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ABSTRACT: 
 
The experiences from recent disaster events showed that detailed information derived from high-resolution satellite images could 
accommodate the requirements from damage analysts and disaster management practitioners. Richer information contained in such 
high-resolution images, however, increases the complexity of image analysis. As a result, few image analysis solutions can be 
practically used under time pressure in the context of post-disaster and emergency responses. To fill the gap in employment of 
remote sensing in disaster response, this research develops a rapid high-resolution satellite mapping solution built upon a dual-scale 
contextual framework to support damage estimation after a catastrophe. The target objects are building (or building blocks) and their 
condition. On the coarse processing level, statistical region merging deployed to group pixels into a number of coarse clusters. Based 
on majority rule of vegetation index, water and shadow index, it is possible to eliminate the irrelevant clusters. The remaining 
clusters likely consist of building structures and others. On the fine processing level details, within each considering clusters, smaller 
objects are formed using morphological analysis. Numerous indicators including spectral, textural and shape indices are computed to 
be used in a rule-based object classification. Computation time of raster-based analysis highly depends on the image size or number 
of processed pixels in order words. Breaking into 2 level processing helps to reduce the processed number of pixels and the 
redundancy of processing irrelevant information. In addition, it allows a data- and tasks- based parallel implementation. The 
performance is demonstrated with QuickBird images captured a disaster-affected area of Phanga, Thailand by the 2004 Indian Ocean 
tsunami are used for demonstration of the performance. The developed solution will be implemented in different platforms as well as 
a web processing service for operational uses. 
 
 

1.  INTRODUCTION 

Providing quick and reliable captured information in hardest hit 
and difficult-to-assess areas, remote sensing products have been 
commonly used as the first and primary information source at 
the post-disaster response stage (Adams et al., 2004; Balz and 
Liao, 2010; Matsuoka and Yamazaki 1999; Saito et al., 2004; 
Stramondo et al., 2006; Vu et al. 2005). The activation of 
International Charter on Space and Major Disasters 
(www.disastercharter.org) together with the coordination of 
UN-SPIDER (www.un-spider.org) facilitates the acquiring and 
delivering timely remote sensing images to the bodies in charge 
of relief efforts and emergency responses. The fastest available 
information is damage extent that is manually extracted in such 
operational framework. The product accuracy with respect to 
the practices is far to meet (Kerle 2010). More quantitative and 
details of damages are expected from the damage analysts and 
disaster management practitioners. Researches in response to 
recent disaster events showed that detailed information derived 
from very high-resolution satellite images could accommodate 
their requirements (Chesnel et al. 2007; Gusella et al. 2005; 
Saito et al. 2004; Vu and Ban, 2010).  
 
Richer information contained in such high-resolution images 
increases the complexity of image analysis. Numerous 
researches have been done either to develop or employ the 
object-based image analysis approach (Blaschke 2010), which 
proved to be the most suitable for high-resolution satellite 
images. Those, however, are impractically used under time 
pressure in the context of post-disaster and emergency 
responses due to the high computational cost and the 
requirement of experienced operators. Since no mature 

automated image analysis solution is available, the practitioners 
are seeking the collaborative mapping framework (Goodchild 
and Glennon 2010). GEO-CAN (Bevington et al. 2010), a 
practical work has been efficiently deployed in response to the 
2010 Haiti earthquake, in which the huge time-consuming 
interpretation of damages from remote sensing images were 
divided into gird-based delegation to numerous contributors 
worldwide. As collaborative mapping platform is well 
developed, the mechanism to ensure the accuracy and 
consistency is the big challenge. Moreover, damage 
interpretation requires a certain level of expertise in remote 
sensing and structural engineering. The quick image processing 
outcomes would be a guideline for the contributors as well as a 
reference frame to ensure the quality of derived damage 
information. 
 
To contribute to the current efforts, this research develops a 
rapid high-resolution satellite mapping solution built upon a 
dual-scale contextual framework to support damage estimation 
after a catastrophe. The initial development is formulated as a 
part of a tsunami-damage estimation system (Koshimura et al. 
2010) integrating numerical modelling of tsunami inundation, 
remote sensing and GIS. High-resolution remote sensing images 
are acquired to update the surface roughness for tsunami 
modelling as well as mapping the structural damages. Thus, the 
target objects of image processing are building (or building 
blocks). Breaking into two levels of processing, the design and 
implementation are optimized for computation speed. Details of 
developed solutions are described in Section 2 and 
demonstrated with QuickBird images of Ban Nam Ken, Phanga, 
Thailand in Section 3. 
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2.  METHODOLOGY 

Image- and/or raster-based computation time heavily depends 
on image size. To cover a considerably large area, the size of a 
QuickBird, IKONOS, or WorldView-2 image becomes huge 
multiplied by its multi-spectral bands. On another hand, object-
based image analysis exploits the scale property of objects in 
describing the context for segmentation and classification. The 
dual-scale processing proposed here takes into account the scale 
property not only categorise objects into different levels for 
segmentation and classification but also to decide the suitability 
level of complexity in processing in order to shorten the 
computation time. 
 
The two levels of the main processing are described in the 
following sub-sections. It is noted that pre-processing such as 
geometric and radiometric correction, pan-sharpening may be 
necessary prior to the main processing. Those are easily done by 
any remote sensing packages and not repeated here.  
 
2.1  Coarse level 

On the coarse level, the simple but robust Statistical Region 
Merging (SRM) technique is adopted (Nock and Nielsen, 2004). 
SRM starts by sorting the pair of pixels in ascending order of 
f(p,p’), expressed as in Eq. 1. 
 
f (p, !p ) = max

"a# S{ }
pa $ p !a , 

a denotes a spectral channel of the multi-spectral space S
 (1) 

 
Traversing the above order once and testing for any pair, if the 
region R and R’ of the pair are different, R and R’ will be 
merged if 
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where R  denotes the average value of region R
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g denotes the number of grey value,

Q is tuning parameter, ! = 1
3 I 2 ,  

I  and R  denote entire image and region R size, respectively.

 

 
More details of SRM are proved and presented in Nock and 
Nielsen’s papers (Nock and Nielsen 2004, Nock and Nielsen 
2005). To delineate the big objects, the Q value is fixed at 64 
whereas the g value is fixed to 256 so it is required to scale the 
simplified image grey value to 0-255. SRM is conventionally 
working on pixels that may take long time. To assist speeding 
up the conditional search based upon Eq. 2, the initial clusters 
are generated via K-mean clustering and morphological filtering 
(Vincent 1993). The filtering is to remove the small 
meaningless objects, less than 25 pixels, and is applied onto the 
spectral clustered images derived by K-mean. K-mean 
clustering helps to initially group the pixels using their 
multispectral signatures globally. The locally grouping is then 
controlled by SRM. After filtering, the pixels in a neighbour 
that have similar grey value (class number) will be merged into 
a cluster. Those clusters will play as the basic entity for SRM 
instead of pixels. 
 
Subsequently, the rule-based analysis is carried out to decide 
which objects should be go further to fine level processing as 
well as remove irrelevant objects such as water and vegetation. 

First, homogeneous texture is measured, those with low 
homogeneous value is subject to go further. To discriminate 
water, vegetation from impervious surface, the brightness and 
greenness indices (Yarbrough et al. 2005) in combination with 
NDVI are employed. High level of greenness indicates the 
vegetation cover after confirmed with high NDVI value, 
whereas both low brightness and greenness values indicate the 
water body. The impervious surfaces have low greenness and 
high brightness values. The outcomes of coarse level 
processing, therefore, include the following types: 
homogeneous irrelevant objects such as water and vegetation, 
homogenous big impervious surfaces objects, and 
heterogeneous objects to go further to fine level processing. The 
very low homogeneous objects with low brightness and 
greenness values would be a cue to focus in mapping the 
damages. The whole process is illustrated in Figure 1. 
 

 
Figure 1.  Coarse level processing 

 
 
2.2  Fine level  

In the detailed processing, a considerably large area has been 
masked out on coarse level with expectation that the time 
processing will be shortened. The flowchart of this fine level 
processing is shown in Figure 2. Going into details, it is 
possible to reveal the geometrical beside the spectral properties 
of each object. The previously developed non-linear scale space 
transformation by the author (Vu and Ban 2010) is adopted here 
to derive the morphological profile and form the fine objects. 
Again, to speed up the processing, morphological profile is 
generated on only the first component of PCA.  
 
Briefly, morphological filtering with reconstruction with 
increasing template size is applied onto the first component 
analysis. The morphological profiles across the scale space 
provide the cues to group nearby pixels to a cluster via 
similarity measurement. It also helps to group the clusters with 
similarity profile to the same class. Since it works with only 
small objects, a limited number of sizes of increasing step of 1 
can be used to generate the scale-space, named the scale range. 
Granulometry analysis is also employed to ignore the 
unnecessary sizes at which no significant changes on the 
granulometry spectrum within the scale range. 
 
In addition, the compactness and elongated shape indices 
(Bogaert et al. 2000), ratio between object area and object 
perimeter/length, are exploited to discriminate building and road 
objects. The rest of spectral information is added back via a 
simple K-mean pixel-based classification. The spectral class of 
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a fine object is decided based on the majority rule of pixel-
based spectral classes within it. 
 
New set of rule is established with regards to fine objects and 
their newly derived properties. As the potential damage area can 
be delineated from coarse level processing, this fine level 
processing mainly focuses in detection of intact building roofs. 
First, high NDVI and low NIR values are used here to eliminate 
small vegetation and water objects. The other 3 parameters, i.e. 
pixel-based spectral class, morphological profiles and shape 
index, are integrated in a decision-making scheme to decide the 
likelihood of an object to be a building. All of them are rescaled 
to 1-9. The shape index plays some form of quantitative 
measure, i.e. building is often a compact object, whereas the 
other two are more like qualitative measures. The higher the 
shape index value of an object is, the more likely it is a building 
roof. Now, the operator needs to make the final decision in this 
multi-criteria evaluation scheme. 
 

 
Figure 2.  Fine level processing 

 
The fully automatic processing can produce the detected objects 
using some predefined thresholds and rules. However, to ensure 
a good accuracy, the final step is designed for user’s decision 
following the experiences that it is still difficult to detect the 
damage with current high-resolution satellite images (Ehrlich et 
al. 2009, Vu and Ban 2010). This is also the main reason why 
the rule-based analysis is chosen in development, which allows 
the users to input their knowledge to control the process. An 
automated classification, even adopting some complex machine 
learning algorithms, still cannot be reliable if the data has their 
own limitation. 
 
 
2.3  Design for parallel  implementation 

As breaking into 2 levels, a big object formed on coarse level 
play as the tertiary to focus fine level processing within its 
boundary. The first goal of this design is not to analyse in 
details a homogeneous big object and hence, to speed up the 
processing. More importantly, the idea behind is to allow a 
parallel way of implementation in which the piece of 
information within each heterogeneous object will be delegated 
to a separate CPU. By this way, both data- and task- based 
implementation would be achieved.  
 
In addition, the most computational-time-consuming modules 
such as region merging and morphological profile will be 
implemented with MPI (Message Passing Interface) in line with 
implementing the tsunami damage estimation system 

(Koshimura et al. 2010). A test on image of different sizes of 
those two modules is depicted in Figure 3. Computation time 
drastically increases when the image size is 1024x1024 pixels, 
especially with region merging. The test used a parameter of 32 
for K-mean clustering prior to applying the SRM, which seems 
to be unnecessarily many. When an operator has some prior 
knowledge about the study area and ensures a limited number of 
land-cover classes, the number of classes can be reduced and so 
the computation time for region merging does.  
 
As mentioned, the proposed solution is to assist the participants 
in the crowd to response to a catastrophe event. Thus, different 
implementation methods will be considered and deployed to 
suit the platform availability of various operators. The 
implementation aspect will be reported in next publication. 
 
 

 
Figure 3.  Computational time (Morphscale for morphological 

profile, SRM for region merging) 
 
 

 
3.  RESULTS AND DISCUSSION 

Ban Nam Ken village, one of the most affected areas due to the 
2004 Indian Ocean tsunami was selected as the study area with 
a QuickBird image captured on 2 January 2005, about a week 
after the tsunami attack. For demonstration of the developed 
solution, a portion of 1024x1024 was extracted, containing 
various surface types like vegetation, water, intact building roof, 
collapsed buildings and open soil, as shown in Figure 4a. The 
colour composite of brightness, greenness and homogeneous 
indices as the result of coarse level processing is illustrated in 
Figure 4b.  
 
 

 
Figure 4.  (a) False Colour Composite of original QuickBird 

image and (b) coarse level result 
 
It is obvious that the bluish areas, i.e. low brightness, low 
greenness and high homogenous values, are the homogenous 
surface water areas and ignored in further fine processing. The 
greenness areas, however, needed to be reconfirmed with NDVI 
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value to know whether it would be vegetation. The red to 
orange areas, which lack of blue homogeneity and green 
vegetation, is more likely the concrete covered areas and 
damage areas, if working on a post-disaster image. This is 
particularly true for the area at the top-left of our study area. In 
the case that a pre-event image was available, it would be able 
to detect the wash-away areas and possibly wet areas due to 
tsunami attack via change detection. 
 
Figures 5 and 6 present the results of fine level processing of 
two selected areas, in which the extracted features presented in 
their identification numbers (ID) and their ‘class’; the ‘class’ 
here is the combined results from pixel-based spectral, 
morphological, shape indices as a result of multi-criteria 
evaluation. The colour code for ID is just to discriminate the 
adjacent ones. Two clusters with the same colour but not next 
together do not have the same ID number. Figure 5 explores 
further the details of a damage area whereas Figure 6 presents 
the result from the non-damage area full of old rooftops. 
 

 
Figure 5.  Fine level processing results of a damage area 

 

 
Figure 6.  Fine level processing results of a non-damage area 

 
Combining the evidences from both coarse and fine levels, a 
disaster-induced damage area can be confirmed. Current 
satellite spatial resolutions are unable to report detailed damage 
information at building level but only can delineate the non-
collapse buildings and debris areas. The damage ratio is then 
computed approximately. Existing method prefers the pixel-
based computation on a grid-based form, i.e. the ratio of number 
of collapsed pixels to total number of pixels in a cell. With the 
coarse level clusters by the developed solutions, the 
approximate damage ratio would be better and probably more 

easy to use in practice. One of the main reasons is that the street 
network is usually the boundary of administrative units and also 
clearly presented in satellite images, which lead the merging to 
follow. 
 
Accuracy assessment of detected information from satellite 
image remains a big challenge though remote sensing images 
have been employed in disaster management for decades. It is 
mainly due to the gap between what remote sensing can produce 
and what the disaster management practitioners demands and 
get used to. There has been also a discussion on how damage 
information should be presented. Consequently, previous 
research (Gusella et al. 2005, Stramondo et al. 2006, Vu and 
Ban 2010) faced the difficulty in comparison with the ‘ground 
truth’ information.  
 
In this paper, the detected buildings are simply crosschecked 
with the visually detected ones. It showed that as Figures 4, 5 
and 6, the extracted results were reasonably matched with the 
reference ones. Most compact objects, more likely to be 
building rooftop, were well detected. Visually, the old house 
rooftops in the study area are not distinguishable from the 
surrounding implying that it would be tough for an automated 
processing as illustrated in Figure 7. The occlusion by the trees 
nearby also cleared a possible separation line between 2 objects 
introducing omission errors. More quantitative assessment will 
be reported in a mutual acceptable form with disaster 
management practitioners. 
 

 
Figure 7.  Difficult situation for automated recognition 

 
 

4.  CONCLUSION 

Dual-scale processing framework has been introduced to 
support the rapid damage estimation at the early stage after a 
disaster. The initial development is to serve as part of a system 
for tsunami disaster damage estimation while its ultimate goal is 
to serve as early damage estimation solution for multi-type 
disaster in support of emergency responses and to distribute for 
detailed damage assessment. The test with QuickBird image of 
Ban Nam Ken, Phanga, Thailand produced a reasonably good 
result.  
 
The result from coarse level delineated the highly suspected 
damage areas and produced the focused boundaries for fine 
level processing. The fine level processing designed as a semi-
automatic approach then helps to explore the damage areas in 
further details and detect the non-collapsed buildings. The 
combination outcomes from both levels would enable the 
derivation of better damage ratio index. The solution was 
designed aiming at a parallel implementation, and detailed 
report of the computation time will be reported in next 
publication. However, to suit the available platform of various 
users, different way of implementation will be considered 
including multi-core CPU, GPU and grid platform. It is 
recommended to develop a suitable method for accuracy 
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assessment dealing with objects and in the context of damage 
mapping.   
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