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ABSTRACT: 

In Taiwan, the average annual rainfall is about 2,500 mm, about three times the world average. Hill slopes where are mostly under 

meta-stable conditions due to fragmented surface materials can easily be disturbed by heavy typhoon rainfall and/or earthquakes, 

resulting in landslides and debris flows. Thus, an efficient data acquisition and disaster surveying method is critical for decision 

making. Comparing with satellite and airplane, the unmanned aerial vehicle (UAV) is a portable and dynamic platform for data 

acquisition. In particularly when a small target area is required. In this study, a fixed-wing UAV that equipped with a consumer 

grade digital camera, i.e. Canon EOS 450D, a flight control computer, a Garmin GPS receiver and an attitude heading reference 

system (AHRS) are proposed. The adopted UAV has about two hours flight duration time with a flight control range of 20 km and 

has a payload of 3 kg, which is suitable for a medium scale mapping and surveying mission. In the paper, a test area with 21.3 km2 in 

size containing hundreds of landslides induced by Typhoon Morakot is used for landslides mapping. The flight height is around 

1,400 meters and the ground sampling distance of the acquired imagery is about 17 cm. The aerial triangulation, ortho-image 

generation and mosaicking are applied to the acquired images in advance. An automatic landslides detection algorithm is proposed 

based on the object-based image analysis (OBIA) technique. The color ortho-image and a digital elevation model (DEM) are used. 

The ortho-images before and after typhoon are utilized to estimate new landslide regions. Experimental results show that the 

developed algorithm can achieve a producer’s accuracy up to 91%, user’s accuracy 84%, and a Kappa index of 0.87. It demonstrates 

the feasibility of the landslide detection algorithm and the applicability of a fixed-wing UAV for landslide mapping. 

 

1. INTRODUCTION 

1.1 Motivation 

On average, there was 3 to 4 typhoons attack Taiwan Island in 

one year. Generally, each typhoon brings more than 800 mm 

cumulative rainfall. In Aug. 7-9, 2009, Typhoon Morakot struck 

Taiwan for three days and brought a maximum cumulative 

rainfall of 2,542 mm. It triggered more than ten thousand 

landslides in the mountainous area and cause serious flooding at 

the plains. According to the official report from the Department 

of Household Registration, Ministry of the Interior, Taiwan, this 

catastrophic typhoon has caused 699 death. According to the 

reports from many agencies, the total area of landslides induced 

by Typhoon Morakot is ranging from 183.1 km2 to 396 km2 in 

size. Among them two agencies utilized Formosat-2 satellite 

images and change detection technique for landslide mapping 

but the results are quite different; one is 259 km2 and the other 

349 km2. Although, a fast landslide surveying result can be 

achieved using satellite imagery, the difference in area, i.e. 90 

km2, is high, thus an accurate and reliable total landslide area 

still remains unknown. For some applications, such as landslide 

susceptibility, forestry and water resource management, precise 

landslide coverage is necessary. Meanwhile, the smallest 

detectable area is also important because a small landslide also 

has high possibility that will be broaden by another heavy 

rainfall. 

 

1.2 Aims  

There are many remote sensing platforms that can be used for 

collecting landslide imagery, such as satellite, airborne, car, 

unmanned aerial vehicle (UAV), human being, etc. In this 

research, a Digital Single Lens Reflex (DSLR) camera installed 

on a fixed-wing UAV is suggested for data collection. The 

reason we choose UAV is it has high mobility and high image 

resolution comparing to satellite and airborne imagery. 

Although UAV has shorter duration time and smaller ground 

coverage, for a small target area it is sometime more cost-

effective than other platforms.  

 

1.3 Related work 

In terms of landslide study, different remote sensing data are 

available including both terrestrial- and aerial-based 

photography and laser scanning, and satellite-based optical and 

synthetic aperture radar imagery (Delacourt et al., 2009). 

Although digital stereoscopic aerial photography is still often 

used to derive diagnostic features (e.g., disruptions in vegetation 

and protrusion of scarps) and qualitative characteristics (e.g., 

number, distribution, and type) (Metternicht et al., 2005), laser 

scanning technology has attracted more interest in landslide 

studies in recent years. These studies include (1) landslide 

detection and characterization, (2) hazard assessment and 

susceptibility mapping (Metternicht et al. 2005), (3) modelling, 

and (4) monitoring (Arattano and Marchi, 2008). A 

comprehensive review of laser scanning technology and its 

applications in landslides investigation can be found in 

(Jaboyedoff et al., 2010). 
 

On the other hand, using image analysis for landslide study is 

still an important technology and wildly used in the field of 

earth science, because visual inspection cannot be avoided. In 

contrast to pixel-based image classification, the object-based 

image analysis (OBIA) partition land-cover parcel into image 

objects and classified by expert rules. The result is more 

reasonable comparing to pixel-based classification method 

which generally creates pepper-salt effect and is difficult to be 

identified on-site. Object-based image analysis is particularly 

useful for high-resolution image that contains homogeneous 
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area. OBIA, some researchers call GEOBIA (geographic object-

based image analysis) (Blaschke, 2010), is a knowledge-driven 

method, whereby spectral, morphometric, and contextual 

diagnostic features of an object can be integrated based on 

expert knowledge (Barlow et al., 2003). It allows the user 

incorporating both spectral information (tone, color) and spatial 

features (size, shape, texture, pattern, relation to neighbouring 

objects) which is similar to human visual interpretation from 

images (Laliberte et al., 2004).  

 

1.4 Overview 

The goal for this study is to adopt the Object-based Image 

Analysis technique for the detection of landslide coverage from 

the collected UAV DSLR images. Figure 1 illustrates the 

flowchart of this study. For precise mapping, a traditional aerial 

triangulation procedure is performed and the images were ortho-

rectified before mosaicking. In order to estimate the coverage of 

rainfall-induced new landslides, a pre-event airborne RMK TOP 

15 ortho-image is compared. In the beginning, two landslide 

map, i.e. pre-event and post-event, are produced independently 

by integrating the ortho-image with a digital elevation model 

(DEM) into eCognition Developer©. Then, the difference 

between them is considered as new landslides. 

 

 
Figure 1. Flow-chart of new landslides detection 

 

2. UAV IMAGERY 

2.1 Specification of the Used UAV 

In this study, a fixed-wing UAV (as shown in Figure 2) that 

equipped with a consumer grade digital camera, i.e. Canon EOS 

450D, a flight control computer, a Garmin GPS receiver and an 

attitude heading reference system (AHRS) are proposed. The 

adopted UAV has two hours of flight duration time and has 3 kg 

of payload, which is suitable for a medium scale mapping and 

surveying mission. For the purpose of out-of-sight flight a 

ground control station is designed (as shown in Figure 2) which 

can perform a flight control range of 20 km and real-time video 

signal downlink within 15 km radius. 

 

 
Figure 2. The adopted UAV and ground control station. 

2.2 Specification of the Acquired Imagery 

The Canon EOS 450D digital camera has an image size of 4272 

x 2848 and 5.2 m pixel size. The focal length of adopted lens 

is about 24 mm. Since the average above ground flying height is 

around 1,400 meters and the average terrain height is 610 

meters, it results in a nominal ground sampling distance (GSD) 

of 17 cm. Thus, after ortho-rectification the image was 

resampled into 20 cm of GSD. The acquired images are stored 

in a memory card using JPEG image format. The total of images 

used in this study is 158. 

 

3. METHODOLOGY 

The detail of the developed algorithms and how to perform 

accuracy assessment is described in the following sections. 

 

3.1 Landslide Detection  

In contrary to conventional OBIA classification scheme that 

perform image segmentation and classification only once, in 

this study a three-stage landslide classification scheme is 

proposed. The concept is to search for reliable landslide seeds in 

advance and then growing the landslide regions based on the 

detected landslide seed regions. Finally, another multi-

resolution segmentation that focuses on the detected landslides 

is performed in order to remove any vegetation within the 

detected landslide. Figure 3 illustrates the diagram of the 

developed algorithm for landslide detection. Detail description 

about the used algorithm and image features is described in the 

following. 

 

 
Figure 3. The proposed OBIA landslide detection algorithm. 

 

3.1.1 Multiresolution segmentation 

The multiresolution segmentation is a optimization procedure 

which locally minimizes the average heterogeneity of image 

objects for a given resolution and maximizes their respective 

homogeneity. The segmentation used in eCognition Developer 

is a bottom-up pairwise region merging algorithm, which starts 

with single image object (i.e. one pixel) and consecutively 

merging neighbour pixels or image objects, based on the chosen 

scale, spectral, and shape parameters. A larger scale parameter 
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will result in larger image objects. On the other hand, choosing 

smaller scale will lead to over-segmentation and small objects 

(Laliberte et al., 2004). Although there are some tools for scale 

parameter estimation, it is difficult to find an appropriate value 

of scale parameter without performing trial-and-error test 

(Dragut and Blaschke, 2006).  

 

In this paper, we also adopt the trial-and-error attempt to 

determine the scale parameter. During the multiresolution 

segmentation, except for the color information (Red, Green, and 

Blue) the topographic feature (Slope) is used as well. The slope 

gradient is derived from a 5-meters DEM. For landslide 

detection, i.e. we classify ground objects into landslide and non-

landslide classes, a series of filtering process are applied after 

segmentation by means of Green-Red Vegetation Index (GRVI), 

Density and Brightness. The definition of these indices will be 

discussed later. 

 

In addition to conventional single step segmentation and 

classification, this paper proposes the use of multiple steps 

image segmentation and classification for precise landslide 

mapping. At the first step, the segmentation on pixel level and 

classification using some rules similar to conventional OBIA 

procedure is adopted, the purpose is to detect reliable and small 

landslide regions that have high possibility of landslides. At the 

second step, another multiresolution segmentation on object 

level is performed using region growing in order to expand the 

landslides as large as possible by choosing a larger scale 

parameter. However, the Green channel is ignored during 

region growing in order to avoid miss-inclusion of vegetation 

into landslide. The Density feature is no longer use after first 

step, because the road have already avoided. At the third step, 

the multiresolution segmentation on object level is applied again, 

but focus on the resulting landslide regions. The purpose for this 

additional step is to remove the vegetation region enclosed by a 

larger landslide. Thus, a smaller scale parameter is assigned, the 

Green channel is considered again, and the weighting of Slope 

is higher than the color information. 

 

3.1.2 GRVI  

Since the adopted ortho-image does not cover near-infrared 

channel, the Green-Red Vegetation Index (GRVI) (Motohka et 

al., 2010; Tucker, 1979) was adopted as the spectral feature in 

this study. The GRVI is computed from the Green and Red 

channels, as shown in equation (1).  

RedGreen

RedGreen
GRVI




                       (1) 

Its value ranges from -1 to +1, which is useful for identifying 

green vegetation (GRVI > 0) , soils (GRVI < 0) , and water/snow 

(GRVI close to 0) (Motohka et al., 2010). Because the images 

used in this study were not radiometrically calibrated but 

enhanced, we considered the estimated GRVI a relative value 

not an absolute one. They are used to remove the vegetation 

regions from the segmentation results in the proposed algorithm. 

 

3.1.3 Density 

According to the reference book of eCognition Developer©, the 

Density feature describes the distribution in space of the pixels 

of an image object. The most "dense" shape is a square; the 

more an object is shaped like a filament, the lower its density. 

The Density is calculated by the number of pixels forming the 

image object divided by its approximated radius, based on the 

covariance matrix (detail explanation can be found from the 

reference book of eCognition Developer©). This is an important 

feature to filter out the road, which are shaped like a filament 

and observed without vegetation, from the bare ground objects. 

 

3.1.4 Brightness  

In eCognition Developer©, the Brightness means the weighting 

average of image intensity for each image object. Due to the 

fact that the used images have been radiometrically enhanced 

and color balanced during the image mosaicking in order to 

increase visual effect, thus the landslides area has higher 

intensity than the other image objects, especially for the 

vegetation. In order to filter out the vegetation, somewhere the 

Brightness feature is more significant and useful when 

comparing with the GRVI. 

 

3.2 New Landslides  

As shown in figure 1, the rainfall induced new landslide is 

simply the subtraction of “pre-event landslides” from “post-

event landslides”.   

 

3.3 Accuracy Assessment 

In this study, the ground truth (reference) is generated by visual 

inspection and selected manually from the multiresolution 

segmentation results. Considering the fact that the landslide is 

mass movement from slope terrain, thus during the selection of 

landslide objects, a 3D dynamic manipulated landscape is 

utilized for comparison by rendering the ortho-image on top of 

the DEM. However, due to shadow will deteriorate the image 

quality and affect the grey level distribution; the landslides 

under the shadow of mountains were eliminated. The ground 

truth of “new landslides” is obtained by the subtraction of “pre-

event landslide ground truth” from “post-event landslide ground 

truth”. The accuracy assessment is performed by a confusion 

matrix provided by the eCognition Developer© that contains 

only two classes, i.e. landslide and non-landslide. The 

producer’s accuracy, user’s accuracy, and Kappa index are 

estimated for performance evaluation of landslide detection. 

 

4. CASE STUDY & DISCUSSIONS 

4.1 Study Area  

A test site with 21.3 km2 in size, containing more than hundreds 

of landslides induced by Typhoon Morakot is used for landslide 

surveying. It is located at the southern part of Taiwan Island on 

a mountainous area. Figure 4 illustrate two pseudo color map of 

the elevation and slope variation for the test site. The terrain 

elevation varies from 580 to 1,600 meters and the slope gradient 

ranges from 0 to 76 degrees. In the figure, the blue tends to 

smaller value whereas the red tends to higher value. The land-

cover types within the study area are majorly forest, river, bare 

soil (including landslides), farm-land, roads, and a few man-

made buildings. 

 

4.2 Accuracy Assessment  

The classification of the image objects was performed by using 

membership functions, based on fuzzy logic theory combined 

with user-defined rules. A membership function ranges from 0 

to 1 for each object’s feature values with regard to the object’s 

class. Table 1 tabulates all parameters used in the developed 

algorithm including the accuracy assessment results and some 

statistics of the detected landslides for both pre- and post-event 

cases. In this table, the symbols “<” and “>” mean “fuzzy 

smaller than” and “fuzzy larger than” that are within a specified 

upper and lower limits. For example, “GRVI ( < ) 0.01 ~ 0.03” 

means any image object has average GRVI value fuzzily smaller 
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than (0.01~0.03) will be classified as possible landslides. The 

values (0.01~0.03) are the lower and upper limits of GRVI in 

the smaller fuzzy curve and corresponding to membership 

function (1 ~ 0). On the contrary, “Slope ( > ) 25~30” means 

any image object has average Slope fuzzily greater than (25~30) 

degrees will be classified as possible landslides. The values 

(25~30) are the lower and upper limits of Slope in the larger 

fuzzy curve and corresponding to membership function (0~1). 

 

 
(a) elevation                      (b) slope 

Figure 4. Pseudo color of elevation and slope variation of the 

test site. The blue tends to smaller value whereas the red tends 

to higher value. 

 

Figure 5 illustrates the final landslide detection results overlaid 

on the image taken before Typhoon Morakot. On the other hand, 

figure 6 demonstrate the results after Typhoon Morakot. The red 

polygons are the detected landslides. By visual inspection, one 

may realize that the detection results are almost correctly 

overlaid on the corresponding landslides.  

 

4.3 Discussions 

4.3.1 Detected landslides 

Table 1 reveals the total area of the landslides after Typhoon 

Morakot is 129 hectares and the induced new landslides is 94.4 

hectares. It means that the total area of landslides has increased 

for 3.7 times after Typhoon Morakot.  

 

4.3.2 Overall accuracy 

In table 1, all three stages of classification and accuracy 

assessment results are demonstrated as well. We realize that the 

proposed landslide detection scheme for post-event data can 

achieve up to 91% of producer’s accuracy, 84% of user’s 

accuracy, and a Kappa index of 0.87. Figures 7 and 8 show the 

trend of accuracy assessment are improved including the 

producer’s accuracy, user’s accuracy and Kappa index. One 

may observed that those three indices move from stage 1 to 3 

toward to similar accuracy. That means both commission and 

omission errors are minimized and the overall accuracy was 

maximized through the suggested three-stage classification 

scheme.  

 

4.3.3 Slope 

A preliminary analysis for the slope distribution of detected 

landslides ranges from 26.4 degrees to 61.8 degrees. The lower 

bound is restricted by the input slope limitation during the 

classification stage. The upper bound reflects the topographic 

feature of the detected landslides. Omission might be found 

along the valley with lower terrain slope and the mud-flow 

happened frequently. 

 
Figure 5. Landslide detection results (red) overlaid on the used 

aerial image taken before Typhoon Morakot. 

 
Figure 6. Landslide detection results (red) overlaid on the used 

UAV image taken after Typhoon Morakot. 
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Figure 7. Accuracy improvement of pre-event case. 

 

 
Figure 8. Accuracy improvement of post-event case. 

 

4.3.4 Road 

The roads obtain similar spectral feature to the bare ground but 

different shape, thus they can be separated from susceptible 

landslides using the Density feature easily at the first stage. 

Figure 9 depicts the landslide detection results that remove the 

roads effectively.  

 
Figure 9. Roads are removed from susceptible landslides (blue). 

 

4.3.5 GRVI & Brightness 

The fallow, i.e. farm-land in restoration period that has no 

vegetation, located on the slope terrain has similar spectral and 

topographic characteristic to the landslide. Thus, it is difficult to 

remove them from the susceptible landslides. Since the adopted 

vegetation index is a relative value and dependent on the input 

image quality and pre-processing method, such as image 

enhancement or color adjustment, the GRVI cannot perfectly 

identifying vegetation area. On the other hand, the Brightness is 

somewhere more useful to distinguish the landslide from farm-

land and forestry. 

 

4.3.6 Shadow 

Since shadow will degrade the image quality and introduce 

different grey level distribution, thus they were ignored during 

the classification stage. Figure 10 illustrates one example of 

shadow effect that affect the landslide detection. One may found 

some landslides under the shadow are ignored. 

 
Figure 10. Shadow effect that degrade the landslide detection 

results (blue). 

 

4.3.7 Sensor 

Since the used sensors have different spatial resolution and 

spectral response, the image size for UAV / Canon EOS 5D 

Mark 2 image is 3 times larger than the one taken by Airborne / 

RMK TOP 15. In the meantime, due to a three-stage 

segmentation and classification process is suggested; the total of 

process time has increased three times of conventional 

workflow. Since the commission and omission errors were 

minimized, the overall classification accuracy has increased, 

and the proposed scheme is in proceed in fully automatic way, 

the drawback of intensive computation time is acceptable and 

can be solved by more powerful computer. 

 

5. CONCLUSIONS 

For landslide mapping purpose, this paper suggests the use of a 

fix-wing UAV for image collection. The landslide detection 

procedure is performed fully automatically, except for 

parameters setup, through an object-based image analysis 

algorithm.  The input data is simply the ortho-image and digital 

elevation model, but a three-stage segmentation and 

classification scheme is proposed. Experimental results show 

that the total area of the landslides after Typhoon Morakot is 

129 hectares which is 3.7 times of landslide area before the 

event. In accuracy assessment, the developed landslide 

detection algorithm can achieve up to 91% of producer’s 

accuracy, 84% of user’s accuracy, and a Kappa index of 0.87. 

Comparing with the accuracies obtained from all three stages, 

the overall accuracy is maximized due to the commission and 

omission errors are minimized. It demonstrates that the 

proposed three-stage classification scheme is applicable and has 

high potential for precise landslide mapping purpose. 
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