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ABSTRACT: 

 

It has long been recognized that environment and climate may affect the transmission of infectious diseases.  The effects are most 

obvious for vector-borne infectious diseases, such as malaria and dengue, but less so for airborne and contact diseases, such as 

seasonal influenza.  In this paper, we examined the meteorological and environmental parameters that influence the transmission of 

malaria, dengue and seasonal influenza.  Remotely sensed parameters that provide such parameters were discussed.  Both statistical 

and biologically inspired, processed based models can be used to model the transmission of these diseases utilizing the remotely 

sensed parameters as input.  Examples were given for modelling malaria in Thailand, dengue in Indonesia, and seasonal influenza in 

Hong Kong. 

 

 

1. INTRODUCTION 

The transmission of infectious diseases is influenced by a 

myriad of factors.  Environmental, meteorological, social, 

economic, political and warlike conditions have all been shown 

to contribute to the occurrence and outbreaks of a large number 

of diseases.  Among these, the environmental and 

meteorological conditions are the factors that can be more 

easily quantified.  They can be conveniently measured 

repeatedly using remote sensing in either friendly or hostile 

territories. Other factors, on the other hand, often require 

substantial efforts to measure and can only be expressed 

qualitatively. 

 

Malaria is a parasitic disease that infects both humans and 

primates, and is endemic in most parts of the tropic, especially 

in the developing countries.  Among the continents, Africa has 

nearly ninety per cent of the malaria cases and deaths. But 

malaria is also a significant problem in South and Southeast 

Asia.  Malaria may still become a serious health issue for 

countries outside of the tropics where public health support is 

inadequate because of economic constraints or military 

conflicts. For example, since 1993 vivax malaria re-emerged in 

North Korea (Feighner 1998). Similarly, situated around 34°N 

with an arid climate, Afghanistan has approximately 0.41 to 0.6 

million cases annually (Youssef 2008 WHO-EMRO 2007), and 

is the country most endemic with malaria within the World 

Health Organization’s (WHO) Eastern Mediterranean Region. 

In this section, we will discuss malaria modelling and 

surveillance using remote sensing data. Examples are drawn 

from malaria in South Korea, Thailand, Indonesia and 

Afghanistan. 

 

It is estimated that half of the world’s population is at risk for 

malaria infection (RBM 2011). There are approximately 250 

million cases annually with 0.9 million deaths worldwide. In 

recent years, the malaria burden has been significantly reduced 

through concerted efforts of international and national public 

health organizations, and the generous contributions from 

developed nations and philanthropic foundations.  A major 

concern, however, is the emergence of artemisinin-resistant 

falciparum malaria that first appeared at the Thai-Cambodian 

border in 2007.  Eliminating or containing the drug resistant 

strains is essential to global malaria control.  Malaria is 

transmitted by infected female anophelines after taking blood 

meals from infectious humans.  Five plasmodium species are 

known to infect humans, including Plasmodium vivax, P. 

falciparum, P. malariae, P. ovali, and the more recently 

discovered P. knowlesi (Singh 2004).   

 

Similar to malaria, dengue fever and the more lethal dengue 

hemorrhagic fever are also mosquito-borne diseases.  They are 

caused by flavivirus that is transmitted by infected Aedes 

mosquitoes. The latter may lead to the dangerous dengue shock 

syndrome with a mortality rate as high as 30%.  Two fifths of 

the world’s populations are at risk.  Dengue vectors can breed 

in any small amount of water such as vases, flower pots, 

discarded containers, or used tires.  Hence it is challenging to 

implement larval control.  Unlike malaria, dengue is considered 

an urban disease.  Currently, dengue exists in Mexico and all 

Central American and Southeast Asian countries. There are four 

viral serotypes in the family of Flaviviridae. 

 

Influenza is a common viral respiratory disease.  Almost 

everyone gets infected one year or another.  It infects five to 

fifteen per cent of the world population and causes 250,000-

300,000 deaths each year (WHO 2009). Despite vaccination 

and the largely mild cases, the burden of influenza remains 

significant due to health care cost and the loss of productivity. 

In the United States alone, the annual seasonal influenza 

epidemic can cause up to 200,000 hospitalization and more than 

30,000 deaths (CDC 2010), the estimated economic burden 

based on the 2003 population is nearly US$90 billion (Molinari 
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et al., 2007). In addition to the significant burden of seasonal 

influenza, the persistent threat is that a pandemic causing strain 

may appear due to antigenic shift or reassortment. 

 

There are three types of influenza virus circulating in the world: 

A, B and C. Type A and B are the most commonly found in 

humans.  Type A is further classified into subtypes (e.g., H1N1) 

based on the types of hemagglutinin and neuraminidase on the 

surface of the virus. 

 

In order to accommodate the ever changing circulating 

influenza strain, vaccine composition recommendations are 

updated twice a year. The recommendations are made by the 

World Health Organization (WHO) through its Global 

Influenza Surveillance Network (GISN).  

 

 

2.  ENVIRONMENTAL DETERMINANTS 

2.1 Malaria and Dengue 

Many factors are known to contribute to malaria transmission, 

including meteorological and environmental conditions, 

socioeconomic status, military conflicts and natural disasters. 

Among these, meteorological and environmental factors are 

perhaps the most noticeable. For example, malaria transmission 

may increase with the arrival or the end of a rainy season, and 

living near forest or water bodies may pose greater risk of 

mosquito bites and getting malaria. The El Niño-Southern 

Oscillation (ENSO) is a quasi-periodic climatic cycle that 

occurs every three to seven years across the tropical Pacific 

Ocean, and which causes excessive precipitation or droughts, 

has been shown to promote malaria transmission (Kovats 2003). 

Aside from precipitation, temperature and humidity are also 

important factors. Warmer temperatures hasten larval and 

vector development, and prolong mosquito life span and its 

consequent ability to transmit malaria. Warmer air retains more 

moisture and improves mosquito survivorship, so is higher 

humidity. 

 

Vegetation has also been linked to malaria as it indicates the 

vector’s breeding sites. For example, Anopheles dirus is a forest 

breeder, and An. maculates and An. sawadwongpori are rice 

field breeders. The Normalized Difference Vegetation Index 

(NDVI) (Tucker 1979) is one of the indices for vegetation 

condition. It is defined as the difference between the responses 

from the infrared and the red bands normalized by their mean. 

In modelling infectious diseases, NDVI is used most often to 

infer the precipitation which the area received before the 

satellite measurements were taken. The spatial distribution of 

NDVI can also be used to differentiate among urban, peri-

urban, suburban and rural areas. Such information on the nature 

of the area is useful for malaria prevention and control.   

 

Like malaria, temperature, humidity and rainfall are the 

important environmental determinants for dengue transmission.  

However, their effects on dengue transmission may be less 

obvious than those for malaria transmission because dengue 

vectors can breed indoor. 

 

2.2 Influenza 

The spatiotemporal variation of influenza across latitudes 

suggests that climate and environmental factors may have roles 

in influenza transmission and pathogenesis. 

 

It is well known that influenza transmission in temperate 

climates is seasonal and peaks in the winter months. In the US, 

for example, influenza outbreaks often start as early as October, 

peak in February, and diminish by April or May; thus forming a 

distinct inter-annual oscillation pattern. In the tropics, there are 

significant influenza cases throughout the year, with one or two 

less distinct peak(s) whose timing varies geographically. It has 

been shown (e.g., Viboud et al., 2006) that influenza seasonal 

patterns vary with latitude, forming a traveling wave across the 

globe. Several studies that have explored the global migration 

pattern of influenza show varying travel pattern of influenza 

virus A migration out of the tropics and China; and migration 

between northern and southern hemispheres. Another study in 

Brazil showed that influenza starts in a low-population state 

near the equator during March-April, and travels southward 

towards temperate and more populous states (Alonso et al., 

2007).  Temperature, humidity and rainfall are among the 

factors that have been frequently implicated in influenza 

transmission. 

 

 

3. REMOTE SENSING MEASUREMENTS 

Satellite measurements of precipitation for estimating disease 

risks are most often derived from the Tropical Rainfall 

Monitoring Mission (TRMM) (Kummerow 1998). TRMM is a 

collaboration between the US and Japan. Japan built the 

precipitation radar (PR) and launched the spacecraft in 1999. 

There are five instruments on board: PR, TRMM microwave 

imager (TMI), Visible and Infrared Scanner (VIIRS), Cloud and 

Earth Radiation Energy Sensor (CERES), and Lighting Image 

Scanner (LIS). The main sensor that measures precipitation is 

TMI. Because the spatial resolution of the TRMM measurement 

is low, sometimes NDVI measured from a medium resolution 

satellite is used to infer the recent rainfall at a higher spatial 

resolution. Such inference is most effective for arid regions 

where little rainfall is received and vegetation growth is 

sensitive to rainfall, but less effective for regions with plenty 

rainfall. Land surface temperature and NDVI are both provided 

by the moderate resolution imaging spectroradiometer 

(MODIS). This sensor has thirty-six bands spanning the visible 

to the near-infrared wavelengths. Both the Terra and Aqua 

observatories are equipped with MODIS. NDVI, however, can 

be computed from any satellite instruments with red and 

infrared channels. However, because of the differences in band 

definitions, instrument characteristics, satellite orbits and 

measuring conditions, NDVI from different sensors must first 

be cross calibrated before they can be compared. In addition to 

the datasets described above, quite a few other satellites also 

provide data for ground cover classification, identification of 

potential larval habitats, and modelling malaria risks. For 

example, the well-known Landsat and SPOT series of satellites 

and the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) and the Advanced Land 

Imager (ALI) (USGS 2009) are some of the multispectral 

sensors used for health monitoring purposes. Microwave 

sensors like Radarsat and the Phased Array L-band Synthetic 

Aperture Radar (PALSAR) are used over areas that are 

obscured frequently by clouds (JAXA 2011). The geoscience 

laser altimeter system (GLAS)  is a light detection and ranging 

(LiDAR) sensor that is useful for differentiating vegetation 

types (NASA 2011). For high spatial resolution imagery, 

commercial data from IKONOS, QuickBird, or WorldView can 

be used (GeoEye 2011; DigitalGlobe 2011). 
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4. MODELING TECHNIQUES AND EXAMPLES 

Many factors including environmental and meteorological 

conditions affect the transmission of malaria, dengue and 

seasonal influenza. The environmental and meteorological 

conditions can indeed be considered the driving factors for 

these diseases when other factors are stable. This is especially 

evident for vector-borne diseases where the vector propagation 

is directly influenced by the environmental and meteorological 

conditions. This is the essential premise of why remote sensing 

can be used to predict disease risks.  In general, statistical and 

biological models can be used to predict disease risks.  Both 

types of models accept remotely sensed environmental and 

meteorological parameters as input.  In some applications, 

remote sensing not only can be used for predicting risks, but 

also for detecting and reducing risks. In addition, remote 

sensing-based model can be used to project disease risk under 

the impact of global warming. 

 

In general, statistical and mechanistic, or processed-based 

approaches are used to model disease risks based on satellite 

observations of meteorological and environmental parameters.  

In the statistical approach, epidemiological data are correlated 

with satellite data.  The unknown parameters in the models are 

determined using statistical goodness of fit criteria, such as 

mean squared errors or Akaike Information Criteria (AIC).  

Once the model is trained, it can then be applied to other 

situations than those used for deriving the model parameters.  

How the pathogens actually transmit the disease under different 

meteorological and environmental conditions is not explicitly 

modelled in this approach.  The common methods in this 

category include regression, time series analysis, and neural 

network.  Examples are given in the following for using neural 

network to model malaria cases in Thailand and dengue cases in 

Indonesia; using Autoregressive Integrated Moving Average 

(ARIMA) to model influenza in Hong Kong; and using a 

discrete event simulation model to simulate malaria prevalence 

among 23 households. 

 

4.1 Malaria in Thailand 

Figure 1 shows an example for using neural network to predict 

malaria cases for the border provinces in Thailand (Kiang et al., 

2006).  The objective is to predict malaria cases in the near 

future in order to forewarn public health stakeholders on the 

expected transmission intensity.  The main meteorological and 

environmental parameters used in modelling include 

precipitation, NDVI, and surface temperature.  Excellent 

agreement between the actual and hindcast case rates is seen. 

 

 
 

Figure 1.  Actual (left) and predicted (right) malaria  

case rates in Thailand 

 

4.2 Dengue in Indonesia 

Figure 2 shows the results for using ARIMA to model the 

dengue cases in Jakarta, Indonesia using TRMM data and dew 

point temperature.  All data except the last 12 months were used 

for the training.  The last 12 months of data were used for 

deriving prediction accuracy.  Close association between the 

actual and prediction distributions can be seen.  Inconsistency 

between model output and the data at the final year is 

potentially due to the vector control effort that was 

implemented at the beginning of year 2005 and not accounted 

for in the model. 

 

 

 
 

Figure 2.  Modelled dengue cases in Jakarta, Indonesia 

 

4.3 Influenza in Hong Kong 

Figure 3 shows the results for using ARIMA  and radial basis 

function neural network to model seasonal influenza cases in 

Hong Kong (Soebiyanto et al., 2010).  Data from the last 

influenza season was used for testing modelling accuracy.  The 

rest of the data were used for training.  Input to these models 

include land surface temperature, rainfall, air and dew point 

temperature. 

 

 
 

Figure 3.  Modelled influenza cases in Hong Kong 

using ARIMA and radial basis function neural network 

 

4.4 Prevalence of Malaria in a Cluster of Households 

Figure 4 shows the expected malaria prevalence rate among 23 

households and 92 residents using a discrete event simulation 

model.  In this model, detailed interactions among vector life 

cycles, plasmodium sporogonic cycles, and human infection 

cycles were simulated under the influences of intrinsic and 

extrinsic effects.  The simulations compare well with the shaded 

field measurements for vivax and falciparum malarias (Zollner, 

unpublished data). 
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Figure 4.  Simulated and observed malaria prevalence 

in a cluster of households 

 

 

5. CONCLUSION 

We have shown that remote sensing data can be used to model 

the risks for malaria, dengue, and seasonal influenza.  These 

models can provide early warning and improve the response of 

public health organizations to these diseases.   

 

 

6. REFERENCES 

References from Journals:  

Alonso, W.J., Viboud, C., Simonsen, L., Hirano, E.W., 

Daufenbach, L.Z. & Miller, M.A. 2007. Seasonality of 

influenza in Brazil: a traveling wave from the Amazon to the 

subtropics. Amer. J Epidemiol. 165(12), pp. 1434-42. 

Feighner, B.H., Pak, S.I., Novakoski, W.L. & Kelsey, L.L. 

1998. Reemergence of plasmodium vivax malaria in the 

Republic of Korea. Emer. Infect. Dis. 4(2), pp. 295-297. 

Kiang, R., Adimi, F., Soika, V., Nigro, J., Singhasivanon, P., 

Sirichaisinthop, J., Leemingsawat, S., Apiwathnasorn, C. & 

Looareesuwan, S. 2006. Meteorological, environmental remote 

sensing and neural network analysis of the epidemiology of 

malaria transmission in Thailand. Geospatial Health 1, pp.71-

84. 

Kovats, R.S., Bouma, M.J., Hajat, S., Worrall, E. & Haines, A. 

2003. El Niño and health. Lancet 362. pp.1481-89. 

Kummerow, C., Barnes, W., Kozu, T., Shiue, J. & Simpson, J. 

1998. The Tropical Rainfall Measuring Mission (TRMM) 

sensor Package. J. Atmos. & Oceanic Tech. 15. pp.809-817. 

Molinari, N.A., Ortega-Sanchez, I.R., Messonnier, M.L., 

Thompson, W.W., Wortley, P.M., Weintraub, E. & Bridges, 

C.B. 2007. The annual impact of seasonal influenza in the US: 

Measuring disease burden and costs. Vaccine 25(27). pp.5086-

96. 

Singh, B., Sung, L.K., Matusop, A., Radhakrishnan, A., 

Shamsul, S.S., Cox-Singh, J., Thomas, A. & Conway, D.J. 

2004. A large focus of naturally acquired Plasmodium knowlesi 

infections in human beings. Lancet 363(9414). pp.1017-1024. 

Soebiyanto, R.P., Adimi, F. & Kiang, R.K. 2010. Modeling and 

predicting seasonal influenza transmission in warm regions 

using climatological parameters. PLoS ONE 5(3). e9450. 

Tucker, C.J. 1979. Red and photographic infrared linear 

combinations for monitoring vegetation. Rem Sens. Environ. 8. 

pp.127-150. 

Viboud, C., Alonso, W.J. & Simonsen, L. 2006. Influenza in 

tropical regions. PLoS Med 3(4). e89. 

Youssef, R., Safi, N., Hemeed, H., Sediqi, W., Naser, J.A. & 

Butt, W. 2008. National malaria indicators assessment. Afghan. 

Ann. Malaria J. 1(1). pp.37-49.      

References from Books: 

Smith, J., 1989.  Space Data from Earth Sciences.  Elsevier, 

Amsterdam, pp. 321-332. 

References from Other Literature: 

WHO-Regional Office for the Eastern Mediterranean. 2007. 

Strategic plan for malaria control and elimination in the WHO 

Eastern Mediterranean Region 2006-2010. Cairo. 

References from websites:   

CDC, 2010. Key facts about seasonal influenza. 

http://www.cdc.gov/influenza/keyfacts.htm 

DigitalGlobe Inc., 2011. QuickBird and WorldView. 

http://www.digitalglobe.com 

GeoEye, 2011. Ikonos products and specifications. 

http://www.geoeye.com 

JAXA. 2011. PALSAR. 

http://www.eorc.jaxa.jp/ALOS/en/about/palsar.htm 

NASA, 2011. ICESat. http://icesat.gsfc.nasa.gov 

Roll Back Malaria, 2011. http://www.rbm.who.int 

USGS, 2009. Earth Observing 1. http://eo1.usgs.gov 

WHO, 2009. Influenza (Seasonal) Fact Sheet. 

http://www.who.int/mediacentre/fact sheets/fs211/en/ 

 

7. ACKNOWLEDEMENTS 

This work was supported by NASA Applied Sciences Public 

Health Program and CDC Influenza Division. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B8, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

86

http://www.cdc.gov/influenza/keyfacts.htm
http://www.digitalglobe.com/
http://www.geoeye.com/
http://icesat.gsfc.nasa.gov/
http://www.rbm.who.int/
http://eo1.usgs.gov/
http://www.who.int/mediacentre/fact%20sheets/fs211/en/

