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ABSTRACT: 
 
This study demonstrates the potential applicability of high temporal frequency information on the biophysical condition of the 
vegetation from a time series of the global Moderate Resolution Imaging Spectroradiometer (MODIS) Fraction of Photosynthetically 
Active Radiation absorbed by vegetation (FPAR) from 2000 to 2006 (collection 4; 8-day composites in 1 km spatial resolution) to 
improve modelling of soil loss in a tropical, semi-arid catchment in Queensland.  
Combining the biophysical information from the MODIS FPAR with structural vegetation information from the Geoscience Laser 
Altimeter System on the Ice, Cloud, and land Elevation Satellite (ICESat) for six vegetation structural categories identified from a 
Landsat Thematic Mapper 5 (TM) and Enhanced Thematic Mapper 7 (ETM+) woody foliage projective cover product representing 
floristically and structurally homogeneous areas, dynamic vegetative cover factor (vCf) estimates were calculated. The dynamic vCf 
were determined in accordance with standard calculation methods used in erosion models worldwide. Time series of dynamic vCf 
were integrated into a regionally improved version of the Universal Soil Loss Equation (USLE) to predict daily soil losses for the 
study area. Resulting time series of daily soil loss predictions averaged over the study area coincided well with measures of total 
suspended solids (TSS) (mg/l) at a gauge at the outlet of the catchment for three wet seasons (R2 of 0.96 for a TSS-event). By 
integrating the dynamic vCf into modified USLE, the strength of the dependence of daily soil loss predictions to the only other 
dynamic factor in the equation - daily rainfall erosivity - was reduced. 
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

1.1 Motivation and aim 

The relevance of the vegetative cover components to mitigate 
soil loss effects by water and their potential to improve water 
quality downstream is widely accepted and has been proven 
valid over a range of ecosystems worldwide (Renard, Smith et 
al. 1997; Vrieling 2006; de Asis and Omasa 2007). 
High quality information on the biophysical and structural 
properties of the total vegetation cover (TVC), optimally taken 
at high temporal frequency, is thus indispensable to support 
sustainable Natural Resource Management (NRM) of land and 
water. This is particularly valid in complex and highly dynamic 
savanna ecosystems, such as the tropical, semi-arid coastal 
catchments of Queensland adjacent to the Great Barrier Reef 
(GBR), where key challenges include declining water quality, 
land degradation and soil erosion, and terrestrial discharges into 
the lagoon (Hutchings and Hoegh-Guldberg 2008).  
Remote sensing applications and broad-scale catchment 
modelling offer invaluable potential to complement classical 
field-based NRM in the assessment of temporal and spatial 
aspects of soil erosion in the savanna ecosystems of these 
tropical, semi-arid coastal catchments of Queensland (Searle 

and Ellis 2009). However, tropical savannas pose a particular 
challenge to remote sensing applications due to abundant 
senescent plant material being present at most times of the year 
in a structurally complex and heterogeneous landscape (Asner 
1998), which all influence the biophysical and spectral 
properties of TVC at canopy and landscape (Asner and 
Wessman 1997). 
For the detection of non-photosynthetic vegetation (NPV) in 
remote sensing applications the wavelength of 
photosynthetically active radiation (PAR) (400-700 nm) has 
also proven useful, since PAR is not always used for 
photosynthesis (‘functional PAR’) (Asner 1998; Thomas, Finch 
et al. 2006). A significant component of incident PAR can be 
absorbed by NPV material in savanna ecosystems, particularly 
in areas with a leaf area index (LAI) of less than 3.0; standing 
grass litter canopies absorbed almost as much PAR as green 
grass canopies (Asner 1998). How much PAR is absorbed at the 
landscape scale is greatly affected by overstorey (trees) but the 
relative differences in absorbed radiation are also affected by 
the understorey (mostly grasses) LAI. 
Global remotely sensed products provide free of charge, high 
temporal estimates of biophysical properties that relate to 
relevant ecosystem structure and function and provide estimates 
of vegetation structure at different scales. Examples of these are 
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the products by the Moderate Resolution Imaging 
Spectroradiometer (MODIS) and the Geoscience Laser 
Altimeter System on the current NASA Ice, Cloud, and land 
Elevation Satellite (ICESat) (Scarth, Armston et al. 2010). 
Regionally developed Landsat Thematic Mapper (TM) and 
Enhanced Thematic Mapper (ETM+) products in Queensland 
also provide estimates of properties of the TVC that are highly 
relevant for supporting national and state NRM - specifically as 
these products are validated for the unique conditions in 
Australian savanna ecosystems (Danaher, Scarth et al. 2010; 
Scarth, Röder et al. 2010). The collective, remotely sensed 
information on certain vegetation properties could be valuable 
for erosion modelling studies in the tropical semi-arid savannas 
in Queensland. 
The sensitivity of a time series of the global, biophysical 
Moderate Resolution Imaging Spectroradiometer (MODIS) 
Fraction of Photosynthetically Active Radiation absorbed by a 
canopy (FPAR) (Knyazikhin, Glassy et al. 1999) to a time series 
of regionally developed Landsat TM and ETM+ based green 
and non-green fractions of ground cover and vegetation 
structural categories (VSC) has been shown for a tropical semi-
arid catchment in Queensland, Australia, in an earlier study  
(Schoettker, Phinn et al. 2010; Schoettker, Scarth et al. 2010). 
In a multiple regression analysis (including interaction terms) 
75% of the variability in dry season MODIS FPAR was 
explained by the Landsat datasets in a catchment of 9500 km2 
that lies adjacent to the GBR (the Bowen/Broken subcatchment) 
(Schoettker, Scarth et al. 2010). The catchment has been 
considered an important contributor to terrestrial discharges 
into the GBR lagoon (Lewis, Sherman et al. 2009). 
Which potential global and high temporal frequency 
biophysical products, such as the MODIS FPAR and the ICESat 
might have to complement regional remote sensing products for 
the mapping and monitoring of TVC properties relevant to 
erosion modelling has not been identified to date – specifically 
not in Australian savannas. The main aim of this research was 
thus to determine the global MODIS FPAR's potential 
suitability to improve erosion modelling via an integrated 
approach combining global and regional vegetation remote 
sensing products in the same study area as Schoettker, Phinn et 
al. (2010) and Schoettker, Scarth et al. (2010), a tropical semi-
arid catchment in Queensland. 
 
1.2 Overview and references 
In erosion modelling a so called C-factor measures the 
combined effect of all the interrelated vegetative cover and crop 
management variables (Rosewell 1997). This definition has 
been used in empirical soil erosion models such as the 
Universal Soil Loss Equation (USLE) (Wischmeier and Smith 
1978) and its subsequent Revised Universal Soil Loss Equation 
(RUSLE) (Renard, Smith et al. 1997). The C-factor is also 
commonly applied in varying forms in most other erosion 
models worldwide. Above ground vegetative C-factor (vCf) 
estimates for non-cropping areas under Australian conditions 
were published by Rosewell (1997). 
Many water driven erosion models worldwide have been 
applied in recent decades and some have integrated remote 
sensing information (Vrieling 2006; USDA 2008; Searle and 
Ellis 2009). In Australia, however, to date most of the water 
driven erosion models applied still use the basic concept of the 
empirical USLE model, e.g. the SedNet whole-of catchment 
modelling (Lewis, Sherman et al. 2009). Aside from a number 
of major considerations which limit the utility of models, such 
as the USLE for, recent model applications by Searle and Ellis 
(2009) have improved the USLE utility in the semi-arid tropics 
of Queensland.  

Despite these substantial research efforts, it is surprising that no 
study - to the knowledge of the author until this date - has 
integrated high temporal resolution remote sensing imagery to 
derive vCf estimates for use in erosion modelling other than by 
using classical vegetation indices (de Jong 1994; Lu, Prosser et 
al. 2003; Symeonakis and Drake 2004). However, in open plant 
communities, such the tropical semi-arid savannas of the study 
area, classical vegetation indices have been shown to perform 
less reliably for quantifying temporally variable TVC and its 
components and hence erosion or biomass modelling (van 
Leeuwen and Huete 1996). The derivation for or inclusion of 
remotely sensed structural characteristics of the TVC in erosion 
modelling is to date also very limited (Lu, Prosser et al. 2003; 
de Jong and Jetten 2007).  
 

2. METHODS 

2.1 Deriving high temporal frequency vegetative cover 
factor estimates  

To account for the role vegetation plays in impeding soil loss, 
erosion models classically include so called cover subfactors 
that separate the total vegetation cover into two major vertical 
components: Canopy cover and surface cover (as for example 
described in USDA (2008) and Rosewell (1997). As most 
Australian plant communities feature a distinctive upper and a 
ground or lower stratum (Specht 1981), the separation of the 
TVC into a canopy and a surface cover is considered to 
adequately represent open plant communities that cover most of 
the Australian continent and the study area. 
The equations typically used to derive vCf and subfactor 
estimates based on the earlier work by Wischmeier and Smith 
(1978) take the following form as published in Rosewell 
(1997): 
 

C=CanCov*SurfCov  (1) 
 

 , where CanCov is the canopy cover subfactor and SurfCov 
is the surface cover subfactor. The concept of vegetative cover 
subfactors applied here was taken from the Revised Universal 
Soil Loss Equation USDA (2008) and  Rosewell (1997) for 
Australian conditions. The relevant equations to determine the 
vegetative cover’s subfactors are commonly given as follows: 

)***( 32 GCdGCcGCbaeSurfCov +++=  (2) 

)*328.0(*)100/(1 fheCCCanCov −−=  (3) 

with,                   )(* btgsbf hhaahh −+=   (3a) 

or                         
CHh f *

3

1=
 (3b) 

, where a, b, c, d are coefficients given in Rosewell (1997), CC 
is Canopy Cover (%), hf  is effective drop height, hb is height to 
the bottom of the canopy, ht is height to the top of the canopy, 
as is a coefficient for canopy shape, ag for concentration of 
surface area within canopy given in (USDA 2008), and is CH is 
canopy height. The cover factor has commonly been determined 
simply as in eq. (2) for low wFPC areas (Searle and Ellis 2009) 
or as the product of eq. (2) and (3a or b) (USDA (2008)  and 
Rosewell (1997), respectively).  
The calculation of the dynamic vCf in this study were designed 
to advance and yet replicate useful aspects of more recent 
applications by USDA (2008) (RUSLE2 model) or 
conventional approaches by Rosewell (1997), to date used in 
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Australia (SOILLOSS model), and variations of Rosewell's 
method as applied e.g. by Searle and Ellis (2009). This study 
calculated three vCf for the VSC representing the study area 
based on eq. 2 and eq. 1 using eq. 3a or 3b. A regionally 
developed Landsat TM and ETM+ overstorey’s woody extent 
product (woody Foliage projective cover (wFPC)) from 
Queensland Department of Environment and Resource 
Management (QDERM) had been used to stratify the study area 
into VSC (Schoettker, Phinn et al. 2010). 
The relevant variables for the subfactors were determined as 
follows: MODIS FPAR was used to approximate the GC 
variable in eq. 2 to establish its potential suitability for erosion 
modelling. To calculate the SurfCov we differentiated between 
more grassy and herbaceous VSC applying different coefficients 
a, b, c, and d for eq. (2) (Rosewell 1997). For eq. 3, averages of 
CC per VSC were derived from a relationship of wFPC to CC 
by Scarth, Armston et al. (2008). Median CH (incl. hb and ht)

 

was derived from ICESat for each VSC. The ICESat data had 
been processed byScarth, Armston et al. (2010). For eq. (3a), hb 
and ht

 were calculated from median ICESat pulses representing 
the upper and lower bounds of the canopy. The coefficients as 
and ag in eq. (3a) were taken from (USDA 2008). For eq. (3b) 
CH was calculated as one third of the ICESat median centroid 
canopy height of each VSC as describe in Schoettker, Scarth et 
al. (2010). High temporal trajectories of vCf predictions for 
each of the three schemes to calculate the vCf (using eq. 2, and 
eq. 1 with 3a or 3b) were calculated and then extracted for 
representative and homogeneous regions of interest per VSC for 
the time span from 2000 to 2006. The ROIs were widely 
distributed over the study area (sizes of ROIs varied between 3 
and 10 km2. 
 
2.2 Modelling soil loss 

The (R)USLE is commonly known in the following form and 
soil loss is predicted as the product of six factors (Renard, 
Smith et al. 1997; Rosewell 1997):  

A = R*K*L*S*C*P  (4) 
 , where A is average soil loss (t/ha/yr), R is rainfall erosivity 
(MJ mm ha/hr/yr), K is soil erodibility, L is slope length factor, 
S is slope steepness factor, C is crop and cover management 
factor (here vegetative cover factor (vCf)), and P is (due to lack 
of data usually assumed to be 1 (Searle and Ellis 2009)).  
A temporarily and spatially explicit implementation of a 
modified version of the USLE was undertaken using a purpose 
written piece of C+ code as described in Searle et al. (2009).  
The variable vegetative cover model of the USLE was based on 
the spatial and temporal processing of raster surfaces 
representing the components of the Revised USLE (RUSLE) 
(Renard, Smith et al. 1997). Daily soil loss predictions were 
made for pixels of 25m, that is, the MODIS FPAR time series 
had been resampled to 25m (nearest neighbour resampling 
technique). 
Due to the lack of field observations of high temporal frequency 
soil loss, only a relative validation of predicted soil losses from 
the study area could be achieved by exploring the relationship 
of the soil loss predictions to daily rainfall observations and to 
measurements of daily total suspended sediment TSS and daily 
streamflow at the outlet of the catchment and study area.  
To evaluate the effect of the integration of the high-temporal 
frequency vCf predictions into the USLE soil loss predictions, 
comparisons to formerly made soil loss predictions were made. 
The relationship between average daily rainfall and (a) the to 
date commonly used, annual vCf (BGI_vCf based on Landsat 
imagery from QDERM) predictions and (b) this study's high 
temporal frequency vCf predictions using MODIS FPAR (eq. 2) 

(MODIS FPAR_vCf) was determined over the whole time span 
of seven years for the areas of wFPC below 30%. Those areas 
were chosen, since Searle and Ellis (2009) had applied their 
modified model previously to those areas only. 
 
2.3 Data used 

2.3.1 Remotely sensed data  
A time series of the global MODIS FPAR (collection 4) data 
from 2000 to 2006 had been quality controlled and analysed for 
its sensitivity to regionally validate Landsat and MODIS based 
products in an earlier study (Schoettker, Phinn et al. 2010). The 
Landsat wFPC product used here to derive the VSC was based 
on a standardised Landsat TM and ETM+ time series developed 
at the QDERM (Danaher, Scarth et al. 2010). ICESat canopy 
height information was derived through waveform aggregation 
methodology and provided to the author by Scarth, Armston et 
al. (2010).  
2.3.2 In situ measurements and rainfall data 
In situ measurements of total suspended solid (TSS) (mg/l) for 
the wet seasons 2003/2004, 2004/2005, and 2005/2006 at the 
Myuna station, the station furthest downstream in the catchment 
of the study area, were provided by David Post, CSIRO. The 
data were recorded in hourly to minute-intervals and were here 
aggregated to average daily and cumulative TSS measures for 
comparison to daily predicted soil loss from the USLE model. 
Water quality and streamflow data were collected from David 
Post, CSIRO Land and Water Canberra and the only data 
recorded between 2000 and 2006. Daily rainfall surfaces and 
streamflow data (cumecs) were also provided by QDERM 
(http://watermonitoring.derm.qld.gov.au/host.htm). 
 

3. RESULTS AND DISCUSSION 

3.1 High temporal frequency, remotely sensed vegetative 
cover factor estimates 

The time series of high temporal resolution vCf, resulting from 
eq. 2, 3a, and 3b by assuming the SurfCov can be approximated 
as a function of the time series of MODIS FPAR, for four VSC 
in the study area are shown in Figure 1 (Scheme I, IIa, and IIb 
respectively). MODIS FPAR was used in that way because of 
its statistically significant sensitivity to green and non-green 
ground cover fractions, and despite the original eq. (2) being 
developed for ground cover products only.  The vCf trajectories 
for the first four VSC are shown exemplarily; average wFPC for 
those four VSC are 0-2%, 3-10%, 11-30%, and 31-50%, 
respectively. Note, the higher the vCf value, the lower is the 
estimated protective function of the TVC. Overall higher vCf 
estimates and larger annual amplitudes can be found with 
decreasing wFPC percentages (lower VSC classes), suggesting 
a vegetative cover in those VSC classes with high biophysical 
variability.  
A clear seasonality and distinct annual differences, such as the 
dry period peaking at the end of the year 2002, are visible for all 
three vCf schemes in all VSC (Figure 1). Average maximum 
vCf values in Figure 1 lie at 0.12, minimum values at 0.05. 
Differences between the vCf trajectories are generally very low 
but appear most prominent at the end of the dry seasons and 
more so in the higher wFPC classes (local maxima (for just one 
pixel) in differences of average vCf predictions in the study area 
lie at 0.04 and 0.048 for the dry season 2000 and 2004 
respectively). It was expected, that the CanCov subfactor from 
eq. (3a and b) affects the final vCf estimates more in VSC with 
denser wFPC or CC. Cover factor estimates of scheme (3b) are 
generally the lowest, which can be attributed to the fact that hf 
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were lowest for that eq. 3b. The underlying CanCov equations 
have been shown to be relatively insensitive to CH of more than 
7m (results not shown). Since the vCf estimates from eq. 2, 3a 
and b did not vary substantially the vCf estimates from eq. 2 are 
used in the following. 
 

 
Figure 1.  Time series of vCf predictions for four vegetation 
structural categories (VSC) (a to d) in the study area using 

MODIS FPAR to approximate the SurfCov subfactor (eq. 2; 
blue line), as the product of eq. 2 and the CanCov subfactor 

calculation from eq. 3a (green line) and eq. 3b (red line). Those 
three vCf predictions are named Scheme I, IIa, and IIb above. 
Dry seasons are symbolised by light yellow bars. The mean 
number of MODIS FPAR observations per observation date 

were 2548, 713, 4191, 1326, 380, and 129 for the ROIs of the 
VSC 1 to 6 respectively for the time period of 02/2000 to 

12/2006. 
 
 
3.2 High temporal frequency soil loss predictions 

Figure 2 shows a time series of high temporal remotely sensed 
vCf (MODIS FPAR_vCf) (eq. 2), annual vCf (BGI_vCf), 
predicted soil erosion (t) (MODIS FPAR_E and BGI_E) and 
daily rainfall (mm) for a randomly selected coordinate in the 
study.  
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Figure 2.  Time series of high temporal remotely sensed vCf 

(MODIS FPAR_vCf) (eq. 2; green line), annual vCf (BGI_vCf; 
bright green line), predicted soil erosion (t) (MODIS FPAR_E 
and BGI_E; dotted brown and orange lines respectively) and 

daily rainfall (mm; blue line) for a randomly selected coordinate 
in the study. Daily rainfall data from SILO (Jeffrey, Carter et al. 

2001). 
 

Soil loss predictions from the MODIS FPAR_vCf (eq. 2) 
coincide well with those from the annual BGI_vCf, while the 
soil loss predictions from eq. 2 are much higher. This is 
regarded as an indication of the dominance of the rainfall 
erosivity factor in the USLE. Generally, soil losses are mostly 
predicted to occur at the end of the dry seasons with high vCf 
values. The wet season 2004/2005 has the highest predicted soil 
losses from eq. 2. 
Whether the patterns of predicted soil loss for the study area 
have some agreement with events of streamflow and changed 
water quality at the outlet of the catchment (such as increased 
suspended solids) can be judged in comparison to an 
independent data set: in-stream measurements of cumulative 
daily total suspended solids (Figure 3).  
Plots of time series of average daily streamflow at Myuna 
station, predicted soil loss (FparErosion) (t), and TSS measures 
(mg/l) show some similarities between the onset of events and 
the shape of event trajectories but other inconsistencies are 
quite prominent (Figure 3). 
 

 

 
Figure 3.  Cumulative TSS (mg/l) (grey shade) and streamflow 
(cumecs/s) (blue line) at the Myuna station and predicted soil 
loss for the study area (FparErosion; in t*10 000 for scaling 

purposes) (brown line) for three wet seasons (a) 2003/2004, (b) 
2004/2005, and (c) 2005/2006. Predicted soil loss was 

calculated from the USLE using Scheme I in Figure 1or eq. 2 
with MODIS FPAR as approximation for the GC. Data sources: 

TSS data by David Post, CSIRO; streamflow from QDERM. 
Note different scale for y-axes in a, b, and c. 

 
Discharge events and wet seasons show characteristically 
different trajectories of all three variables. The wet season 
2004/2005 seems to have the closest fit between all three 
trajectories in comparison to the other wet seasons. 
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Similarities between time series of TSS measures and soil loss 
predictions for certain parts of events are strong. A linear 
regression TSS (mg/l) and FparEros (t) suggests that 74% to 
96% of the variability in TSS measures of certain sub-event 
over the wet season 2004/2005 could be explained by the 
MODIS FPAR based soil loss predictions, e.g. for the period 
between 9.12.2004 and 01.02.2005 (results not shown). 
Integrating high temporal frequency vCf predictions into USLE 
is suggested to reduce the dominant effect the only other high-
temporal frequency factor (R-factor) had on the soil loss 
predictions.  A polynomial equation fitted to the relationship 
between daily soil loss predictions made using the high 
temporal frequency vCf estimates from eq. 2 using the MODIS 
FPAR time series and average daily rainfall has an R2 of 0.74 
(Figure 5). 

y = 26.731x2 + 1674.3x + 95.632

R² = 0.9313
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Figure 4.  The relationship between daily soil loss predictions 

made using the classical, annual vCf estimates and average daily 
rainfall. 
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Figure 5.  The relationship between daily soil loss predictions 

made using the high temporal frequency vCf estimates from eq. 
2 using the MODIS FPAR time series and average daily 

rainfall. 
In comparison, the relationship between soil loss predictions 
using the formerly used, annual vCf estimates and daily rainfall 
lies at R2 of  0.93 (Figure ) (ρ < 0.001) (Figure 4 and 5). This is 
taken as an indication of the reduction of a strong temporal 
dependency of the USLE-based soil loss predictions on the 
daily rainfall/-erosivity factor when integrating high temporal 
frequency vCf estimates. 
 
Limitations of this feasibility study are predominantly related to 
the use of the empirical USLE (e.g. development and validation 
and thus validity of the (R)USLE, no account for sediment 
transport or storage, sensitivity to variations and scale of input 
factors, no account for streambank or gully erosion, tendency to 
overestimate soil losses) (Kinnell 2005). It also has to be 
acknowledged that the interpretation of TSS concentrations is 
not the only factor to consider when interpreting the soil loss 
predictions. Also, the vCf equations were not developed for 

FPAR measures. Nevertheless, Searle and Ellis (2009) suggest 
that their R/USLE variable cover model as applied in this study 
made sensible erosion estimates in semi-arid savannas in 
Australia and the MODIS FPAR has been shown to be sensitive 
to relevant vegetation properties (Schoettker, Scarth et al. 
2010). 
Whether the observed relationship between remotely sensed vCf 
based soil loss predictions and in stream TSS measures 
represents event-typical behaviour, such as supply limited or 
transport limited events, cannot be clearly identified at this 
stage without further field based data.  
 

4. CONCLUSION 

This study has provided the first suitability study of MODIS 
FPAR as an additional input parameter for estimating vCf in 
combination with information from ICESat and Landsat based 
VSC to improve existing erosion modelling studies and 
applications in a tropical semi-arid savanna ecosystem. 
Integrating those dynamic vCf into a modified version of the 
USLE, we presented the first high temporal frequency time 
series of soil loss predictions for the study area. 
The high-temporal frequency vCf predictions of this thesis 
might be regarded as a new and promising approximation of the 
antecedent catchment conditions. We propose we have provided 
valuable results to show steps towards required improvement of 
existing erosion modelling approach in the study area, and 
possibly elsewhere. Yet, the soil loss predictions of this study 
have to be interpreted with care until a future study can validate 
the predictions. 
Future research aims to identify drivers of observed temporal 
and spatial variations in soil loss predictions (e.g. by using 
physical based erosion models, multivariate analysis, including 
more recent discharge events and using the new collection of 
MODIS FPAR data). Further research also intends to validate 
the dynamic, remotely sensed vCf predictions with existing field 
data of ground cover and foliage projective cover, compare to 
vCf predictions based on a Landsat fractional ground cover 
product, a predicted Landsat FPAR product (Schoettker, Scarth 
et al. 2010). Developing FPAR based vCf equations and 
improved CanCov calculations is suggested as a target for 
future remote sensing studies that could combine optical,  radar, 
and laser remote sensing techniques (Lucas, Lee et al. 2010). 
To finally quantify the linkages between the spatially and 
temporally variable vegetative cover, rainfall, and erosion 
processes and their impact on the adjacent riverine and coastal 
environments is a continuing task for inter-disciplinary 
research. 
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