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ABSTRACT:

This paper presents practical methods to improve the flight performance of an unmanned multi-rotor helicopter by using an efficient
control allocation strategy. The flying vehicle considered is an hexacopter. It is indeed particularly suited for long missions and for
carrying a significant payload such as all the sensors needed in the context of cartography, photogrammetry, inspection, surveillance and
transportation. Moreover, a stable flight is often required for precise data recording during the mission. Therefore, a high performance
flight control system is required to operate the UAV. However, the flight performance of a multi-rotor vehicle is tightly dependent on
the control allocation strategy that is used to map the virtual control vector v = [T,L,M,N ]T composed of the thrust and the torques
in roll, pitch and yaw, respectively, to the propellers’ speed. This paper shows that a control allocation strategy based on the classical
approach of pseudo-inverse matrix only exploits a limited range of the vehicle capabilities to generate thrust and moments. Thus, in
this paper, a novel approach is presented, which is based on a weighted pseudo-inverse matrix method capable of exploiting a much
larger domain in v. The proposed control allocation algorithm is designed with explicit laws for fast operation and low computational
load, suitable for a small microcontroller with limited floating-point operation capability.

1 INTRODUCTION

FUTURE generations of unmanned aerial vehicles (UAVs) will
be capable of carrying tasks such as cartography, photogramme-
try, surveillance, monitoring, inspection or transportation. To this
end, new types of vehicles can be used, such as multi-rotor heli-
copters, which are capable of lifting a significant payload while
maintaining their flight stability. For example, the six-rotor heli-
copter shown in Fig. 1 – called Hexacopter – used in our Labo-
ratory, can lift off a payload of about 1 kg. Therefore, the vehicle
can be equipped with a selection of sensors and instruments to
perform the desired task. This additional payload may signifi-
cantly change the weight distribution and the flight performance
of the vehicle. Robust flight controllers are necessary to safely

Figure 1: Hexacopter in use in the I3S Laboratory

operate the UAV, in particular in urban areas, despite uncertain-
ties in the knowledge of the weight, the inertia matrix, the dynam-
ics of the payload itself, and aerodynamic disturbances (Rudin
et al., 2011). In addition, the hexacopter is an appealing plat-
form to increase flight safety, since a certain level of stability can
be maintained despite certain motor failure(s). In the case of a
multi-rotor helicopter, the performance of the flight control sys-
tem is strongly dependent on the control allocation strategy. It
consists in computing each motor speed so as to produce the de-
sired thrust and moments in roll, pitch, and yaw as shown in Fig.
2. Several methods for control allocation have been described
in the literature: direct control allocation (Durham, 1993), daisy
chaining (Buffington and Enns, 1996), and the linear program-
ming method (Ikeda and Hood, 2000). In conventional methods

((Bodson, 2002), (Harkegard, 2003)), the control allocator solves
the following (possibly underdetermined) constrained system of
equations, which may be regarded as a mapping in the controlled
system g(δ(t)) = v(t), with the true actuator control signals
δ(t) ∈ RN and N being the number of actuators. After lin-
earization, the mapping equation may be rewritten in the standard
formulation of the constrained linear control allocation problem:

Aδ(t) = v(t),

δ i(t) ≤ δi(t) ≤ δi(t),

with the constraints

δ i(t) = max{δi, min, ρi, down Ts + δi(t− Ts)},
δi(t) = min{δi, max, ρi, up Ts + δi(t− Ts)},

where δi,max, δi,min are the ith actuator position limits, ρi,up
and ρi,down are the ith actuator rate limits, and Ts is the sam-
pling time of the digital control system. Note that in the context
of this work, actuators’ dynamics are not considered. The main
technique these methods have in common is solving a constrained
optimization problem. The pseudo-inverse redistribution method
((Bodson, 2002), (Jin, 2005)) is another technique, which makes
use of a pseudoinverse computation of the control input matrix
A. Although it does not always provide an optimal solution, it is
usually faster than the other methods.

The greatest benefit of the control allocation approach is achieved
in over-actuated systems. Using control allocation, the design
of the control system can be separated into the derivation of the
control laws and the design of a control allocator. This approach
offers the following three advantages:

1. The actuator constraints, such as speed and speed-rate lim-
its, can be taken into account. In case one actuator is sat-
urated, the remaining actuators can be used to produce the
desired control effort.

2. Control allocation takes advantage of the system’s redun-
dancy and allows the system to be optimized for certain ob-
jectives.
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3. In cases of actuator failures, a supervision controller can re-
configure the behavior of the control allocator in order to
compensate for those failures, without the need for redesign-
ing the control laws.
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Figure 2: Control allocation

A literature survey shows that most of the control allocation tech-
niques have mostly been applied to airplanes having redundant
control surfaces. To our knowledge, control allocation has rarely
been discussed for multi-rotor helicopters and in particular for an
hexacopter as described in this paper.

In the case of multi-rotor helicopters, the control allocation prob-
lem is summarized as follows:

1. given a virtual control input vector vcmd = [T,L,M,N ]⊤cmd

generated by the flight controller,
2. find the set of propeller speeds Ω̂ := [ω̂2

1 ; · · · ; ω̂2
n]

⊤, where
the number of propellers is n,

3. such that vcmd = AΩ̂, with the constraints ω2
min ≤ ω̂2

i ≤
ω2
max, ∀i, i = 1 . . . n.

For multi-rotor vehicles, control allocation is classically done by:

1. computing the pseudo-inverse of the matrix A in Eq. (3),
2. saturating the computed propeller speeds in between the min-

imum and the maximum propeller speeds possible.

The key contributions of this paper are:

1. to show that a control allocation strategy based on the classi-
cal approach of pseudo-inverse only exploits a limited range
of the vehicle capabilities to generate thrust and moments,

2. a novel approach is presented which is based on a weighted
pseudo-inverse method capable of exploiting a much larger
domain achievable in v,

3. and finally, the control allocation algorithm is formulated
in terms of explicit laws for fast operation and low com-
putational load, suitable for a microcontroller with limited
computation capability (Ducard et al., 2006).

2 CONTROL ALLOCATION: PROBLEM DEFINITION

In the case of multi-rotor helicopters such as those represented in
Fig. 3, control allocation consists in calculating each propeller
speed to generate the desired total thrust T and the moments in
roll, pitch and yaw, L,M ,N , respectively. Consider a practical
case of an helicopter with n rotors, where the speed ωi of each
motor i (i = 1, 2, · · · , n) is lower and upper bounded by the
positive numbers ωmin and ωmax respectively, or equivalently

0 < ω2
min ≤ ω2

i ≤ ω2
max, ∀i.

Defining Tmin := nµω2
min, Tmax := nµω2

max, one easily veri-
fies that

Tmin ≤ T ≤ Tmax . (1)

The coefficients µ and κ (used below) characterize the efficiency
of a propeller to generate thrust and yaw torque, respectively
(Hamel et al., 2002). The arm-length of the vehicle is l.

2.1 Quadricopter Case

In the case of a quadricopter shown in Fig. 3, four motor speeds
need to be computed. The mapping matrix A between propellers’
speed and the vector v is shown in Eq. 2. Control allocation is
done by computing the inverse of the matrix A, such that the
commanded propeller speeds are calculated with Ωc = A−1vc.

T
L
M
N


︸ ︷︷ ︸

v

=


µ µ µ µ
0 −µl 0 µl
µl 0 −µl 0
−κ κ −κ κ


︸ ︷︷ ︸

A


ω1

2

ω2
2

ω3
2

ω4
2


︸ ︷︷ ︸

Ω

(2)

Figure 3: Multi-rotor helicopter configurations: quadricopter in
a), hexacopter in b)

2.2 Hexacopter Case

The hexacopter’s total thrust force T and torque control inputs
L,M,N are related to the six motors’ speed by the following
equation


T
L
M
N


︸ ︷︷ ︸

v

=


µ µ µ µ µ µ

0 −
√

3lµ
2

−
√

3lµ
2

0
√

3lµ
2

√
3lµ
2

lµ lµ
2

− lµ
2

−lµ − lµ
2

lµ
2

−κ κ −κ κ −κ κ


︸ ︷︷ ︸

A


ω1

2

ω2
2

ω3
2

ω4
2

ω5
2

ω6
2


︸ ︷︷ ︸

Ω

which can be rewritten in a more compact form as

v = AΩ. (3)

We wish to determine the desired speeds ω̂i of the six motors so
that v = AΩ̂, with Ω̂ := [ω̂2

1 ; · · · ; ω̂2
6 ]

⊤, and that

ω2
min ≤ ω̂2

i ≤ ω2
max, ∀i. (4)

3 CONTROL ALLOCATION FOR HEXACOPTERS:
CLASSICAL METHOD

3.1 Classical Pseudo-Inverse Matrix Method

A solution to find the desired motors’ speeds from the desired
command v is the pseudo-inverse matrix method. For instance,
since the inverse of AA⊤ exists, the matrix pseudo-inverse of A
is given by

A+ = A⊤(AA⊤)−1 =
1

6µl



l 0 2 −µlκ−1

l −
√
3 1 µlκ−1

l −
√
3 −1 −µlκ−1

l 0 −2 µlκ−1

l
√
3 −1 −µlκ−1

l
√
3 1 µlκ−1

 (5)
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and the desired motors’ speeds can be calculated according to

Ω̂ = A+v. (6)

3.2 Issues of the Classical Pseudo-Inverse Matrix Method

The most problematic issue of this classical pseudo-inverse ma-
trix method is that it does not take the constraints given in Eq.
(4) into account. For this issue, an existing popular solution con-
sists in saturating the output Ω̂ calculated from Eq. (6) according
to Eq. (4). However, due to the saturation of the output Ω̂, the
generated total thrust T̂ , roll torque L̂, pitch torque M̂ , and yaw
torque N̂ can be dramatically different from the desired thrust T
and desired torques L, M and N .

One verifies that the desired motors’ speeds ω̂i calculated accord-
ing to Eq. (6) satisfy the constraints (4) if and only if

Tminl ≤ T l ± 2M ∓ µlκ−1N ≤ Tmaxl

Tminl ≤ T l ∓
√
3L±M ± µlκ−1N ≤ Tmaxl

Tminl ≤ T l ∓
√
3L∓M ∓ µlκ−1N ≤ Tmaxl

. (7)

In particular, when N = 0, one verifies from (7) that{
2|M | ≤ min {(T − Tmin)l, (Tmax − T )l}

√
3|L|+ |M | ≤ min {(T − Tmin)l, (Tmax − T )l}

.

For a given value of thrust T satisfying Eq. (1), all set-points
{L,M} satisfying the above constraints form a symmetric cen-
tered hexagon (see section 4.2.1). In the next subsection, we will
show that the classical pseudo-inverse matrix method is very lim-
ited in exploiting the capabilities of the vehicle. Moreover, we
propose a novel weighted pseudo-inverse matrix method which
improves significantly the admissible zone for the control torques
L,M,N .

4 CONTROL ALLOCATION FOR HEXACOPTERS:
NEW PROPOSED WEIGHTED PSEUDO-INVERSE

MATRIX METHOD

4.1 General Formulation :

Let us introduce a diagonal weighting matrix
W := diag([a; b; c; a; b; c]), where a, b, c are non-negative and
satisfy the condition a+ b+ c = 1. The weighted pseudo-inverse
matrix proposed in the present paper is given by

A+
W=WA⊤(AWA⊤)−1=

1

6µl



3al 0 2 −µlκ−1

3bl −
√
3 1 µlκ−1

3cl −
√
3 −1 −µlκ−1

3al 0 −2 µlκ−1

3bl
√
3 −1 −µlκ−1

3cl
√
3 1 µlκ−1

 . (8)

The desired motors’ speeds ω̂i calculated with Ω̂ = A+
Wv satisfy

the constraints in Eq. (4) if and only if
Tminl ≤ 3aT l ± 2M ∓ µlκ−1N ≤ Tmaxl

Tminl ≤ 3b T l ∓
√
3L±M ± µlκ−1N ≤ Tmaxl

Tminl ≤ 3c T l ∓
√
3L∓M ∓ µlκ−1N ≤ Tmaxl

. (9)

Now it matters to determine the appropriate set (a, b, c) and the
domain of {T,L,M,N} such that the constraints given in Eq.
(9) are satisfied. For the clarity of the presentation, let us first
present our approach for the case where the desired yaw torque
control is set to zero (N = 0). In this case, only the controls of

the thrust T and torques L,M are considered, and the admissible
zone1 of {L,M} will be characterized in function of T in sec-
tion 4.2. Then, in Section 4.3 we extend the proposed approach
for the case where the desired yaw torque control is chosen dif-
ferent from zero (i.e., N ̸= 0).

4.2 Case of Null Desired Yaw Torque Control, i.e., N=0 :

In this case, one easily verifies from Eq. (9) that
2|M | ≤ min{(3aT−Tmin) l, (Tmax−3aT ) l}

|
√
3L−M | ≤ min{(3bT−Tmin) l, (Tmax−3bT ) l}

|
√
3L+M | ≤ min{(3cT−Tmin) l, (Tmax−3cT ) l}

(10)

The constraints given in Eq. (10) indicate that for each set (a, b, c)
and each commanded thrust T , the admissible values of the torque
controls L and M must stay inside a centered polygon, which
can be a quadrilateral or a hexagon depending on the case. For
instance, the classical pseudo-inverse matrix is a particular case
of the weighted pseudo-inverse matrix when a = b = c = 1/3.
In this case the admissible zone of {L,M} is a symmetric cen-
tered hexagon, which is named as “classical” admissible hexagon
of {L,M} as shown in Fig. 8.

For a given value of thrust T , by varying a, b, c under the condi-
tion a + b + c = 1 and in view of Eq. (10), one observes that
all possible admissible values of the set-point (L,M) fill a cen-
tered hexagon which is bigger than the hexagon of the classical
pseudo-inverse matrix case. In what follows, we will

• characterize the size of this “weighted” admissible hexagon
of {L,M} in function of T , and compare it with the “clas-
sical” admissible hexagon of {L,M},

• propose a method to calculate the set (a, b, c) from a given
set-point (L,M) which stays inside or on the borderlines of
the weighted admissible hexagon of {L,M}.

4.2.1 Admissible Hexagon {L,M} in function of T (with
null desired yaw torque control N = 0) This section is dedi-
cated to define geometrically the shape of the admissible hexagon
in terms of torques {L,M} for a given thrust T , when there is no
yaw control. To this end, we first need to define the normalized
variables for thrust and roll, pitch torque as follows:

e :=
Tmin

3T
, E :=

Tmax

3T
, L̄ :=

L

Tl
, M̄ :=

M

Tl
. (11)

In view of Eqs. (1) and (11), one has e ≤ 1/3 and E ≥ 1/3; and
Eq. (10) can be rewritten as

2|M̄ | ≤ 3 min {a− e,E − a}
|
√
3L̄− M̄ | ≤ 3 min {b− e,E − b}

|
√
3L̄+ M̄ | ≤ 3 min {c− e,E − c}

. (12)

Classical Case :
The case of control allocation via classical pseudo-inverse of the
matrix A corresponds to the situation where the coefficient a =
b = c = 1/3. In such a case, it is found from Eq. (12) that the
maximum normalized roll torque that the vehicle can generate is
L̄classical

max as follows:

L̄classical
max =

{
(1− 3e)/

√
3 if E + e ≥ 2/3

(3E − 1)/
√
3 if E + e < 2/3

,

1The term admissible zone means that for any set-point (L,M) out-
side this zone there does not exist any non-negative set (a, b, c) with
a + b + c = 1 such that the constraints given in Eq. (9) are satisfied.
See Fig. 8.
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which implies that the maximum actual roll torque achievable is
Lclassical

max = T lL̄classical
max yielding

Lclassical
max =


(T − Tmin)l√

3
if T ≤ Tmax + Tmin

2

(Tmax − T )l√
3

if T >
Tmax + Tmin

2

. (13)

Weighted Pseudo-inverse Case :
In the weighted pseudo-inverse matrix case, Eq. (12) yields that
the maximum normalized roll torque that the vehicle can generate
is L̄weighted

max as follows

L̄weighted
max =



√
3(1−3e)

2
if E ≥ 1−2e

√
3(E−e)

2
if

1−e

2
≤ E < 1−2e

√
3(3E−1)

2
if E <

1−e

2

, (14)

which is equivalent to L̄weighted
max =

√
3

2
α, with

α := min(1− 3e, E − e, 3E − 1). (15)

Based on the result of Eq. (14) and the definition of L̄ in Eq. (11),
the maximum actual roll torque achievable using the weighted
pseudo-inverse matrix is Lweighted

max as follows:

Lweighted
max = T lL̄weighted

max =

√
3(T − Tmin)l

2
if Tmin ≤ T ≤ Tmax + 2Tmin

3√
3(Tmax−Tmin)l

6
if

Tmax+2Tmin

3
<T ≤ 2Tmax+Tmin

3√
3(Tmax − T )l

2
if

2Tmax + Tmin

3
< T ≤ Tmax

.

(16)

By noticing that the diameter D of the admissible centered hexagon
of {L,M} is two times bigger than Lmax (i.e., D = 2Lmax),
one deduces from Eqs. (13) and (16) that the dimension (i.e.,
diameter) of the admissible hexagon of {L,M} in the proposed
weighted pseudo-inverse matrix method is always larger than that
of the classical pseudo-inverse matrix method (see Fig. 4). In-
deed, Fig. 4 shows the comparison between Lweighted

max and Lclassical
max

in function of the thrust T and it appears in particular that
Lweighted

max = 3/2Lclassical
max , for all T ∈

[
Tmin,

Tmax+2Tmin
3

]
or T ∈

[
2Tmax+Tmin

3
, Tmax

]
. In addition, there exists a par-

ticular value of the thrust, T = (Tmax + Tmin)/2, for which
the two methods provide the same maximum roll torque, i.e.,
Lweighted

max = Lclassical
max .

Figure 4: Comparison between the maximum roll torques achiev-
able in the weighted pseudo-inverse matrix case Lweighted

max (blue
line) and in the classical case Lclassical

max (red line) vs. thrust T

3D Characterization of the Admissible Zone {L,M} using
the Weighted Pseudo-Inverse Matrix method :
Figure 5 shows the evolution of the weighted admissible hexagon
of {L,M} in function of T (with N = 0). Its diameter D(T )
increases linearly for T ∈ [Tmin, (Tmax+2Tmin)/3], remains
constant for T ∈ [(Tmax+2Tmin)/3, (2Tmax+Tmin)/3], and de-
creases linearly to zero for T ∈ [(2Tmax+Tmin)/3, Tmax]. From
here, in a practical perspective, it is desirable to design hexa-
copters such that the total thrust magnitude T always remains
in the interval [(Tmax+2Tmin)/3, (2Tmax+Tmin)/3].

Figure 5: Weighted admissible hexagon of {L,M} in function of
T (with N = 0)

Figure 6: Borderlines appellation of the weighted admissible
hexagon of {L̄, M̄}

Now for a given value of T satisfying Eq. (1), let us characterize
the borderlines of the weighted admissible hexagon of {L,M} in
the case N = 0. To this purpose and in view of the definitions of
L̄, M̄ in Eq. (11), it suffices to determine the borderlines of the
weighted admissible hexagon of {L̄, M̄} (see Fig. 6). From Eq.
(14), the definition of α in Eq. (15), and the hexagonal form, one
easily deduces that :

• In the top (equiv. bottom) line : L̄ ∈
[
−
√

3α
4

,
√

3α
4

]
and

M̄ = 3α/4
(
equiv. M̄ = −3α/4

)
.

• In the top-left line: L̄∈
[
−
√

3α
2

, −
√

3α
4

]
, M̄=

√
3L̄+ 3α

2
.

• In the top-right line: L̄∈
[√

3α
4

,
√

3α
2

]
, M̄=−

√
3L̄+ 3α

2
.

• In the bottom-left line: L̄∈
[
−
√

3α
2

,−
√

3α
4

]
, M̄=−

√
3L̄−3α

2
.

• In the bottom-right line: L̄∈
[√

3α
4

,
√

3α
2

]
, M̄=

√
3L̄− 3α

2
.

Calculation of (a, b, c) in function of T, L,M :
From a given set (T,L,M), we wish to calculate the weight-
ing parameters a, b, c involved in the pseudo-inverse matrix A+

W

defined in Eq. (8). Without loss of generality, let us assume
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that L and M are chosen such that the set-point (L̄, M̄) stays
on the borderlines or inside the weighted admissible hexagon of
{L̄, M̄} specified previously. If this is not the case, one can eas-
ily project the set-point (L̄, M̄) onto this weighted admissible
hexagon along the direction joining {L̄, M̄} and the origin. In
what follows, we deal with i) the case where (L̄, M̄) stays on
the borderlines, and ii) the case where (L̄, M̄) stays inside the
weighted admissible hexagon of {L̄, M̄}.

I For each set-point (L̄, M̄) on the borderlines of the admissible
hexagon of {L̄, M̄}, we propose to calculate a, b, c for three pos-
sible cases, so that the constraints given in Eq. (10) are satisfied,
as follows :

◦ Case 1 where E ≥ 1− 2e, i.e., Tmin ≤ T ≤ Tmax+2Tmin
3

:

• In the top and bottom borderlines :

b =
1 + e

4
− sign(M̄)

L̄√
3
, a =

1− e

2
, c = 1− a− b.

• In the top-left and bottom-right borderlines :

c =
−1 + 5e

2
+

2|L̄|√
3
, b =

1− e

2
, a = 1− b− c.

• In the top-right and bottom-left borderlines :

b =
−1 + 5e

2
+

2|L̄|√
3
, c =

1− e

2
, a = 1− b− c.

◦ Case 2 where 1−e
2

≤ E < 1 − 2e, i.e., Tmax+2Tmin
3

≤ T ≤
2Tmax+Tmin

3
:

• In the top and bottom borderlines :

b =
2− E − e

4

− sign

((
E+e− 2

3

)
L̄M̄

)
min

(
|L̄|√
3
,
|3E+3e−2|

4

)
a =

E + e

2
, c = 1− a− b.

• In the top-left and bottom-right borderlines :

c =



1−2E+e

2
+max

(
min

(
2|L̄|√

3
,
3E − 1

2

)
,
1− 3e

2

)
,

if E + e ≥ 2

3

1+E−2e

2
−min

(
max

(
2|L̄|√

3
,
3E − 1

2

)
,
1− 3e

2

)
,

otherwise

b =
E + e

2
, a = 1− b− c.

• In the top-right and bottom-left borderlines :

b =



1−2E+e

2
+max

(
min

(
2|L̄|√

3
,
3E − 1

2

)
,
1− 3e

2

)
,

if E + e ≥ 2

3

1+E−2e

2
−min

(
max

(
2|L̄|√

3
,
3E − 1

2

)
,
1− 3e

2

)
,

otherwise

c =
E + e

2
, a = 1− b− c.

◦ Case 3 where E < 1−e
2

, i.e., 2Tmax+Tmin
3

< T ≤ Tmax :

• In the top and bottom borderlines :

b =
1 + E

4
+ sign(M̄)

L̄√
3
, a =

1− E

2
, c = 1− a− b.

• In the top-left and bottom-right borderlines :

c =
−1 + 5E

2
− 2|L̄|√

3
, b =

1− E

2
, a = 1− b− c.

• In the top-right and bottom-left borderlines :

b =
−1 + 5E

2
− 2|L̄|√

3
, c =

1− E

2
, a = 1− b− c.

In Case 2, when E + e = 2/3, one obtains a = b = c = 1/3
which corresponds to the classical pseudo-inverse matrix case.
The proposed expressions of a, b, c for the three above possible
cases are quite tricky to get and are not presented in this paper
due to space limitation. Essentially, they are based on the eval-
uation on intersection points of six lines given in Eq. (12). For
instance, these expressions ensure that when the reference set-
point (L̄, M̄) = (L̄r, M̄r) moves continuously in the borderlines
of the admissible hexagon {L̄, M̄}, the variations of the weight-
ing parameters a, b, c are also continuous. Fig. 7 illustrates an
example case where E = 0.8 and e = 0.2 (i.e., Case 1). The
green circles correspond to some reference set-points (L̄r, M̄r)
moving clockwise in the borderlines of the admissible hexagon
of {L̄, M̄}, whereas the red quadrilaterals are zones limited by
Eq. (12) with the weighting parameters a, b, c calculated by the
proposed expressions. We can see that each reference set-point
(L̄r, M̄r) coincides perfectly with a corner of the corresponding
quadrilateral, which means that the constraints in Eq. (12) (i.e.,
Eq. (10)) are satisfied.

Figure 7: Reference set-points {L̄, M̄} (blue circles) and corre-
sponding admissible polygons {L̄, M̄} (red quadrilaterals) with
a, b, c obtained.

I Consider the case where the reference set-point (L̄, M̄) is in-
side the weighted admissible hexagon of {L̄, M̄}. For instance,
one may i) project the reference set-point (L̄, M̄) onto the bor-
derlines of the admissible hexagon along the direction joining the
origin with the set-point (L̄, M̄), and then ii) apply the method
proposed previously so as to calculate the parameters a, b, c based
on the obtained projected set-point (L̄p, M̄p). However, with this
strategy, when the reference set-point (L̄, M̄) varies inside the
classical admissible hexagon of {L̄, M̄} (obtained by the clas-
sical pseudo-inverse matrix method), the parameters a, b, c also
vary accordingly, whereas in the classical pseudo-inverse matrix
method one always has a = b = c = 1/3. This homogeneity is
the advantage of the classical pseudo-inverse matrix method that
we would like to have with the weighted pseudo-inverse matrix
method. To this purpose, the following strategy is proposed :
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• When the set-point (L̄, M̄) is inside or on the borderlines of the
classical admissible hexagon, we set a = b = c = 1/3.

• When the set-point (L̄, M̄) stays outside the classical admis-
sible hexagon but inside the weighted admissible hexagon, the
following interpolation method is proposed (see Fig. 8). First,
we project the reference set-point (L̄, M̄) onto the borderlines of
the classical and weighted admissible hexagons to obtain two set-
points (L̄c, M̄c) and (L̄w, M̄w), respectively (see Fig. 8). Then,
we apply the method previously proposed in order to calculate
the parameters {a, b, c} for the set-point (L̄w, M̄w) staying on
the borderlines of the weighted admissible hexagon. Let us de-
note the corresponding values as aw, bw, cw. Finally, the desired
parameters a, b, c are calculated by interpolation as follows

a = 1
3
+

(
aw − 1

3

)
δ

b = 1
3
+

(
bw − 1

3

)
δ

c = 1− a− b

(17)

with

δ :=

{
L̄−L̄c
L̄w−L̄c

if M̄w = M̄c

M̄−M̄c
M̄w−M̄c

otherwise .

Figure 8: Interpolation method for the determination of a, b, c

Fig. 8 illustrates an example case where the parameters a, b, c are
obtained by the proposed interpolation method. The red hexagon
is the corresponding admissible zone of (L̄, M̄) with a, b, c ob-
tained and with the constraints in Eq. (12). It crosses the refer-
ence set-point (L̄, M̄), which means that the constraints in Eq.
(12) (i.e., Eq. (10)) are satisfied. The proposed interpolation
method ensures that the variations of the values of a, b, c are con-
tinuous if the reference set-point (L̄, M̄) varies smoothly over
time. This is particularly important in practice since it ensures
that the desired motors’ speeds ω̂i calculated according to Ω̂ =
A+

Wv vary also continuously if the control input vector v is con-
tinuous in time.

4.3 Extension to the Case of Non-Null Desired Yaw Torque
Control, i.e. N ̸= 0 :

In practice, it is desirable to maintain a certain control authority
in yaw. However, in view of Eq. (9) the larger the value of N the
smaller the dimension of the admissible zone of {L,M}. Thus, a
compromise should be made. In the present paper, we propose to
leave a certain control authority margin for N , i.e. |N | ≤ Nmax

where Nmax should not be too large. Define

TN := µκ−1Nmax,

T̄min := Tmin + TN , T̄max = Tmax − TN .

Finally, instead of determining the admissible zone of {L,M}
and the corresponding parameters a, b, c based on the constraints
given in Eq. (10), we consider now the following constraints

2|M | ≤ min
{(
3aT−T̄min

)
l,
(
T̄max−3aT

)
l
}

|
√
3L−M | ≤ min

{(
3bT−T̄min

)
l,
(
T̄max−3bT

)
l
}

|
√
3L+M | ≤ min

{(
3cT−T̄min

)
l,
(
T̄max−3cT

)
l
} . (18)

Eq. (18) is similar to Eq. (10) with Tmin and Tmax replaced
by T̄min and T̄max, respectively. From here, all the steps to de-
termine a, b, c can be proceeded exactly like in the case treated
previously (i.e., case of N = 0) but using T̄min and T̄max instead
of Tmin and Tmax, respectively.

5 CONCLUSIONS AND FUTURE WORK

This paper has shown new development in flight control system
for multi-rotor helicopters. It is shown that a control allocation
strategy based on the classical approach of pseudo-inverse matrix
only exploits a limited range in the flight capabilities of the vehi-
cle to generate the desired virtual control input vector v. Thus,
in this paper, a novel approach is proposed and is based on a
weighted pseudo-inverse matrix method. It is capable of exploit-
ing a significantly larger domain achievable in v. The presented
control allocation algorithm is made of explicit laws for fast op-
eration and low computational load. Future work deals with 1)
the extension of the control allocation method to multi-rotors
with n > 6 propellers, 2) the on-line identification of the pro-
pellers’ efficiency to generate thrust, and 3) dealing with control
re-allocation in the case of one (or more) rotor failure(s).
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