we got high mean value 

with CGTs sites since CGTs prefer to grow at gentler slopes 

and near-ridge positions.  Therefore, we may make an indirect 

inference that CGTs always occur on the sites facing solar 

illumination. 

 

We assigned sampling design-1 (SD-1) as base model to 

compare other sampling designs and overlaid environmental 

factors including five topographic factors and vegetation index 

derived from SPOT-5 satellite images.  Owing to very large 

amount of calculation, we need to reduce dimension to improve 

calculating efficiency.  Each method can calculate relative 

importance of six predictor variables with three predictive 

models for predicting the potential habitat of CGTs, as a 

reference for screening effective variable.  The results showed 

that three predictor variables (elevation, slope and terrain 

position) are the relative important variable.  Hence, we used 

three predictor variables to build models. 

The test results of kappa values for the four modeling methods 

for each of three scale designs are shown in table 3.  As base 

model in SD-1, accuracy assessment results indicated that 

kappa values with MAXENT (0.70) was the best among them, 

followed by DOMAIN (0.62) and GLM (0.59), and ANN (0.58) 

was the last as these models were developed only from 

Tong-Feng sample set and tested by another independent 

Tong-Feng sample set.  As shown in figure 4, predictions of 

MAXENT and DOMAIN models generated high potential 

areas of CGTs and considerably reduced the area of field 

survey to less than 6% (1,028 ha) of the entire study area 

(17,136 ha), and thus they were better suited for predicting the 

tree’s potential habitat (also see table 4). 

 

Next discuss how the extrapolation ability of those models (see 

table 3).  According to the base model, we extended 

prediction from one area to predict another and assessed the 

robustness of underlying relationships.  As SD-2 and SD-3, 

the kappa values of these models originally from 0.58–0.70 

declined sharply to about 0.3, eventually near zero, with 

increasing spatial distance from 0.5 km to 5.0 km as the four 

models were tested by independent samples from Tong-feng, 

Yo-Shan, and Kuan-Dau sites, respectively.   

 

Consequently, “Tong-Feng base models” built based on four 

algorithms failed to pass validation by Yo-Shan and Kuan-Dau 

test samples despite passing validation by Tong-Feng test 

samples.  The outcome clearly indicated that the models 

merely based on topographic variables are most easily 

measured in the field and are considerably used because of 

their good correlation with observed species patterns in small 

spatial scale.  Such variables usually replace a combination of 

different resources and direct gradients (e.g. climate, rainfall, 

etc) in a simple way (Guisan et al., 1999).  However, the 

model performed poorly on spatial extrapolation from 

Tong-Feng to Kuan-Dau because the topographic attributes of 

the two watersheds are quite different from each other.  Then, 

the models developed from topographic variables can only be 

applied within a limited geographical extent without significant 

error. 

 

 Statistics  Kuan-Dau watershed Tong-Feng watershed 

Mean valley-wide  (km) 3.3 4.9 

Mean elevation of valley  (m) 989 882 

Mean elevation of west ridge  (m) 1614 1841 

The difference of valley to west ridge  (m) 625 959 

Mean elevation of east ridge  (m) 1910 1774 

The difference of valley to east ridge  (m) 921 892 

 

Table 1. Microterrains of the two watersheds 

 

 

Statistics 
Kuan-Dau watershed Yo-Shan Mountain Tong-Feng watershed 

Mean Max Min Mean Max Min Mean Max Min 

Elevation (m) 1277 1640 681 1804 1884 1681 1787 2096 1157 

Slope (°) 26 53 11 20 33 4 20 46 1 

Aspect (°) — 359 2 — 355 60 — 359 2 

Terrain Position 6 8 1 6 8 5 6 8 2 

Vegetation Index 27 48 21 21 23 20 24 47 20 

Hill-shade 210 254 124 167 232 124 186 253 64 

 

Table 2. The statistics of environmental variables for CGTs in the two watersheds 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B8, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

396



Sampling Design (SD) Test Data 
Kappa coefficient 

MAXENT DOMAIN GLM ANN 

SD-1 Tong-Feng 0.70 0.62 0.59 0.58 

SD-2 Yo-Shan 0.37 0.30 0.39 0.23 

SD-3 Kuan-Dau 0.00 0.03 0.00 0.00 

 

Table 3. Comparison of the accuracies of four models for predicting CGTs potential habitats with three sets of test data 

 

 

Class 
MAXENT DOMAN GLM ANN 

Area (ha) % Area (ha) % Area (ha) % Area (ha) % 

Habitat 1,051.27 6 694.47 4 719.44 4 569.54 3 

Non-habitat 16,084.73 94 16,441.53 96 16,416.56 96 16,566.46 97 

Sum 17,136.00 100 17,136.00 100 17,136.00 100 17,136.00 100 

Table 4. The distribution statistics of three models predicting the potential habitat of CGTs 

 

 
Figure 3. Perspective-viewing map showing the Huisun Forest Station 

 

 

 
 

Figure 4. Sampling design 1: four models for mapping the potential habitat of CGTs in the study area 

MAXENT DOMAIN GLM 

ANN 
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5. CONCLUSIONS 

 

To build a modeling ecological framework could tease apart 

complex species-environment relationship and permit more 

accurate description of spatial patterns and suggest directions 

for future research.  This study represents a broad comparative 

exploration of species ecological characteristics with different 

organisms and processes respond to their environments, and the 

ways that these responses vary geographically.   

 

As shown in SD-1 (small spatial scale), the performance of 

methods from highest to lowest was: MAXENT, DOMAIN, 

GLM, ANN.  MAXENT and DOMAIN models were the two 

most capable for predicting a single species.  However, the 

outcome clearly indicated that the models merely based on 

topographic variables performed poorly on spatial extrapolation 

from Tong-Feng to Kuan-Dau because the humidity and solar 

illumination affected by micro-terrain of the two watersheds are 

quite different from each other.  Therefore, the models 

developed from topographic variables can only be applied 

within a limited geographical extent without significant error.  

Future studies will attempt to use variables involving spectral 

information associated with species extracted from high spatial, 

spectral resolution remotely sensed data, especially 

hyperspectral image data, for building a model so that it can be 

applied on a large spatial scale. 
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