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ABSTRACT: 

 

The orbiting cycle and frequent cloud contamination have limited the applications of the moderate-resolution remotely sensed data 

for detecting rapid land cover changes that are critical to the monitoring of wetlands. It is necessary to use multiple remotely sensed 

data sources that have different spatial resolution and temporal frequency, because both spatial and temporal details are important in 

understanding the mechanisms in wetland cover changes. This study examined the applicability of linear spectral mixture analysis to 

the blended reflectance that was generated by incorporating the enhanced spatial and temporal adaptive reflectance fusion model 

(ESTARFM). Nine TM and MODIS images of the Poyang Lake area, China acquired in 2004 and 2005 were used to blend the 

reflectance. In order to account for the spectral variations in materials, we incorporated the multiple endmember spectral mixture 

analysis (MESMA) in unmixing the blended reflectance. The average absolute differences between the land cover fractions derived 

from the blended image and those from the observed image were calculated as well as correlation coefficients. Our results 

demonstrated that MESMA could unmix the blended reflectance generated by ESTARFM. However, due to the existence of the 

blended pixels with large difference in reflectance from the observed reflectance, the land cover fractions derived from the blended 

reflectance did not match with those derived from the observed reflectance as well as expected. It is also suggested that the 

comprehensiveness of the endmember spectral libraries was another factor influencing the agreement. 

 

 

1. INTRODUCTION 

Taking advantage of regular orbiting intervals and extensive 

coverage, satellite remote sensing has been utilized as a 

practical and economical means to monitor and inventory 

different types of wetlands (Ozesmi and Bauer, 2002). Although 

a wide variety of time-series remotely sensed data observed with 

differing sensor designs have been used for the mapping of 

wetland cover changes, previous studies have shown that 

wetland mapping using optical remotely sensed data is not as 

easy as the mapping of other ecosystems (Silva et al., 2008). 

This is because the spectra of wetland vegetation species show a 

high level of variability due to the species' structural, 

biochemical, and biophysical diversity, as well as the spectral 

confusion among individual wetland components described 

above (Adam et al., 2010). In addition, due to the tradeoff 

between spatial resolution and temporal frequency, wetland 

cover changes has not been monitored with spatial and temporal 

details simultaneously using the imagery observed by single 

remotely sensor. For a better understanding of the spatio-

temporal dynamics in all land cover components of wetland 

ecosystems, it is necessary to overcome these difficulties.  

 

In the goal of improving the accuracy of wetland mapping using 

remotely sensed data, spectral mixture analysis (SMA) have 

received more attention, due to their relative simplicity of use in  
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deriving physically interpretable information at subpixel level 

(Roberts et al., 1993). SMA models mixed spectra in pixels of a 

remotely sensed image as a combination of endmembers (EMs) 

− pure spectra representing distinct land cover types (Adams et 

al., 1993). In linear SMA, a spectrum within the instant field of 

view of a sensor is determined by the sum of each EM spectrum 

multiplied by its aerial coverage fraction and the residual error. 

Although many studies have incorporated SMA in the mapping 

of wetland vegetation and floodplain mapping, only a few 

studies have also been conducted on SMA using multitemporal 

remotely sensed data for the mapping of wetland land cover 

changes. (He et al., 2010; Melendez-Pastor et al., 2010). 

 

In order to increase temporal frequency of moderate-resolution 

remotely sensed data, several blending techniques have been 

developed and applied in some studies. Among them, The 

spatial and temporal adaptive reflectance fusion model 

(STARFM) (Gao et al., 2006) has been widely used. Recently, 

Zhu et al. (2010) modified the original STARFM to overcome 

the poor accuracy of STARFM in heterogeneous landscapes. A 

few application studies of ESTARFM has proved that the 

blended reflectance data is comparative to observed reflectance 

data in chlorophyll index derivation and supervised 

classification (Singh, 2011; Watts et al., 2011). However, no 

studies have investigated on the applicability of SMA to the 

blended reflectance data. In addition, Previous study has not 

applied these blending techniques in wetland environment. 
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This study investigates the applicability of SMA to the blended 

data generated with the enhanced STARFM (ESTARFM) by 

Zhu et al. (2010) using nine pair time-series imagery of 

Landsat-5 Thematic Mapper (TM) and TERRA Moderate 

Resolution Imaging Spectroradiometer (MODIS) covering the 

Poyang Lake area of China in 2004 and 2005.  

 

 

2. BACKGROUND 

2.1 ESTARFM 

ESTARFM (Zhu et al., 2010) utilizes two pairs of moderate- 

and coarse-resolution data on prior and posterior dates and one 

coarse-resolution data on the target date. It predicts the surface 

reflectance of the synthesized moderate-resolution data on the 

target dates using the linear combination of the spectra for 

predefined EM land cover classes in the same manner of linear 

SMA. There are four steps in ESTARFM implementation: 

 

(1) Two moderate-resolution scenes are used individually to 

search for pixels similar to the central pixel in a moving 

window. 

(2) The weights of all similar pixels are determined by the 

correlation coefficient between moderate- and coarse-

resolution data (used as a measure of spectral similarity) 

and geographic distance between the target and similar 

pixels. 

(3) The conversion coefficients are calculated from the surface 

reflectance of moderate- and coarse-resolution data through 

linear regression. 

(4) The surface reflectance of moderate-resolution data on the 

target date are calculated using the surface reflectance of 

coarse-resolution data, weights, and conversion coefficients. 

 

Details in the procedure of ESTARFM is described in Zhu et al. 

(2010). 

 

2.2 Multiple endmember spectral mixture analysis 

(MESMA) 

Multiple endmember spectral mixture analysis (MESMA), an 

extension of SMA, allows EMs to vary on a pixel-by-pixel basis 

(Roberts et al., 1998). Consequently, MESMA can reduce 

overall residual error and represent spectral variability in land 

cover more accurately than conventional linear SMA (Dennison 

and Roberts, 2003). MESMA is generally implemented by the 

following procedure: 

 

(1) An EM library is constructed from candidate EM spectra. 

(2) Optimal EMs are chosen with a EM selection method. 

(3) A series of SMA models using user-defined combinations of 

optimal EMs are applied to every pixel in the image. 

(4) The model with the minimum root mean square error 

(RMSE) is selected as the best one from the models that 

produce physically realistic fractions and meet model 

conditions. 

(5) Fractions produced by the optimal models are utilized to 

map the abundance of EM land cover components. 

(6) Shade fractions are removed through normalization or 

addition treatments. 

(7) EM land cover fractions are validated using higher spatial 

resolution images or field data. 

 

Roberts et al. (2007) describes more details in MESMA 

implementation. 

3. STUDY AREA 

The Poyang Lake area, the largest freshwater lake in China, was 

selected as the study area in this study (Figure 1). Poyang Lake 

(116° 13’ E, 29° 9’ N) located in the northern part of Jiangxi 

Province experiences the fluctuation of water level throughout 

year (Guo et al., 2005). Wetland vegetation in this area is an 

important food resource for wintering migratory birds, 

particularly for cranes. It also forms a favorable habitat for 

Oncomelania snails, the intermediate host for schistosomiasis 

(Zhou et al., 2005). The dramatic environmental changes in the 

past decades have consequently made it more difficult to map 

the change in the distribution of migratory birds and emergence 

of schistosomiasis. Efficient schemes for its control from the 

central and provincial government may be difficult to formulate 

because the effects of the environmental changes in this region 

(Chen and Lin, 2004). The emergence of highly pathogenic 

avian influenza, of which migratory birds are believed to be the 

carrier to poultry birds, is deeply related to the changes in land 

use and land cover in this region (Feare, 2007).  

 

 

4. DATA COLLECTION AND PREPROCESSING 

Nine time-series pairs of the Landsat-5 TM Level-1 products 

and Terra MODIS Daily Reflectance products (MOD09GA) 

acquired in 2004 and 2005 covering the study area were 

selected in this study (Table 1). All six spectral bands of TM 

images except for the thermal band (band 6) and corresponding 

MODIS bands (bands 1-4, 6, and 7) were utilized. 

 

Georegistration of the base TM image acquired on October 28, 

2004 was performed by co-registering the image to a published 

map. A first-order polynomial fit using 24 ground control points  

 

 
 

Figure 1. Study area 

 

Code TM MODIS Code TM MODIS

A, a 2004/7/24 2004/7/22 F, f 2005/8/12 2004/8/8

B, b 2004/10/28 2004/10/29 G, g 2005/9/13 2004/9/12

C, c 2004/11/29 2004/11/28 H, h 2005/9/29 2004/9/30

D, d 2004/12/15 2004/12/16 I, i 2005/10/31 2004/10/30

E, e 2005/3/5 2005/3/6
 

 

Table 1. Input data for ESTARFM 
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(GCPs) and the nearest neighbor resampling produced an 

average RMSE of 0.25 pixel. Each of image-to-image 

registration between the georegistered base image and the other 

eight TM images produced an average RMSE of less than 0.25 

pixel using a first-order polynomial fit with more than 30 GCPs. 

Brightness values of these geometrically corrected TM images 

were converted to the ground reflectance through the 

atmospheric correction using ACORN. The c-correction method 

(Teillet et al., 1982), a semiempirical function primarily based 

on cosines of the incident and reflected illumination angles, was 

applied to minimize the topographic effects. In contrast, only a 

map reprojection was performed to the time-series MODIS data. 

This is because MOD09GA products were geometrically 

accurate when compared with the TM data, and they have 

already been atmospherically corrected. 

 

Field data of the land cover conditions in the study area were 

collected in December, 2007 and April and May, 2008. In order 

to comprehensively include all land cover types throughout the 

study area, the locations of the field record collection were 

determined with the reference of remotely sensed images in 

Google Earth. We recorded the GPS coordinates at more than 

350 centers of 30 m by 30 m squares covered with single land 

cover types. Land cover types and existence of land cover 

changes were also recorded at each location. The field records 

were classified into four EM land cover classes: (1) green 

vegetation (GV); (2) non-photosynthetic vegetation (NPV), 

soils, and impervious surfaces (N/S/I); (3) bright water (W1); 

and (4) dark water (W2). For each TM image, 240 records 

consisting of 60 records per EM land cover class were selected 

from all field records. We chose the field records for image 

considering the land cover changes by referring the information 

on land cover changes obtained through the interviews with the 

local residents and researchers. Therefore, all sets of field 

records were different for every TM images. These field records 

for each TM image were utilized as the reference in collecting 

the candidate image EM spectra and in the class accuracy 

assessments of the land cover fractions (LCFs) derived through 

the MESMA of blended reflectance. 

 

 

5. METHODS 

5.1 Examination of input data combinations for ESTARFM 

The agreement between observed reflectance and the reflectance 

fused with blending techniques is dependent on the combination 

of input data as Watts et al. (2011) demonstrated. In order to 

investigate the input data combinations that could achieve 

highest agreement between the observed and blended 

reflectance, this research tested all of the possible combinations 

of the TM and corresponding MODIS images on the TM 

observation dates. Testing all possible input combinations 

revealed what data combination was appropriate to blend the 

relectance in which particular season, particularly when the 

water level changed rapidly. 

 

The agreement was assessed based on the mean values of the 

average absolute difference (AAD) between observed and 

blended reflectance for each band. Since no additional TM data 

acquired during the studied period was available and the 

ESTARFM required a prior and a posterior moderate-resolution 

remotely sensed data, the blended data were generated for the 

seven TM observation dates: October 28, November 29, and 

December 15 in 2004, and March 5, August 12, September 13, 

and September 29 in 2005. The input data combinations 

followed the chronological order: the prior data were acquired 

before the target date and the posterior data were acquired after 

the target date. 

 

5.2 Investigation in the applicability of MESMA to blended 

data 

The applicability of MESMA to the blended reflectance was 

assessed from three perspectives: (1) percentage of modeled 

pixels; (2) agreement of image dominant land cover classes (EM 

classes with highest LCFs in pixels) and reference dominant 

classes; and (3) AAD between the LCFs derived from observed 

TM data and those from blended data. The blended reflectance 

generated with the input data combinations that achieved 

highest agreement between the observed and blended 

reflectance on the seven TM observation dates were utilized as 

the blended input data for MESMA. 

 

To establish the approach for EM library development, we made 

the three comparisons in unmixing the observed blended 

reflectance using five different EM libraries shown in Table 2. 

These six cases were set in order to examine whether the 

candidate EM spectra collected from blended reflectance data 

need to be included in the candidate spectral library for the 

MESMA of blended reflectance. Comparisons were made 

between Case 1 and 2, Case 3 and 4, and Case 5 and 6 utilizing 

all observed and blended input data on seven target dates. 

 

We utilized the VIPER Tools, a plug-in software under ITT 

ENVI, in the application of MESMA (Roberts et al., 2007). 40 

spectra for each EM land cover class of every images were 

randomly selected from the image pixels at the locations of 60 

field record. The candidate EM libraries were constructed for 

each input by combining all EM spectra for each case in Table 

2. 20 optimal EM spectra (five per land cover class) were 

chosen from each EM library. using the EM average RMSE 

(EAR) produced by a spectrum that was used to model all other 

EM spectra in the same class (Dennison and Roberts, 2003). 

one spectrum of photogrammetric shade was added to account 

for the spectral variation of reflectance data. When a series of 

SMA models were applied to every pixel of each reflectance 

data, two-, three, and four-EM models were applied in this 

study. The combinations of EM land cover classes used in this 

study are shown in Table 3. Maximum RMSE (2.5% 

reflectance), maximum fraction (105% reflectance), minimum  

fraction (-5% reflectance), and maximum shade fraction (50% 

reflectance) restrictions were applied to the SMA models 

(Michishita et al., 2012). In the selection of optimal models for 

every pixels, we empirically determined the RMSE threshold 

between two- and three-EM models as 0.2%, that between 

three- and four-EM models as 0.4%, and that between two- and  

 

Observed Blended

1 Observed Prior and posterior -

2 Blended Prior and posterior -

3 Observed Prior, target, and posterior -

4 Blended Prior and posterior Target

5 Observed - Target

6 Blended - Target

Reflectance

used for

unmixing

1

2

3

EM spectra

collected fromComp. Case

 
 

Table 2. Case settings in the applicability investigation of 

MESMA  
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Two-Endmembers Three-Endmembers

(20) (100)

GV + SHD GV + N/S/I + SHD

N/S/I + SHD GV + W1 + SHD

W1 + SHD GV + W2 + SHD

W2 + SHD N/S/I + W1 + SHD

N/S/I + W2 + SHD

W1 + W2 + SHD

(500)

Four-Endmembers

GV + N/S/I + W1 + SHD

GV + N/S/I + W2 + SHD

GV + W1 + W2 + SHD

N/S/I + W1 + W2 + SHD  
 

Table 3. Endmember combinations 

 

four-EM models as 0.6% in reflectance respectively. After the 

shade fractions were normalized, land cover class accuracy was 

assessed using 80 sample pixels of field records (20 per EM 

land cover class). 

 

 

6. RESULTS AND DISCUSSION 

6.1 Input data combinations for ESTARFM 

The AADs between the observed and blended reflectance for 

the input combinations that achieved highest mean values of 

AADs in all spectral bands on each target date are shown in 

Table 4. The three alphabet codes stand for the input 

combinations. Each alphabet in the codes corresponds to 

observation dates as summarized in Table 1. The first and third 

lower alphabets refer to the prior and posterior dates, and 

second upper alphabets refer to the target dates. Therefore, one 

TM and one MODIS images were utilized on the dates denoted 

by lower case letters, while one MODIS image was utilized on 

the dates denoted by upper case letters. 

 

The tests of all input combinations demonstrated that 

ESTARFM did not always obtain strong agreement when the 

prior and posterior dates are closer to the target dates. This fact 

suggested that the correlation between the observed and 

blended reflectance may have depended on other environmental 

factors in the study area, such as phenological stage of the 

wetland vegetation and water level of the lake. The difference 

between observed and blended reflectance was generally larger 

in the spectral bands with longer wavelengths, such as near-

infrared (NIR), shorter and longer shortwave infrared (SWIR) 

bands. Larger differences were found particularly in the visible 

blue and NIR bands when the input reflectance with cloud 

contamination was utilized to blend the reflectance.  

 

6.2 Applicability of MESMA to blended data 

6.2.1  Percentages of modeled pixels:  The percentages of 

pixels modeled by MESMA for the observed and blended 

reflectance data is shown in Figure 2. All three cases using the 

observed reflectance data (Cases 1, 3, and 5) achieved high 

percentages of modeled pixels (higher than 89%) except for 

Case 3 on September 13, 2005. However, many pixels in the 

blended data could not be unmixed by other three cases (Cases 

2, 4, 6), particularly on August 12 and September 13 in 2005.  

Target

date
Combination Blue Green Red

2004/10/28 aBd 1.06 1.26 1.38

2004/11/29 bCd 1.05 1.53 1.52

2004/12/15 cDh 1.44 1.86 1.87

2005/3/5 dEh 2.68 2.07 1.89

2005/8/12 aFg 3.10 3.00 2.65

2005/9/13 fGh 3.68 3.58 3.08

2005/9/29 aHi 1.56 1.57 2.05

Target

date
NIR

Shorter

SWIR

Longer

SWIR
Mean

2004/10/28 3.77 4.26 3.23 2.49

2004/11/29 2.39 3.03 2.46 2.00

2004/12/15 2.48 3.65 2.84 2.36

2005/3/5 3.09 4.25 3.23 2.87

2005/8/12 4.81 2.60 2.90 3.18

2005/9/13 5.54 3.85 2.26 3.67

2005/9/29 4.19 3.29 2.74 2.56  
* Unit: % of reflectance 

 

Table 4. Average absolute differences between the observed and 

blended reflectance for best input combinations 
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Figure 2. Percentages of modeled pixels in the MESMA of 

observed and blended reflectance data 

 

This is mainly because the input blended data for those dates 

had larger differences in reflectance from the observed data in 

the blue, green, read and NIR bands than the blended 

reflectance for other dates. It led to the RMSEs larger than the 

modeling threshold (2.5% reflectance) in all EM models. For 

each comparison, the cases for the observed data reached higher 

percentage of modeled pixels than those for the blended data, 

except for in the Comparison 1 on March 5, 2005 and 

Comparison 2 on September 29, 2005. Although no significant 

difference in the percentage of modeled pixels was found 

among the three cases for blended data, differences in the 

percentage of modeled pixels (larger than 5%) were confirmed 

among the three cases for observed data on August 12 and 

September 13 in 2005, suggesting that the differences were 

brought by the inclusion of EM spectra on different dates and 

data sources (observed, blended or both reflectance). 
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Figure 3. Kappa coefficients in EM class accuracy assessment 

 

6.2.2  Class accuracy assessment:  Figure 3 illustrates the 

kappa coefficients in the accuracy assessment of the dominant 

EM classes in the LCF images derived from the observed and 

blended reflectance data with different EM libraries. Kappa 

coefficients were calculated in the same manner as in the 

accuracy assessment of hard-labeled classification maps using 

confusion matrices. Low kappa coefficients were chiefly 

brought by the unmodeled pixels, unmixing of the blended 

reflectance with unrealistic EM combinations, confusion 

between two water classes, and overestimation and 

underestimation of the LCFs from the blended reflectance due 

to the overestimation and under-estimation of reflectance 

values. Although Case 5 (observed EM library for observed 

data) achieved kappa coefficients higher than 0.86 on all seven 

dates, kappa coefficients for other five case varied on different 

dates. Kappa coefficients for the LCFs derived from observed 

data was generally higher than those derived from blended data 

in Comparisons 1 and 3. Low kappa coefficients for Case 1 on 

September 13, 2005 and those for Cases 2, 3, 4, and 6 on March 

5, August 12, September 13, and September 29 in 2005 implied 

the difficulty in collecting the candidate image EM spectra 

comprehensively in these seasons. Case 3 had lower kappa 

coefficients than Case 1 on all dates except for October 28, 

2004, indicating that the inclusion of too many candidate 

observed EM spectra on different dates that had true physical 

values led to the reduction in the representativeness of the 

optimal EM spectra. In contrast, kappa coefficients for Cases 4 

and 6 were as similar as or higher than those for Case 2 on most 

dates, implying that the observed and blended data had large 

difference in their spectral characteristics. 

 

6.2.3  Average absolute difference: The AADs between the 

LCFs derived from the observed and blended data were 

summarized in Table 5. Pixels which were unmodeled in either 

case of the comparisons were excluded from the calculation. 

W2 had the highest AADs of LCFs on all seven dates in the 

three comparisons, obtaining higher than 22% of fractions. 

 (a) Comparison 1 (Case 1 vs. Case 2) 

Date GV N/S/I W1 W2 Mean: class

2004/10/28 14.7 17.1 11.3 18.1 15.3

2004/11/29 9.6 13.4 10.9 14.5 12.1

2004/12/15 8.2 16.8 15.1 26.9 16.8

2005/3/5 13.6 19.7 13.3 17.1 15.9

2005/8/12 16.1 7.7 11.7 24.4 15.0

2005/9/13 11.1 8.6 26.4 32.6 19.7

2005/9/29 9.0 13.2 16.6 25.6 16.1

Mean: date 11.7 13.8 15.1 22.7 15.8  
(b) Comparison 2 (Case 3 vs. Case 4) 

Date GV N/S/I W1 W2 Mean: class

2004/10/28 15.8 18.2 14.0 19.9 17.0

2004/11/29 11.1 13.5 12.4 16.5 13.4

2004/12/15 10.4 17.4 13.5 20.4 15.4

2005/3/5 19.5 20.0 13.6 20.4 18.4

2005/8/12 19.0 11.7 17.6 32.0 20.1

2005/9/13 11.5 9.0 27.4 35.9 20.9

2005/9/29 16.8 13.5 17.9 27.9 19.0

Mean: date 14.9 14.8 16.6 24.7 17.7  
(c) Comparison 3 (Case 5 vs. Case 6) 

Date GV N/S/I W1 W2 Mean: class

2004/10/28 15.8 17.7 12.2 23.5 17.3

2004/11/29 9.5 13.6 11.7 16.9 12.9

2004/12/15 9.8 16.2 16.2 16.2 14.6

2005/3/5 10.5 19.1 20.3 33.7 20.9

2005/8/12 15.6 13.0 18.2 35.0 20.4

2005/9/13 11.0 9.1 26.0 28.5 18.6

2005/9/29 13.9 13.2 19.0 25.0 17.8

Mean: date 12.3 14.5 17.6 25.5 17.5  
* Unit: % of land cover fraction 

 

Table 5. Average absolute differences between the LCFs 

derived from the observed and blended reflectance data 

 

Mean values of the AADs for each EM class over time revealed 

the large difference (larger than 11%) between LCFs derived 

from observed reflectance and those derived from blended 

reflectance. The temporal variations of the AADs for the two 

ground EM land cover types (GV and N/S/I) were smaller than 

those for the two water land cover types (W1 and W2) in all 

comparisons. In Comparisons 2 and 3, the mean values of the 

AADs over the land cover classes on the four dates in 2005 

were smaller than those on the three days in 2004, suggesting 

that the optimal EM spectra chosen from blended candidate 

spectra were not so representative as those chosen from 

observed candidate spectra. When mean values of the AADs of 

LCFs for all EM land cover classes were compared, 

Comparison 1 using the EM spectra collected from the observed 

data on the prior and posterior dates achieved the highest values 

of the three comparisons. In summary, the LCFs derived from 

the blended data achieved strongest agreement with those 

derived from the observed reflectance data when the optimal 

EM spectra were chosen from the candidate spectra collected 

from the observed reflectance data on prior and posterior dates 

of the target dates. 

 

 

7. CONCLUSIONS 

This study investigated the applicability of MESMA to the 

blended reflectance data generated with ESTARFM utilizing 
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nine time-series image pairs of Landsat-5 TM and TERRA and 

MODIS in the Poyang Lake area, China in 2004 and 2005. 

Using five EM spectral libraries, three comparisons of the LCFs 

derived from the observed and blended reflectance were made. 

Although ESTARFM could blend the reflectance accurately in 

visible and shorter SWIR bands, it could not always generate 

accurate blended reflectance in NIR and longer SWIR bands. 

The large differences between the observed and blended 

reflectance in those bands brought a large number of unmodeled 

pixels, unmixing of the blended reflectance with unrealistic EM 

combinations, confusion between two water classes, and 

overestimation and underestimation of the LCFs. And they 

consequently led to the poor percentages of modeled pixels, low 

kappa coefficients in EM class accuracy assessment, and large 

AADs between the LCFs derived from the observed and 

blended reflectance. Although there is a need for the refinement 

in building the EM library, this study achieved strongest 

agreement between the LCF derived from the observed and 

blended reflectance data when using the optimal EM spectra 

chosen from the candidate spectra collected from the observed 

data on prior and posterior dates of the target dates. 
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