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ABSTRACT: 
 
Remote sensing has widely been used in urban climatology since it has the advantage of a simultaneous synoptic view of the full 
urban surface. Methods include the analysis of surface temperature patterns, spatial (biophysical) indicators for urban heat island 
modelling, and flux measurements. Another approach is the automated classification of urban morphologies or structural types. 
In this study it was tested, whether Local Climate Zones (a new typology of thermally 'rather' homogenous urban morphologies) can 
be automatically classified from multisensor and multitemporal earth observation data. Therefore, a large number of parameters 
were derived from different datasets, including multitemporal Landsat data and morphological profiles as well as windowed 
multiband signatures from an airborne IFSAR-DHM. 
The results for Hamburg, Germany, show that different datasets have high potential for the differentiation of urban morphologies. 
Multitemporal thermal data performed very well with up to 96.3 % overall classification accuracy with a neuronal network 
classifier. The multispectral data reached 95.1 % and the morphological profiles 83.2 %.The multisensor feature sets reached up to 
97.4 % with 100 selected features, but also small multisensoral feature sets reached good results. This shows that microclimatic 
meaningful urban structures can be classified from different remote sensing datasets.  
Further, the potential of the parameters for spatiotemporal modelling of the mean urban heat island was tested. Therefore, a 
comprehensive mobile measurement campaign with GPS loggers and temperature sensors on public buses was conducted in order to 
gain in situ data in high spatial and temporal resolution. 
 
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

Urban climatology is an important application for remote 
sensing of urban areas. The growing interest in urban climatic 
phenomena like the urban heat island (UHI) is motivated by 
increasing vulnerability to health risks due to rapid urbanization 
in developing countries and climate change.  
The urban heat island indicates increased air temperatures in the 
urban atmosphere compared to a preurban state (Lowry, 1977) 
or (more often) to a rural reference station of identical regional 
and topo-climate. It is the most prominent effect of urban 
climate (Oke, 1982; Arnfield, 2003; Yow, 2007) and has been 
studied more intensely than any other effect. The UHI varies 
both diurnally and seasonally and depends on the prevailing 
synoptic conditions. It is particularly pronounced at low wind 
speeds and high air pressure (Oke, 1973) and has been 
documented for many towns and cities of different sizes and on 
different continents (Oke, 1982). Further, it depends on the size 
of the city (Oke, 1973). Within a city the UHI greatly varies 
depending on the urban structure and vegetation and is therefore 
also referred to as urban heat archipelago. 
Remotely sensed data can contribute to descriptive urban 
climatic studies and a better understanding of the underlying 
climatic processes. The assessment of surface atmosphere 
exchanges (Rigo and Parlow, 2007) was fostered by recent 
advances in earth observation technologies. Further, remote 
sensing has widely been applied to characterise the urban 
surface and to determine parameters for model and 
experimental studies. Thus, fundamental physical attributes of 

measurement sites and key parameters for urban climate models 
can be derived from remotely sensed data (Grimmond, 2006). 
This includes parameters of the urban energy balance like 
albedo and emissivity (Frey et al., 2007; Frey and Parlow, 
2009), the urban canyon geometry, and aerodynamic 
characteristics like roughness parameters (Bechtel et al., 2011). 
Further, automated classification of urban structures in respect 
to their microclimatic properties can contribute to urban climate 
studies. A typology of such thermally defined urban structures 
was recently introduced with the Local Climate Zones (LCZ) 
scheme (Stewart and Oke, 2009). 
Great attention has been devoted to the application of thermal 
infrared data for UHI assessment (Roth et al., 1989; Eliasson, 
1992; Gallo and Owen, 1999; Voogt and Oke, 2003; Nichol et 
al., 2009; Wong et al., 2009; Fabrizi et al., 2011). Thermal 
imagery offers the chance to directly measure the surface 
temperature which is crucial for the urban energy balance and 
modulates the air temperature of the lowest atmospheric layer. 
Therefore, the spatial structure of the surface temperature 
patterns is not only directly related to surface characteristics but 
also used to study the energy balance and the relation between 
atmospheric heat island and surface temperature heat island 
(Voogt and Oke, 2003). However, there are various problems 
involved in linking thermal imagery to air temperatures which 
mostly remain unsolved (Roth et al., 1989; Voogt and Oke, 
1997; Voogt and Oke, 2003). 
Beside recent advances in the development of surface 
parameters for assessing the urban thermal response, “new 
methods for estimation of UHI parameters from multi-temporal 
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and multi-location TIR imagery are still needed” (Weng, 2009, 
p. 340) and the measurement of the urban heat island remains 
difficult. In (Bechtel and Schmidt, 2011) a large set of 
predictors was compared with a long-term UHI dataset derived 
from floristic proxy data and classical parameters like surface 
temperature and NDVI were found useful. 
In this study different (multitemporal) parameter sets were 
tested for their potential to classify thermal LCZ (see Bechtel 
and Daneke, 2012 for more detail) and derive empirical models 
of the mean UHI from a mobile measurement campaign. 
  

2. DATA 

The city of Hamburg in Northern Germany was chosen as site 
for the case study. The full domain covers 1132 km². 
 
2.1 Multisensor and multitemporal features 

Due to its high availability a strong emphasis was laid on 
multitemporal Landsat TM and ETM+ data in this study. This 
reflects on the different phenological conditions throughout the 
year and the thermal response to different insulation conditions 
which both reveal additional information. A disadvantage is 
possible land cover change within the acquisition period which 
may lead to classification errors. However, this is expected to 
be acceptable since a high degree of persistence can be assumed 
for the study area at the temporal scale of decades. The 
multitemporal data were complemented with geometrical and 
texture data from NEXTMap® Interferometric Synthetic 
Aperture Radar (IFSAR). Overall seven feature sets were 
compiled (see Table 1) and projected to a common 100 m grid 
with SAGA (www.saga-gis.org). The parameters are also 
named features (for classification) or predictors (for empirical 
modelling) in the following. 
The multitemporal multispectral (MS) parameters were derived 
from 33 visually cloud-free scenes acquired between 1987 and 
2010 (see Bechtel, 2011 for a detailed description of the 
preprocessing). All spectral bands (1–5 & 7, ranging from blue 
~485 nm to medium infrared 2.2 µm) were included in the 
feature set. For each scene the Normalized Differenced 
Vegetation Index (NDVI) was computed from the bands 3 and 4 
as an additional band ratio. Atmospheric influence was 
neglected, since the parameters were only used in trained 
classifiers and models and no information about subscene 
atmospheric conditions was available. 
The multitemporal thermal infrared (TIR) data from TM and 
ETM+ (Band 6, 10.4–12.5 µm) was processed accordingly. 
Digital numbers were used directly as features (without 
atmospheric correction and calibration to radiance) for the same 
reason. Further, surface temperatures were calculated for 22 
scenes with National Centers for Environmental Prediction 
(NCEP) atmospheric profiles available (Barsi et al., 2005, 
Chander et al., 2009) in order to fit a simple model of the 
annual cycle of temperature at acquisition time. The annual 
cycle parameters (ACP) Yearly Amplitude of Surface 
Temperature (YAST) and Mean Annual Surface Temperature 
(MAST) contain information about the material specific thermal 
surface properties (Bechtel, 2011; Bechtel, 2012). 
The geometric parameters were derived from a normalised 
digital height model generated from NEXTMap® Digital 
Surface and Terrain Model on a 3 m grid. Besides simple statics 
of the obstacle heights, further parameters were extracted by 
Fourier techniques and morphologic filtering, in order to derive 
spatial spectra and texture information and thus include spatial 
information in the pixel-based classification approach (see 
Bechtel and Daneke, 2012 for more details). 

param category description number
ms mt ms multispectral (TM/ETM+ ) 198
ndvi mt ms ndvi 33
tir mt tir thermal (TM/ETM+ ) 33
acp mt tir annual cycle parameters 2
shs geom simple height statistics 6
morph geom morphological profiles (texture) 22
fft geom bandpass & directional filters 190

overall 484  
 

Table 1.  Feature sets and number of features per set. 
 

2.2 Training data – Local Climate Zones 

The LCZ scheme is a local-scale landscape classification 
system based on the thermal properties of urban structural types 
(Stewart and Oke, 2009) and has high potential to become a 
standard in urban climatology. The four basic landscapes series 
(city, agricultural, natural and mixed) are each subdivided 
according to their microscale (10s–100s of meters) surface 
properties (more specifically: sky view factor, fraction of 
impervious materials, Davenport roughness class, surface 
thermal admittance and mean annual anthropogenic heat flux) 
which affect the canopy-layer thermal climate. Since the 
typology has a certain cultural bias towards Northern American 
morphologies a compatible but slightly adopted scheme was 
used for this study. For all classes representative reference areas 
were digitized on a 100 m grid using map and high resolution 
optical remote sensing data.  
The urban series was subdivided into eleven categories. Urban 
Core (urbcore) is representing the historic inner city with 
massive buildings of uniform height with single spires like bell 
towers. The compact morphologies were split into the classes 
Urban Dense (urbdens) with perimeter block buildings of 
uniform height with courtyards in the center and Terraced 
Housing (terrace) with a regular pattern aligned in rows. Blocks 
refer to clustered high-rise buildings in a uniform geometric 
layout while Modern Core (modcore) comprises high rise 
commercial buildings. Regular Housing (reghous) consists of 
single family houses with a high proportion of greening 
between the spaces and is typical for suburbs. The industrial 
areas are divided into Industry (industr) with industrial or 
commercial activities in low-rise buildings and Port (port) 
which also contains container-arrays and storage facilities 
beside similar structures. Rail tracks (rail), park and gardens 
complement the urban series. From the natural and agricultural 
series field, forest and water bodies were found relevant for the 
area of interest. 
 
2.3 UHI data 

The UHI data was collected during a mobile measurement 
campaign with public transportation buses in Hamburg during 
the vegetation period from the 23rd of May until the 29th of 
October 2011. Cooperation with the Hochbahn Hamburg 
allowed for the collection of spatially dense air temperature 
data in the inner city of Hamburg. Therefore, 15 buses were 
equipped with temperature (and humidity) sensors of Driesen & 
Kern. These sensors show a very fast responsiveness to 
temperature changes which is necessary due to the fast 
movement of the buses (up to 90 km/h). The DK311 loggers 
were combined with CO-325 temperature sensors, RFT325 
humidity sensors and a radiation protection shields. The 
position was recorded with Qstarz BT-Q1000XT GPS-loggers 
powered by the mobile power pack VT-PP-320 by Variotek. 
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They were contained in a waterproof OtterBox 3000 case and 
mounted magnetically on the front roof, where the temperature 
influence of the bus itself was smallest (tested with surface-
temperature-sensors at three positions of the roof). This 
construction allowed for continuous measuring for five to six 
days (5 seconds intervals for temperature and 20 meters 
intervals for position and velocity). 
Since the air temperature measurements can be contaminated by 
the roof temperature of the bus at low travelling speeds, data 
collected at velocities lower than 12 km/h were discarded in the 
post-processing. Then, the temperature data were linearly 
interpolated to a frequency of one second and matched with the 
according time stamps of the GPS data. To reduce the massive 
dataset, the single measurements were then averaged to one 
minute intervals and aggregated to an network of virtual 
stations with approximately 100m spacing (derived from the 
centers of all measurements within a regular 100 m-grid). 
Subsequently, the data were transferred to a 
PostgreSQL / PostGIS database and validated with data of 25 
stationary measurement sites from various sources. The 
comparison of the mobile measurements with near stationary 
measurements (distance < 130 m, +/- 2.5 minutes, n=108) 
revealed a satisfactory quality of the collected data with a mean 
difference between stationary and mobile measurements of  
-0.15 K and a mean absolute error of 0.51 K. The UHI was then 
calculated as the difference to stationary measurements from 
the Hamburg Weather Mast operated by the Meteorological 
Institute of the University of Hamburg. Although this data is 
likely to contain some urban effects, the offset to the ‘real’ UHI 
could be neglected for this study. 
To guarantee a minimum of comparability, ‘stations’ with less 
than 30 individual measurements were excluded from the 
subsequent analysis. For the remaining 1260 virtual stations the 
mean UHI was calculated from all individual measurements.  
The UHI data are shown in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1.  Mean UHI data from the mobile measurement 
campaign with public transportation buses. Circle size indicates 

the number of measurements. 
 

3. METHODS 

3.1 Feature selection 

For feature selection the Minimum Redundancy Maximal 
Relevance approach (MRMR) approach was chosen, which was 
originally developed in bioinformatics for genome classification 
(Peng et al., 2005). The algorithm selects features that have 
both high relevance for classification of the target classes and 
low redundancy with the prior selected features; the distance 
between two features is defined by their mutual information. 
For this study the Mutual Information Quotient (MIQ) criterion 
was used. 
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where  I = mutual information 
 x, y = features 
 p(x, y) = joint probabilistic distribution  
 p(x), p(y) =  marginal probabilities 
 
3.2 Classifiers 

Six supervised classifiers (implemented in the Waikato 
environment for knowledge analysis data mining package; 
Bouckaert et al., 2009) were used in this study. 
The Naive Bayes (NB) classifier assumes conditional 
independency, which reduces the posterior probability of class 
membership to the product of the estimate of the features’ 
marginal probabilities. Despite its simplicity it often delivers 
good results. The Support Vector Machine (SVM) classifier 
transfers the problem to pairwise classification in a higher 
dimensional space (Burges, 1998). The Multilayer Perceptron 
classifier is a feedforward artificial neural network (NN) 
composed by nodes (neurons) in connected layers. It is trained 
by a backpropagation algorithm. The Random Forest (RF) 
classifier utilises a number of tree-structured classifiers as 
committee to decide with majority and shows excellent 
classification performance and computing efficiency. The 
single trees are each generated from a random subset and 
therefore an ‘out of bag’ error can be estimated without any 
bias. The number of trees grown and the number of features 
used for each tree were varied and three configurations were 
tested. While RF1 worked with 10 trees, RF2 used 30 trees and 
20 features, and RF3 50 trees and 30 features (see Bechtel and 
Daneke, 2012 for more detailed information). 
 
3.3 Empirical models 

For the evaluation of the UHI data two different empirical 
models were used. For the Linear Regression (LR) model 
attributes were selected by the M5 method and collinear 
attributes were eliminated. The Multilayer Perceptron is again a 
neuronal networks trained by a backpropagation algorithm, but 
this time predicts a numerical value instead of class 
membership probabilities. 
 

4. RESULTS 

4.1 Classification of LCZ 

Table 2 shows the classification results for classifiers and 
feature sets. All numbers refer to the overall accuracy evaluated 
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with a testing sample of about 25 % of the digitized input data 
for each class. The training pixels where neither used in the 
MRMR feature selection nor in the classifier training. The first 
lines refer to the feature sets in Table 2, the second part to 
feature sets of different sizes selected with the MRMR 
algorithm and the MIQ criterion. 
The results are quite convincing. The thermal data performed 
best of all feature sets from one sensor (with up to 96.3 % 
overall classification accuracy with the Multilayer Perceptron 
classifier). This is quite consequent, considering the thermal 
definition of the LCZ. The multispectral data also reached very 
good results (95.1% with Multilayer Perceptron), while the  
simple heights (74.0 % with Multilayer Perceptron), the 
bandpass & directional filters (74.8 % with Random Forest) and 
the morphological profiles (83.2 % with Random Forest) 
performed less well. 
The multisensor feature sets reached up to 97.4 % (with 
Multilayer Perceptron and 100 features), but also small 
multisensoral feature sets reached good results (up to 92.5 % 
with 20, 93.7 % with 30, 94.9 % with 40 and 96.7 % with 50 
features). These results are comparable to other studies (c.f. 
Bechtel and Daneke, 2012). 
Regarding the different classifiers, Multilayer Perceptron 
showed the best results, but considering the much higher 
computing costs Random Forest seems a suitable and fast 
alternative (and can be assumed to be more robust and not 
overfitting). The Support Vector Machine classifiers performs 
worse than NN and RF for smaller feature sets but takes most 
benefit of further features (for all other classifiers the accuracy 
is higher for 100 selected features than for the full feature set). 
Naïve Bayes performs less well than the highend classifiers and 
takes less advantage of further features (since the conditional 
independence assumption is violated with increasing 
redundancy in the feature set). 
Figure 2 shows the classification result for the full domain with 
the Multilayer Perceptron classifier and 100 selected 
multisensoral features. The visual evaluation reveals a very 
high accordance with the existing urban and natural structures. 

 

feature set NB SVM NN RF1 RF2 RF3
shs 0.63 0.64 0.74 0.72 0.71 0.72
acp 0.73 0.68 0.70 0.71 0.72 0.72
ms& ndvi 0.74 0.94 0.95 0.90 0.93 0.93
morph 0.67 0.78 0.80 0.80 0.82 0.83
fft 0.60 0.73 0.67 0.69 0.73 0.75
tir 0.68 0.89 0.96 0.92 0.94 0.94

MIQ10 0.83 0.85 0.91 0.91 0.91 0.91
MIQ20 0.83 0.88 0.92 0.92 0.92 0.92
MIQ30 0.82 0.89 0.94 0.92 0.93 0.93
MIQ40 0.82 0.90 0.95 0.93 0.94 0.94
MIQ50 0.83 0.91 0.97 0.93 0.95 0.95
MIQ60 0.82 0.92 0.96 0.94 0.95 0.95
MIQ70 0.82 0.93 0.96 0.93 0.95 0.94
MIQ80 0.82 0.93 0.96 0.93 0.95 0.95
MIQ90 0.82 0.94 0.97 0.94 0.95 0.96
MIQ100 0.82 0.94 0.97 0.93 0.95 0.95

all (484) 0.80 0.96 0.96 0.92 0.94 0.95

CLASSIFIER

 
 

Table 2.  Classification results for different feature sets 
including multisensoral feature sets selected with the MRMR 

MIQ criterion. 

 
 

Figure 2.  LCZ classification with NN classifier and 100 
multisensoral features selected by MRMR (MIQ). Mixed 

classes overlay was digitized from map data. 
 
4.2 Empirical UHI model 

Further, the potential of the multitemporal und multisensoral 
parameter sets for spatiotemporal modelling of the mean UHI 
was tested with Linear Regression and Multilayer Perceptron 
models. The results are shown in Table 3. The models were 
again evaluated with a randomly chosen testing sample of about 
25 % of all stations, which was not used in prior model 
calibration. 
As for the classification the multitemporal thermal (correlation 
R of 0.74/0.81 and mean absolute error of 0.17/0.19 K for 
Linear Regression and Neuronal Network) and the 
multitemporal spectral (R 0.75/0.77, MAE: 0.17/0.19 K) data 
performed better than the simple height statistics (R: 0.27/0.26, 
MAE: 0.24/0.26 K) and the annual cycle parameters (R: 
0.19/0.18, MAE: 0.24/0.24 K). This is, certainly partly a 
consequence of the different parameter set sizes. 
Although an error of only about 0.2 K in the predicted mean 
UHI seams promising at the first glance, the quality of the 
empirical models is not yet satisfying in respect to the low 
spatial variance in the dataset (even for the better models this 
corresponds to an relative error of about 60 %). This is not 
surprising regarding the large number of processes contributing 
to alterations in the urban atmosphere. Those effects are related 
to the urban structure, vegetation, and surface temperature in 
different ways and hence only very indirectly to the 
multispectral and thermal data. However, the multispectral data 
comprises different insulation and phenological conditions and 
this information can be utilised during the model calibration. 
Multisensoral data including thermal, spectral and height 
features performed better than sets from the same sensor. 
However, this was not the case for preselected features with 
high individual relevance (R > 0.25), which might indicate a 
certain redundancy. Further, the testing sample might not be 
completely independent, since close stations are likely to be 
correlated. 
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Parameter set
N R MAE RMSE R MAE RMSE

shs 6 0.27 0.24 0.32 0.26 0.26 0.33
acp 2 0.19 0.24 0.32 0.18 0.24 0.32
tir 33 0.74 0.17 0.22 0.81 0.19 0.23
ndvi 33 0.66 0.19 0.25 0.70 0.21 0.28
ms 198 0.75 0.17 0.22 0.77 0.18 0.23
R>.25 71 0.71 0.18 0.23 0.73 0.18 0.25
all 272 0.79 0.16 0.21 0.82 0.15 0.2

LR NN

 
 

Table 3.  Results of the spatial empirical models (Linear 
Regression and Neuronal Network) of the mean UHI with 

different parameter/predictor sets. Correlation coefficient R, 
mean absolute error and root mean square error. 

 
Nevertheless, it can be stated, that multisensoral and 
multitemporal datasets have some potential for spatiotemporal 
modelling of the mean UHI. This underlines the results of 
Bechtel and Schmidt, who found strong correlations between 
Landsat data and a long-term mean UHI dataset derived from 
floristic proxy data (Bechtel and Schmidt, 2011). 
The performance of Linear Regression and Neuronal Network 
models was rather similar, which might be due to the chosen 
standard options for the neuronal network classifier (with only 
one hidden layer). First tests with more sophisticated networks 
showed better results (for instance R: 0.83, MAE: 0.14 K for tir 
with a 20|10|10 node network). 

 
 

5. CONCLUSIONS 

The presented results from Hamburg indicate that multisensoral 
and multitemporal data has potential for both, the classification 
of Local Climate Zones and the empirical modelling of the 
spatial distribution of the UHI.  
The classification results show that the data (especially 
multitemporal thermal and multitemporal spectral data) are 
functional for the purpose and that micro-climatic meaningful 
urban structures can be classified from different remote sensing 
datasets. Further, it provides some evidence for the relevance of 
the Local Climate Zone system from a remote sensing point of 
view. 
The empirical modelling results also underpin the urban 
climatologic relevance of the multitemporal tir und ms data. 
Although a certain correlation is obvious, since vegetation and 
surface energy balance play important roles in the distinction of 
urban climates, these good results with freely available Landsat 
data offer the prospect of a wide application. However, further 
investigations are needed and the large number and complexity 
of the involved processes limits the potential of empirical 
models. The incorporation of data from other sensors also 
slightly improved the empirical modelling results. 
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