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ABSTRACT:

This study demonstrates the potential applicability of high temporal frequency information on the biophysical condition of the
vegetation from a time series of the global Moderate Resolution Imaging Spectroradiometer (MODIS) Fraction of Photosynthetically
Active Radiation absorbed by vegetation (FPAR) from 2000 to 2006 (collection 4; 8-day composites in 1 km spatial resolution) to
improve modelling of soil loss in a tropical, semi-arid catchment in Queensland.

Combining the biophysical information from the MODIS FPAR with structural vegetation information from the Geoscience Laser
Altimeter System on the Ice, Cloud, and land Elevation Satellite (ICESat) for six vegetation structural categories identified from a
Landsat Thematic Mapper 5 (TM) and Enhanced Thematic Mapper 7 (ETM+) woody foliage projective cover product representing
floristically and structurally homogeneous areas, dynamic vegetative cover factor (vCf) estimates were calculated. The dynamic vCf
were determined in accordance with standard calculation methods used in erosion models worldwide. Time series of dynamic vCf
were integrated into a regionally improved version of the Universal Soil Loss Equation (USLE) to predict daily soil losses for the
study area. Resulting time series of daily soil loss predictions averaged over the study area coincided well with measures of total
suspended solids (TSS) (mg/l) at a gauge at the outlet of the catchment for three wet séasbB96Rfor a TSS-event). By
integrating the dynamic vCf into modified USLE, the strength of the dependence of daily soil loss predictions to the only other
dynamic factor in the equation - daily rainfall erosivity - was reduced.

1. INTRODUCTION and Ellis 2009). However, tropical savannas pose a particular
o _ challenge to remote sensing applications due to abundant
1.1 Motivation and aim senescent plant material being present at most times of the year

. _in a structurally complex and heterogeneous landscape (Asner
The relevance of the vegetative cover components to mltlgatfggg), which all influence the biophysical and spectral
soil loss effects by water and their potential to improve Watebroperties of TVC at canopy and landscape (Asner and
quality downstream is widely accepted and has been provefessman 1997).

valid over a range of ecosystems worldwide (Renard, Smith &lor the detection of non-photosynthetic vegetation (NPV) in
al. 1997; Vrieling 2006; de Asis and Omasa 2007). mote  sensing  applicatons  the  wavelength  of

re

High quality information on the biophysical and StrUCturalphotosynthetically active radiation (PAR) (400-700 nm) has
properties of the total vegetation cover (TVC), optimally takenygq proven useful, since PAR is not always used for
at high temporal frequency, is thus indispensable to SUPPOFhtosynthesis (functional PAR’) (Asner 1998; Thomas, Finch
sustainable Natural Resource Management (NRM) of land ang 5. 2006). A significant component of incident PAR can be
water. This is particularly valid in complex and highly dynamic gpsorbed by NPV material in savanna ecosystems, particularly
savanna ecosystems, such as the tropical, semi-arid coasilyreas with a leaf area index (LAI) of less than 3.0; standing
catchments of Queensland adjacent to the Great Barrier Re@fass litter canopies absorbed almost as much PAR as green
(GBR), where key challenges include declining water qualitygrass canopies (Asner 1998). How much PAR is absorbed at the
land degradation gnd soil erosion, and terrestrial discharges in dscape scale is greatly affected by overstorey (trees) but the
the lagoon (Hutchings and Hoegh-Guldberg 2008). relative differences in absorbed radiation are also affected by
Remote sensing applications and broad-scale catchmefye understorey (mostly grasses) LAI.

modelling offer inyaluable potential to complement classica}leba, remotely sensed products provide free of charge, high
field-based NRM in the assessment of temporal and spatigmporal estimates of biophysical properties that relate to
aspects of soil erosion in the savanna ecosystems of theggeyant ecosystem structure and function and provide estimates
tropical, semi-arid coastal catchments of Queensland (Sear yegetation structure at different scales. Examples of these are
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the products by the Moderate Resolution
Spectroradiometer (MODIS) and
Altimeter System on the current NASA Ice, Cloud, dadd

Elevation Satellite (ICESat) (Scarth, Armston et 2010).

Regionally developed Landsat Thematic Mapper (TMJ an

Enhanced Thematic Mapper (ETM+) products in Queesl
also provide estimates of properties of the TVC #rathighly
relevant for supporting national and state NRM <gfmally as

these products are validated for the unique camhtiin

Australian savanna ecosystems (Danaher, Scarth @0#0;

Scarth, Roder et al. 2010). The collective, remoteinsed
information on certain vegetation properties cooddvaluable
for erosion modelling studies in the tropical semé savannas
in Queensland.

The sensitivity of a time series of the global, dhigsical

Moderate Resolution
Fraction of Photosynthetically Active Radiation atima by a

canopy (FPAR) (Knyazikhin, Glassy et al. 1999) tovee series

of regionally developed Landsat TM and ETM+ baseeeg

and non-green fractions of ground cover and veigetat
structural categories (VSC) has been shown forgdab semi-

arid catchment in Queensland, Australia, in anieadtudy

(Schoettker, Phinn et al. 2010; Schoettker, Scetrthl. 2010).

In a multiple regression analysis (including intti@n terms)

Imaging Spectroradiometer (MQDIS

ImagingDespite these substantial research efforts, itiigrssing that no
the Geoscience Lasestudy - to the knowledge of the author until thested- has

integrated high temporal resolution remote sensimagery to
derive vCf estimates for use in erosion modellingeothan by
using classical vegetation indices (de Jong 1994;Arosser et
al. 2003; Symeonakis and Drake 2004). However pignoplant
communities, such the tropical semi-arid savanriabe study
area, classical vegetation indices have been shovperform
less reliably for quantifying temporally variable/T and its
components and hence erosion or biomass modellinag (
Leeuwen and Huete 1996). The derivation for orusidn of
remotely sensed structural characteristics of € Th erosion
modelling is to date also very limited (Lu, Prosséml. 2003;
de Jong and Jetten 2007).

2. METHODS

2.1 Deriving high temporal frequency vegetative cover

factor estimates

To account for the role vegetation plays in impgdsoil loss,
erosion models classically include so called cosifactors
that separate the total vegetation cover into tvegomvertical
components: Canopy cover and surface cover (asxinge

75% of the variability in dry season MODIS FPAR was described in USDA (2008) and Rosewell (1997). As tmos

explained by the Landsat datasets in a catchmef@5@® kni

that lies adjacent to the GBR (the Bowen/Broken suboatot)
(Schoettker, Scarth et al. 2010). The catchment besn
considered an important contributor to terrestdacharges
into the GBR lagoon (Lewis, Sherman et al. 2009).

Australian plant communities feature a distinctugper and a
ground or lower stratum (Specht 1981), the separadf the

TVC into a canopy and a surface cover is considdced
adequately represent open plant communities thagranost of

the Australian continent and the study area.

Which potential global and high temporal frequencyThe equations typically used to derive vCf and sttofa

biophysical products, such as the MODIS FPAR aed@ESat
might have to complement regional remote sensiogymts for
the mapping and monitoring of TVC properties relévem
erosion modelling has not been identified to daspecifically
not in Australian savannas. The main aim of thizeaech was
thus to determine the global
suitability to improve erosion modelling via an egtated
approach combining global and regional vegetatiemate
sensing products in the same study area as Sceqd®thinn et
al. (2010) and Schoettker, Scarth et al. (201@)ppical semi-
arid catchment in Queensland.

1.2 Overview and references

In erosion modelling a so called C-factor measures t

combined effect of all the interrelated vegetatitoger and crop
management variables (Rosewell 1997). This defimitias
been used in empirical soil erosion models such thes
Universal Soil Loss Equation (USLE) (Wischmeier ébwhith

1978) and its subsequent Revised Universal Soil Eoggation
(RUSLE) (Renard, Smith et al. 1997). The C-factoralso
commonly applied in varying forms in most other sion

models worldwide. Above ground vegetative C-factecCf)

estimates for non-cropping areas under Australiamditions
were published by Rosewell (1997).

Many water driven erosion models worldwide have nbee

applied in recent decades and some have integratedte
sensing information (Vrieling 2006; USDA 2008; Seaand
Ellis 2009). In Australia, however, to date mosttoé water
driven erosion models applied still use the basitcept of the
empirical USLE model, e.g. the SedNet whole-of lcatent
modelling (Lewis, Sherman et al. 2009). Aside framumber
of major considerations which limit the utility afodels, such
as the USLE for, recent model applications by ®eand Ellis
(2009) have improved the USLE utility in the semigaropics
of Queensland.
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MODIS FPAR's potential

estimates based on the earlier work by Wischmeidr $mith
(1978) take the following form as published in Roskw
(1997):

C=CanCov*SurfCov Q)
, Wwhere CanCov is the canopy cover subfactor anfC8ur
is the surface cover subfactor. The concept of tatige cover
subfactors applied here was taken from the Revisaigesal
Soil Loss Equation USDA (2008) and Rosewell (198¢)
Australian conditions. The relevant equations ttedsine the
vegetative cover’s subfactors are commonly givefokews:

UrfCov= e(a+b*GC+c*GCZ+d*GC3)

@)

CanCov =1-(CC /100 * e ") o

with, h, =h, +a,*a,(h —h,) (32)
h, = 1+cH
or 3 (3b)

, Wherea, b, ¢, d are coefficients givein Rosewell (1997)CC

is Canopy Cover (%) is effective drop heighty, is height to
the bottom of the canopty is height to the top of the canopy,
as is a coefficient for canopy shapay for concentration of
surface area within canopy given in (USDA 2008Y &CH is
canopy height. The cover factor has commonly beerchined
simply as in eq. (2) for low wFPC areas (Searle &lid 2009)
or as the product of eq. (2) and (3a or b) (USDBO® and
Rosewell (1997), respectively).

The calculation of the dynamic vCf in this study evelesigned
to advance and yet replicate useful aspects of mecent
applications by USDA (2008) (RUSLE2 model) or
conventional approaches by Rosewell (1997), to datdl in
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Australia (SOILLOSS model), and variations of Roséwve
method as applied e.g. by Searle and Ellis (2008js study
calculated three vCf for the VSC representing thelystarea
based on eq. 2 and eq. 1 using eq. 3a or 3b. Aonmeally

developed Landsat TM and ETM+ overstorey’s woodiemix
product (woody Foliage projective cover
Queensland Department of Environment
Management (QDERM) had been used to stratify theystnea
into VSC (Schoettker, Phinn et al. 2010).

The relevant variables for the subfactors were rdeted as

(MODIS FPAR_vCf) was determined over the whole tspan
of seven years for the areas of wFPC below 30%. §laosas
were chosen, since Searle and Ellis (2009) hadieappheir
modified model previously to those areas only.

(WFPC)) from 2.3 Dataused
and Resource

231 Remotely sensed data
A time series of the global MODIS FPAR (collectioh diata
from 2000 to 2006 had been quality controlled amalysed for

follows: MODIS FPAR was used to approximate the GCits sensitivity to regionally validate Landsat aM®DIS based

variable in eq. 2 to establish its potential suligbfor erosion
modelling. To calculate th8urfCov we differentiated between
more grassy and herbaceous VSC applying differesfficeents

products in an earlier study (Schoettker, Phinal.€2010). The
Landsat wFPC product used here to derive the VSCbased
on a standardised Landsat TM and ETM+ time segegldped

a, b, ¢, andd for eq. (2) (Rosewell 1997). For eq. 3, averages ofit the QDERM (Danaher, Scarth et al. 2010). ICESabjp

CC per VSC were derived from a relationship of wFPC®
by Scarth, Armston et al. (2008). Medi@H (incl. h, andhy)
was derived from ICESat for each VSC. The ICESat Hath
been processed byScarth, Armston et al. (2010)e&o¢3a)h,
andh, were calculated from median ICESat pulses repraggnti
the upper and lower bounds of the canopy. The ictafts ag
andag in eq. (3a) were taken from (USDA 2008). For &h)(
CH was calculated as one third of the ICESat mediatraiel
canopy height of each VSC as describe in Schoet8aarth et
al. (2010). High temporal trajectories of vCf prditins for
each of the three schemes to calculate the vCfduesin 2, and
eq. 1 with 3a or 3b) were calculated and then etedha for
representative and homogeneous regions of intpeest SC for

height information was derived through waveformraggtion
methodology and provided to the author by Scartimston et
al. (2010).

2.3.2 In situ measurements and rainfall data

In situ measurements of total suspended solid (T88)l) for
the wet seasons 2003/2004, 2004/2005, and 2005/20€6
Myuna station, the station furthest downstreanhadatchment
of the study area, were provided by David Post, CSIRi@
data were recorded in hourly to minute-intervald arere here
aggregated to average daily and cumulative TSS unesdor
comparison to daily predicted soil loss from theLESnodel.
Water quality and streamflow data were collectaimfrDavid

Post, CSIRO Land and Water Canberra and the only data

the time span from 2000 to 2006. The ROIs were widel recorded between 2000 and 2006. Daily rainfall se$ and

distributed over the study area (sizes of ROIs dabietween 3
and 10 kr

2.2 Modelling soil loss

The (R)USLE is commonly known in the following foramd
soil loss is predicted as the product of six faxt@Renard,
Smith et al. 1997; Rosewell 1997):

A = R*K*L*S*C*P 4)
, Wwhere A is average soil loss (t/halyr), R is falnerosivity
(MJ mm ha/hrl/yr), K is soil erodibility, L is slogength factor,
S is slope steepness factor, C is crop and coveageament
factor (here vegetative cover factor (vCf)), ands Rdue to lack
of data usually assumed to be 1 (Searle and EIDSP.
A temporarily and spatially explicit implementatioaf a
modified version of the USLE was undertaken usirgugpose
written piece of C+ code as described in Searlé ¢€2@09).
The variable vegetative cover model of the USLE based on
the spatial and temporal processing of raster cesfa

streamflow data (cumecs) were also provided by QDERM

(http://watermonitoring.derm.qld.gov.au/host.ltm

3. RESULTSAND DISCUSSION

3.1 High temporal frequency, remotely sensed vegetative
cover factor estimates

The time series of high temporal resolution vCfutisg from
eg. 2, 3a, and 3b by assuming the SurfCov can b@xipmated
as a function of the time series of MODIS FPAR, fimir VSC
in the study area are shown in Figure 1 (Scherfia,land Ilb
respectively). MODIS FPAR was used in that way beeaof
its statistically significant sensitivity to greeand non-green
ground cover fractions, and despite the original (&) being
developed for ground cover products only. The v@jettories
for the first four VSC are shown exemplarily; avexag-PC for

those four VSC are 0-2%, 3-10%, 11-30%, and 31-50%,

respectively. Note, the higher the vCf value, thedois the

representing the components of the Revised USLE (REySL estimated protective function of the TVC. Overalgter vCf

(Renard, Smith et al. 1997). Daily soil loss predits were
made for pixels of 25m, that is, the MODIS FPAR tiegies
had been resampled to 25m (nearest neighbour résgmp
technique).

Due to the lack of field observations of high temgdrequency
soil loss, only a relative validation of predicteail losses from
the study area could be achieved by exploring éf&tionship
of the soil loss predictions to daily rainfall obggtions and to
measurements of daily total suspended sedimentahg@Siaily
streamflow at the outlet of the catchment and sareg.

To evaluate the effect of the integration of thghhiemporal
frequency vCf predictions into the USLE soil losgdictions,
comparisons to formerly made soil loss predictimase made.
The relationship between average daily rainfall &adthe to

estimates and larger annual amplitudes can be fowitiol
decreasing wFPC percentages (lower VSC classes)esting
a vegetative cover in those VSC classes with higiptysical
variability.

A clear seasonality and distinct annual differensegh as the
dry period peaking at the end of the year 2002ysible for all
three vCf schemes in all VSC (Figure 1). Average imar
VvCf values in Figure 1 lie at 0.12, minimum valuas0a5.
Differences between the vCf trajectories are gelyevary low
but appear most prominent at the end of the drgaseaand
more so in the higher wFPC classes (local maximaji&t one
pixel) in differences of average vCf predictionghe study area
lie at 0.04 and 0.048 for the dry season 2000 a©04 2
respectively). It was expected, that the CanCov stinfdrom

date commonly used, annual vCf (BGI_vCf based on Lainds €d- (3a and b) affects the final vCf estimates nmor¢SC with

imagery from QDERM) predictions and (b) this studyigh
temporal frequency vCf predictions using MODIS FPAR.(2)
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denser wFPC or CC. Cover factor estimates of schehjea(@
generally the lowest, which can be attributed ® fict thathf
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were lowest for that eq. 3b. The underlying CanCavatiqns
have been shown to be relatively insensitive to €hhare than
7m (results not shown). Since the vCf estimates fegm2, 3a
and b did not vary substantially the vCf estimatesifeq. 2 are
used in the following.

VSC2

— Schemel
— Scheme lla
— scheme llb

2001 2002 2003 2008 2005 . 2005 2001 2002 2003 7008 2005 2006
Date Date

VSC 4

— Schemel

20612001 2001 2002 2093

|
2005 2004 2005 2096
bate

Figure 1. Time series of vCf predictions for fowgetation
structural categories (VSC) (a to d) in the studiaaising
MODIS FPAR to approximate the SurfCov subfactor &q.
blue line), as the product of eq. 2 and the CanCbfastor
calculation from eq. 3a (green line) and eq. 3H (ie). Those
three vCf predictions are named Scheme |, lla, dmdbove.
Dry seasons are symbolised by light yellow bare fiiean
number of MODIS FPAR observations per observatide da

were 2548, 713, 4191, 1326, 380, and 129 for thesk®Othe
VSC 1 to 6 respectively for the time period of 02QQo
12/2006.

3.2 High temporal frequency sail loss predictions

Figure 2 shows a time series of high temporal reiyctensed

vCf (MODIS FPAR_VCf) (eqg. 2), annual vCf (BGI_vCf),
predicted soil erosion (t) (MODIS FPAR_E and BGI_HEda
daily rainfall (mm) for a randomly selected coomt& in the

study.

120 2500000
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| ——— MODIS FPAR_vCf (times 1000) BGI_vCf (times 1000) == Daily rainfall «----- MODIS FPAR_E BGLE‘
Figure 2. Time series of high temporal remotelyseel vCf
(MODIS FPAR_VCY) (eg. 2; green line), annual vCf (BGCfy
bright green line), predicted soil erosion (t) (MISOFPAR_E
and BGI_E; dotted brown and orange lines respegjiveid
daily rainfall (mm; blue line) for a randomly sefed coordinate
in the study. Daily rainfall data from SILO (JeffreCarter et al.

2001).
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Soil loss predictions from the MODIS FPAR_VCf (eq. 2)
coincide well with those from the annual BGI_vCf, ghthe
soil loss predictions from eq. 2 are much highehisTis
regarded as an indication of the dominance of thefall
erosivity factor in the USLE. Generally, soil lossare mostly
predicted to occur at the end of the dry seasotts kigh vCf
values. The wet season 2004/2005 has the highedicprd soil
losses from eq. 2.

Whether the patterns of predicted soil loss for shedy area
have some agreement with events of streamflow &@ahged
water quality at the outlet of the catchment (sashincreased
suspended solids) can be judged
independent data set: in-stream measurements ofilative
daily total suspended solids (Figure 3).

Plots of time series of average daily streamflowMatuna
station, predicted soil loss (FparErosion) (t), i85 measures
(mg/l) show some similarities between the onse¢wsnts and
the shape of event trajectories but other incomstses are
quite prominent (Figure 3).
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Figure 3. Cumulative TSS (mg/l) (grey shade) anebshflow
(cumecs/s) (blue line) at the Myuna station andlisted soil
loss for the study area (FparErosion; in t*10 080skcaling
purposes) (brown line) for three wet seasons (ABZ2M04, (b)
2004/2005, and (c) 2005/2006. Predicted soil loas w
calculated from the USLE using Scheme | in Figwedq. 2
with MODIS FPAR as approximation for the GC. Datarses:
TSS data by David Post, CSIRO; streamflow from QDERM.
Note different scale for y-axes in a, b, and c.

Discharge events and wet seasons show charac@ltisti
different trajectories of all three variables. Thet season
2004/2005 seems to have the closest fit betweerthadle
trajectories in comparison to the other wet seasons

in comparison to an
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Similarities between time series of TSS measuressail loss
predictions for certain parts of events are stroAglinear
regression TSS (mg/l) and FparEros (t) suggests % to
96% of the variability in TSS measures of certaib-svent
over the wet season 2004/2005 could be explainedhby
MODIS FPAR based soil loss predictions, e.g. for pleeiod
between 9.12.2004 and 01.02.2005 (results not shown
Integrating high temporal frequency vCf predictiomt® USLE
is suggested to reduce the dominant effect the otfigr high-
temporal frequency factor (R-factor) had on thel doss
predictions. A polynomial equation fitted to thelationship
between daily soil loss predictions made using ttigh
temporal frequency vCf estimates from eq. 2 usirgNIODIS
FPAR time series and average daily rainfall has a0ff0.74
(Figure 5).
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Figure 4. The relationship between daily soil Ipesdictions
made using the classical, annual vCf estimates eachge daily

rainfall.
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Figure 5. The relationship between daily soil Ipesdictions

made using the high temporal frequency vCf estinfates eq.
2 using the MODIS FPAR time series and average daily
rainfall.

In comparison, the relationship between soil lossdjgtions
using the formerly used, annual vCf estimates aiilgt cinfall
lies at B of 0.93 (Figure )({ < 0.001) (Figure 4 and 5). This is
taken as an indication of the reduction of a streemporal
dependency of the USLE-based soil loss predictionsthe
daily rainfall/-erosivity factor when integratinggh temporal
frequency vCf estimates.

Limitations of this feasibility study are predomirily related to
the use of the empirical USLE (e.g. development\alidiation
and thus validity of the (R)USLE, no account for iseght
transport or storage, sensitivity to variations awdle of input
factors, no account for streambank or gully erosiendency to
overestimate soil losses) (Kinnell 2005). It alsashto be
acknowledged that the interpretation of TSS comedints is
not the only factor to consider when interpretihg soil loss
predictions. Also, the vCf equations were not devetb for
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FPAR measures. Nevertheless, Searle and Ellis (20@$)est
that their R/USLE variable cover model as appliethis study
made sensible erosion estimates in semi-arid sagarin
Australia and the MODIS FPAR has been shown to hsithee
to relevant vegetation properties (Schoettker, tBcat al.
2010).

Whether the observed relationship between remstatged vCf
based soil loss predictions and in stream TSS messu
represents event-typical behaviour, such as sulpiyed or
transport limited events, cannot be clearly idésdifat this
stage without further field based data.

4. CONCLUSION

This study has provided the first suitability studfy MODIS
FPAR as an additional input parameter for estimati@g in
combination with information from ICESat and Landbased
VSC to improve existing erosion modelling studiead a
applications in a tropical semi-arid savanna edesys
Integrating those dynamic vCf into a modified versiof the
USLE, we presented the first high temporal freqyetime
series of soil loss predictions for the study area.

The high-temporal frequency vCf predictions of thigesis
might be regarded as a new and promising approiximaf the
antecedent catchment conditions. We propose we ravéded
valuable results to show steps towards requireddugment of
existing erosion modelling approach in the studgaarand
possibly elsewhere. Yet, the soil loss predictiohshis study
have to be interpreted with care until a futurelgtoan validate
the predictions.

Future research aims to identify drivers of obseértemporal
and spatial variations in soil loss predictionsg(eby using
physical based erosion models, multivariate anglyscluding
more recent discharge events and using the newctiolh of
MODIS FPAR data). Further research also intendsal@ate
the dynamic, remotely sensed vCf predictions witisteng field
data of ground cover and foliage projective coeampare to
vCf predictions based on a Landsat fractional groeoder
product, a predicted Landsat FPAR product (Schoetfearth

et al. 2010). Developing FPAR based vCf equations and

improved CanCov calculations is suggested as a tdayet
future remote sensing studies that could combitiealp radar,
and laser remote sensing techniques (Lucas, Lale 2010).

To finally quantify the linkages between the spbtiaand

temporally variable vegetative cover, rainfall, amdosion

processes and their impact on the adjacent rivenmkcoastal
environments is a continuing task for inter-disicipty

research.
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