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ABSTRACT:

Submetric satellite imagery (Pleiades, GeoEye) offers advantages for map update purposes, e.g. an interesting ground resolution, a good
reactivity and the ability to capture wide areas. Experiments on the use of such stereoscopic images for 2D change detection among
building objects of GIS topographic database are presented in this paper. Two approaches have been tested. The first one extracts land
cover from satellite ortho-images and additional information (correlation DSM-DTM, database) and compares building objects of this
classification to those of the database. The second one creates a pseudo-DSM from height information of database building objects
combined with a DTM and compares it to a correlation DSM computed from satellite images. Obtained results are quite encouraging
even if the correctness rate remains too low for an operational use.

1 INTRODUCTION

Nowadays, most mapping agencies have finished the initial plot-
ting of their topographic (2D or 2.5D) databases. Therefore, up-
dating methods have become an important issue. Manual change
detection is indeed costly and very long for agencies. Besides, it
is a difficult and quite boring task for operators. In some mapping
agencies, processes have been settled to catch information about
changes from local authorities, giving good results for some themes
such as roads, but being sometimes not sufficient for other ones
such as buildings, especially in very changing areas. Therefore,
there is a growing need for (semi-)automatic tools launching alarms
(where change hypotheses are detected) and sending them to be
checked by an operator. Such tools should be very exhaustive and
as correct as possible (i.e. minimizing the false detection rate).
In this paper, change detection is focused on building theme and
only 2D changes are sought (even if 3D information is used).
Change detection has been studied for years using various sen-
sors and testing different approaches. LIDAR data associated
with very high resolution (10-20cm) aerial images is often used
as input data ( (Rottensteiner, 2007, Matikainen et al., 2010)).
(Poulain et al., 2009) use radar data associated with optic im-
agery. In the present paper, submetric satellite imagery (Pleiades,
GeoEye) is used. Such sensors offer indeed advantages for database
updating purposes, since they have an interesting ground resolu-
tion, a good reactivity and the ability to capture wide areas. Nev-
ertheless, such data is less easy to use than very high resolution
lidar data or aerial images : some smaller details can indeed be
missed.
Among various approaches presented in literature, some consist-
ing in comparing new images to old ones can be cited (Radke
et al., 2005), but seem difficult to use in this special context.
Many other approaches compare DSMs calculated at both dates.
Other ones extract primitives from new data and compare them
to the database to update ( (Poulain et al., 2009, Champion et al.,
2010)). (Bouziani et al., 2010) also use context information.
The goal here is to obtain alarms on changed building parts, to be
checked by operators. Therefore, as the point is to detect new or

demolished pixels, there is no need to discriminate between new,
demolished and modified buildings (since a modified, bad plot-
ted or misregistered building has “new” or “demolished” parts...).
Two distinct approaches are used.
The first one extracts land cover from satellite (ortho-)images and
additional information (database, DSM-DTM when available...)
owing to a supervised per region classification process trained
by database buildings and road objects. Unlike (Rottensteiner,
2007, Olsen and Knudsen, 2005), a radiometric model is trained
from data and not only ndvi is used as radiometric information.
Some buildings have indeed specific colours (e.g. white or bright
red) not found in other classes, even if building theme remains
difficult to model because of the variety of roofing materials. Un-
like (Matikainen et al., 2010) (who uses lidar data), segmenta-
tion is computed from image and not from DSM, because DSMs
calculated from satellite stereoscopic images often remain quite
noisy with not well delineated object borders, whereas image of-
fers more accurate contours.
The second approach is based on interdate DSMs comparison.
The DSM generated from the new satellites images is compared
to a “pseudo-DSM” calculated from a DTM and height informa-
tion of database building objects. Finally alarms obtained from
these two methods are merged.

2 DATA SETS AND MATERIALS

Experiments were carried out on two test zones located near Toulouse
(France) and an other zone in La Réunion, with different data.

2.1 Toulouse “CHU” and “highway” areas

“CHU” area is a mixed urban - rural area, covering almost 1.5
km2. A hill is present. Different kinds of buildings are present on
this area, with big buildings (a school and a hospital) and individ-
ual houses (almost 230 buildings). Vegetation is quite important
too, consisting of woods and fields.

25

 

 
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-3/W22, 2011

ISPRS Conference PIA 2011, 5-7 October, Munich, Germany



“Highway” area is an urban area, covering almost 1 km2. The
ground is quite flat. It is mostly a residential suburb consisting
of houses (almost 1200 buildings). Several more large buildings
are present too. Road network is important, with a motorway, a
cloverleaf intersection and bridges. There is less vegetation than
in “CHU” test area. This is a “urban” vegetation consisting of
trees (on the border of the streets or in gardens) and of lawns (in
gardens, stadiums and squares).

Simulated Pleiades imagery (CNES, 2011) Tri-stereoscopic
four bands (red - green - blue - near infrared) Pleiades simulated
images are available for these regions. A 50cm ground resolution
DSM has been calculated from the Pleiades images thanks to the
automatic correlation tool described in (Pierrot-Deseilligny and
Paparoditis, 2006). 50cm resolution true ortho-images have then
been derived from the simulated Pleiades images and are used in
the process.

“Reference” vector database is a detailed building and road
topographic database plotted for Pleiades studies, with one object
per building, and it also offers an accurate height information for
building objects.

A DTM from IGN’s national DTM database is used. It is a 25m
ground resolution one.

2.2 “La Réunion” test area

This is also a mixed urban - rural area, covering almost 1.5 km2.
Relief is stronger there. Different kinds of buildings are present,
with “industrial” buildings and individual houses. Nevertheless,
these houses are often low (only one level) and covered by more
kinds of roofing materials (different colours) making classifica-
tion task more difficult than for Toulouse areas. Vegetation is
quite important too, consisting of woods, fields and gardens.

GeoEye-1 imagery (GeoEye, 2011) A stereoscopic pair of
GeoEye-1 four bands (red-green-blue-near infrared) images is
used. Both images were captured at one week apart. As for pre-
vious test zones, a correlation DSM and a 50cm resolution true
ortho-image have been calculated.

IGN’s “BDTopo” topographic vector database is the database
to update here. It contains road and building themes, but building
objects of this national reference database are more generalized
than the ones of the “Reference” database used on Toulouse test
areas. Moreover, a BDTopo building object may contain sev-
eral individual buildings, especially in dense urban areas. This
database also offers a height information for building objects. 791
building objects are present in this test area.

The used DTM has been generated from the correlation DSM
using “elastic grid” tools described in (Champion et al., 2010).

3 DIFFICULTIES AND PROPOSED SOLUTIONS

Several difficulties are encountered. Some of them are classic
ones related to land cover classification (as for instance areas
belonging to distinct classes but looking like each other, shad-
ows...). Other limits are more specific to the approach and to its
change detection purpose (as the presence of partly hidden ob-
jects, such as road section masked by trees or shadows).

3.1 Distinct classes with similar radiometry

Some distinct classes may have very similar radiometric distri-
butions, making them very hard to be distinguished using only
radiometric information.

Roads and grey roofed buildings (fig. 1) have almost the
same radiometric distribution for the four bands (red - green -
blue - near infrared) of the image. As a consequence, no derived
channels from original image bands can really improve the dis-
crimination between both classes. Unfortunately, the two themes
“buildings” and “roads” are the most important themes to update
in the database and have therefore not to be misclassified.

Buildings covered by red tiles are sometimes misclassified with
bare soil belonging to fields or paths (fig. 1). These errors are a
problem too, since “building” theme (which has to be updated) is
concerned.

Figure 1: Radiometric information is not sufficient to distinguish
classes with similar radiometry, such as grey roofed buildings
from roads, or red tiles from bare soil.

Low and high vegetation areas are sometimes difficult to dis-
tinguish from each other. Nevertheless, this is not a problem here
since these classes don’t belong to the database to update.

These possible misclassifications always concern high and low
objects (buildings / roads ; buildings / bare soil ; high vegetation
/ low vegetation). As a consequence, using information about the
distinction between ground and above-ground areas is a possible
solution. In case of a stereoscopic image acquisition, such knowl-
edge can be derived from difference between DTM and correla-
tion DSM and can be introduced into the classification process.
To some extent, shadows could also be used to obtain such infor-
mation.

3.2 Mixed classes and intra-class radiometric variations

Building objects can appear very different from each other on
the image, since they are not covered by the same roofing ma-
terial. Thus, they can not be described by a common radiomet-
ric model. Therefore, “building” class has to be considered as
a mixed class and divided into “red roofed”, “grey roofed” and
“white roofed” building subclasses. At the end of the classifica-
tion, these 3 classes will be merged into a single class “building”.

Moreover, radiometry can greatly vary inside one class because
of several factors such as the link between the orientation of an
object and the sun illumination angle for “building” class, the
density of cars or road marks in the streets for the theme “road”.
As in 3.1, introducing additional knowledge (such as belong-
ing to ground/above ground or information derived from the old
database) in the classification process can help.

3.3 Higher elements and shadows

Objects can be partly masked on the image by elements belonging
to other classes. For instance, roads are often masked by shadows
or higher objects such as trees (see fig. 2).
Shadows are obviously important in urban areas. They mostly
concern streets but roofs can also be partly masked by shadows
caused by higher buildings or roof superstructures. Therefore, an
additional class “shadow” is also defined in order to take shadows
into account.
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These two phenomenons have two consequences here :
First, classification results can be “exact” (according to the ortho-
image) whereas ground truth land cover is false, leading to false
change detection.
Second, database objects used as training data can be masked and
thus provide false training set. Nevertheless, since the database
is not up-to-date, false training data will necessarily be provided
in our case... A solution to cope with this consists in a two-pass
process, calculating a first model and a first classification from
all training data, and then a second model and a second classi-
fication from training data cleaned using the results of this first
classification.

Figure 2: Road partly masked by trees and shadows.

3.4 Correlation DSM and shadows

As shown in figure 3, heights of the DSM are often over esti-
mated in shadow areas, leading to building false detection. As
a consequence, detected shadow areas will be excluded from the
change detection process, once the land cover classification will
have been obtained.

Figure 3: Heights of the DSM often over estimated in shadows.
(From left to right, ortho-image, DSM, shadow mask computed
from DSM)

4 APPROACH “LAND COVER CLASSIFICATION”

This approach consists in extracting land cover (and thus build-
ings) from satellite ortho-images and additional information us-
ing a supervised classification method. Training regions for build-
ing and road classes can here be obtained directly from the database
to update. The legend of the land cover classification consists of 8
classes : “red roofed buildings”, “grey roofed buildings”, “white
roofed buildings”, “roads”, “high vegetation”, “low vegetation”,
“bare soil” and “shadows”. Changes are then detected by com-
paring detected buildings to database objects.
The input channels for the classification task are made up by a
vegetation index “ndvi” (calculated from red and near infrared
bands of the image), the “red” band and the “blue” band.

4.1 Classification algorithms

The ortho-image is first segmented into homogeneous regions.
These regions are then classified through a MAP classification al-
gorithm taking into account additional knowledge as prior prob-
abilities. The classification tool described in (Trias-Sanz, 2006)
has been used for these experiments.

Model estimation from training data First, for each class, the
best parameters of several statistical distributions (such as para-
metric laws or histograms filtered by kernel density estimation...)
are computed to fit to the radiometric n-dimensional histogram of
the class (with n number of used channels). Then the best model
is selected thanks to Bayes Information Criterion to find a com-
promise between the fitting to data and the modelling complexity.

Segmentation The image must be segmented into homogeneous
land cover regions. This is achieved thanks to the multi-scale seg-
mentation method described in (Guigues et al., 2006). A pyramid
of segmentations of the image is first computed. Each level of this
pyramid corresponds to an alternative between detail and gener-
alization. This pyramid is then cut at a level empirically chosen
to obtain a suitable image partition. The choice of this level is a
compromise between desired details and the size of regions. On
one hand, in an over segmentation, some regions will be too small
to have meaning and are at risk to be misclassified whereas on the
other hand, in a too coarse segmentation, large regions will con-
tain different land cover items (such as grey roofed buildings and
roads here).

Classification The segmented regions are then classified ac-
cording to the probability model of the radiometry of the dif-
ferent classes previously estimated. In the present case, a MAP
per region classification algorithm is used. Such a method al-
lows to take easily into account external information (see 4.2) as
prior probability. With this classification method, the label co(R)
given to a region R is its most probable class according to the ra-
diometric model previously estimated and to prior probabilities.
Hence, co(R) is the class c that maximizes the following function∏

i extern information source
(Pi(c(R) = c))ai ×(∏

pixel p∈R
Pradiometricmodel(I(p)|c(p) = c)

) 1
Card R

with I(p) standing for the radiometry vector of pixel p, c(z)
meaning region or pixel “z’s class” and P (c(z) = c) standing
for the probability for pixel or region z to belong to class c. The
ai terms stand for weight parameters balancing the different prior
probability sources.

4.2 Additional information

As previously said, some external knowledge will be introduced
into the classification process as prior probabilities to help to pre-
vent misclassifications when radiometric information is not suffi-
cient.

Knowledge from the database to update It can be assumed
that land cover has mostly not changed since the last time the
database was updated. Such information can be taken into ac-
count as a prior probability that a pixel still belongs to the same
class as in the database. Nevertheless, this information should be
weighted slightly to avoid missing changes...

Ground / above ground information from nDSM Knowledge
about the distinction between ground and above ground objects
can be obtained from the difference nDSM between a DSM (in
case of a stereoscopic acquisition of images) and a DTM. Such
information helps to discriminate roads from grey roofed build-
ings, and bare ground from some red roofed buildings.
It is taken into account directly in the classification process as
a prior probability to find the different classes according to the
nDSM. Piecewise linear functions are used to model this rela-
tion (as shown by figure 4). The parameters have been selected
empirically (knowing the common heights of buildings and the
“precision” of the nDSM).
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Figure 4: Probability models to belong to above-ground (“build-
ing”,“high vegetation”) (on the left) and to ground (“road”, “low
vegetation”,“bare soil”) (on the right) according to nDSM.

Knowledge about shadows Prior information about the pres-
ence of shadows can also be calculated if a DSM is available and
if the capture time of images is known. Such information is use-
ful to prevent some misclassifications between shadows and other
dark objects. (A shadow mask can not be computed accurately
and used directly since the correlation DSM calculated from the
satellite images is quite noisy, as shown in part 3.4 and figure 3.)

Ground / above ground information from shadows Very ap-
proximate ground / above ground information for neighbouring
regions of shadows can be derived from sun orientation (calcu-
lated from image capture time) and a shadow mask obtained from
a previous classification.

4.3 Change detection

In this study, as it is only aimed at launching an alarm when a
change concerning building theme is detected, “change detec-
tion” step is very simple : “new” and “demolished building
parts” masks are computed by comparing the building mask ob-
tained from land cover classification to the mask of the rasterized
objects of the database.
An opening morphological operator is then applied to these masks
in order to filter too fine objects. Other remaining small objects
are eliminated if their area is lower than a given threshold.
An alarm is then launched (and checked by an operator) for each
object (connected component) of these two masks. Grouping and
generalizing these alarms are also possible (see part 6.2).

4.4 Practical use of this process

As previously said, the classification method is a supervised one
and therefore requires training data. Training regions for building
and road classes are here obtained directly from the database to
update, but require pre-processing. (For other classes, a training
set is captured by an operator.)

Classify buildings into sub-classes Experiments have shown
that using three subclasses “red”, “grey” and “white roofed build-
ings” instead of a single building class is necessary. However,
no information concerning roofing material (and therefore roof
colour) is associated to BDTopo building objects whereas such
knowledge is necessary to use database objects as training data.
Nevertheless this information can be obtained from image data.
Every pixel p of the ortho-image belonging to a building object
of the database is thus classified as “red”, “grey” or “white” using
the following scheme :
xxif p.red

p.blue
> thresholdredV Sgrey white then p is “red”

xxelse if p.red > thresholdgreyV Swhite then p is “white”
xxelse p is “grey” endif.

Clean training data As already said in 3.4, roads and building
objects often appear partly masked by higher objects (trees) or
shadows on the image. Besides, database is quite generalized and
therefore a database object can include few parts of neighbouring
objects. Therefore, these training regions are quite “dirty”. In
order to cope with this, the classification is performed in a two
pass scheme :

1. Ortho-image is classified according to a model estimated
from the rough database without any special care.

2. Training data is cleaned using vegetation and shadow areas
masks obtained from this first classification. A new model
is then estimated and a new classification is performed.

5 APPROACH “INTERDATE DSM COMPARISON”

This approach consists in comparing a DSM computed from stereo-
scopic satellite images (at date t2) to a DSM describing the land-
scape at time (t1) when the database was last updated. That is to
say, their difference dDSM is studied, since new building parts
correspond to zones where ZDSMt2 > ZDSMt1 , whereas de-
molished ones correspond to ZDSMt2 < ZDSMt1 . (Besides this
measure dDSM could also be a confidence measure associated to
each detected change.) Nevertheless, other information (such as
a vegetation mask obtained at date t2 from previous classifica-
tion of new images) must be taken into account to prevent false
alarms. The tested algorithm is described below :
for each pixel p do
xxdDSM(p) = ZDSMt2(p)− ZDSMt1(p)
xxif dDSM(p) < thdemolished and p ∈ { building object of the
xxdatabase } then
xxxxp ∈ {demolished building parts}
xxelse if dDSM(p) > thnew and p not classed among shadows
xxand vegetation then
xxxxif p ∈ { building object of the database } then
xxxxxxNo “2D” change
xxxxelse
xxxxxxp ∈ {new building parts}
xxxxendif
xxendif
endfor
Perform morphological opening of “demolished building parts”
and “new building parts” masks and eliminate too small remain-
ing elements (connected components) (area < threshold) of
these masks.

In the present study, as no old DSM was available, a “pseudo-
DSM” has been generated from a DTM and from height attributes
of database building objects, in order to describe landscape at the
time the database was last updated.

6 USE ALARMS

6.1 Merge alarms

Results obtained by both approaches are merged in a very sim-
ple way. First, intersection and union masks of alarms launched
by both approaches are computed. Secondly, too small elements
of the intersection mask are deleted. Lastly, objects of the union
mask are deleted if they don’t contain an object of the intersec-
tion mask.
This simple method is a way to reduce the number of alarms to
check. It improves the correctness rate, but requires a high com-
pleteness for alarms launched by the both approaches. It could be
extended to a more general scheme giving confidence weights to
different alarms sources (and even associating confidence scores
to each alarm). This method is a way to obtain a mask of alarms
but also a confidence score related to the recurrence of alarms and
to belief given to the different sources of alarms.
Besides, as some existing methods work at building level (such as
(Rottensteiner, 2007) or (Champion et al., 2010)), alarms could
be associated to a building (new, demolished or modified) and a
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confidence score computed for each building (using the scheme
presented above), making it possible to sort alarms from the most
to the least plausible.

6.2 Group/generalize alarms

Group/generalize alarms is an other way to get less alarms to
check. Alarms located in a same neighbourhood are grouped into
a single object. These patterns are then submitted to an operator
to be checked. This alarm generalization (artificially) improves
correctness rate without damaging completeness rate, especially
in cases such as the one illustrated by figure 5, where a smaller
amount of more global alarms can then be submitted to operators.

Figure 5: Group neighbouring alarms is a way to obtain less
alarms to check (especially in cases like this one...)

7 TESTS AND RESULTS

Results are presented and commented for both datasets. Com-
pleteness and correctness rates are presented in tables 1 and 2.
Concerning computing time, processing the whole chain takes
almost 1 h/km2.

7.1 Toulouse

As available database was assumed to be up-to-date, simulated
changes consisting in adding or deleting buildings in the database
were performed in order to be able to easily evaluate change de-
tection results. But it appeared that there were true changes and
bad plotted or misregistered buildings. As a consequence, the
correctness rate has been computed as the ratio of “manually”
validated alarms compared to the number of launched alarms,
whereas the completeness rate has been calculated as the ratio
of detected simulated changes among the simulated changes.
Furthermore, as database objects are quite generalized, it is some-
times not easy to decide whether an alarm corresponds to a true
change (or a bad modelled object) and must be validated.

Approach “land cover classification” For first tests, a mono-
scopic acquisition case was assumed. Therefore, no DSM (and
therefore no information concerning ground or overground) was
available. White roofed buildings have been well detected, while
grey roofed buildings and roads have very often been misclassi-
fied. Confusion has also occurred between red roofed buildings
and bare soil without this knowledge.
A stereoscopic acquisition was assumed for other tests. It has
then been showed that the results are greatly improved by the
use of nDSM derived knowledge concerning ground/overground.
Some results are presented in tables 1 and 2. (They have been ob-
tained taking into account radiometric model, nDSM knowledge
(weighted with 0.75 and 0.25 respectively).
Approach “DSM comparison” Obtained results are good.
Merge results Merge alarms hugely improves the correctness
rate for these areas, without damaging the completeness rate,
thanks to the high completeness of both approaches here.

Conclusion Interesting results have been obtained, but it must
be kept in mind that Toulouse test areas remain quite simple ones
since there are few classes (mostly red roofs, no water areas or
dark slate roofs for instance) and relief is not very strong... Be-
sides, used databases were high quality ones.

7.2 La Réunion

BDTopo database has recently been updated by IGN operators
in this area. Therefore, the old database and the modifications
plotted by operators were available. Nevertheless, as for Toulouse
test zones, some few errors were also detected on a small area,
showing that change detection remains a difficult task and that
may be not perfect even when processed by operators, as shown
in figure 6.

Obtained results (presented in tables 1 and 2) on this area are not
as good as the ones obtained for Toulouse test zones, but this can
be explained by several reasons. First, the correlation DSM is
quite noisy : indeed it has been generated from images not cap-
tured at the same date (but at one week apart with a low B

H
ratio

0.39). Furthermore, it has been computed from already pansharp-
ened colour images, and not directly from original (high resolu-
tion) panchromatic images. Besides, roofing materials are often
metallic ones leading to specular reflectance and saturated pixels.
Secondly, many buildings are very low (only one level) and are
therefore difficult to detect as above ground objects in the nDSM :
they are lost among noise of the nDSM, whereas this ground/above-
ground knowledge was a key factor for a good building detection
on Toulouse test zones. Furthermore, relief is also stronger.
Last, roofing materials are different and more various than in
Toulouse. Furthermore, some buildings appear almost as dark as
shadows or roads on satellite images (but not on available older
aerial ortho-images on which they are easier to distinguish. It
must here be said that these GeoEye-1 images have also a quite
different radiometry from Pleiades simulated ones). These build-
ings are thus often missed leading to many false positives for de-
molished objects and to true negatives for new objects.
All these phenomenons have effects on both approaches “land
cover classification” and “DSM comparison”, requiring to mod-
ify some parameters (thresholds for colour classification of build-
ings, and parameters of ground/above ground according to nDSM).
The completeness rate is not so low, even though many dark
roofed buildings are missed. The correctness is not so bad, but
it must be kept in mind that the number of launched alarms is im-
portant (up to 687). Concerning demolished buildings, the cor-
rectness rate is very weak (almost 2%) while too many (mostly
false) alarms (353) have been launched for an operational use.

Conclusion La Réunion is a difficult test compared to Toulouse
(both concerning available data and landscape), and obtained re-
sults are not so good. Nevertheless, it must be kept in mind that
this landscape is quite different (low buildings) from the main
part of the French territory.

8 CONCLUSION

Automatic change detection from satellite images remains a diffi-
cult task. Nevertheless, although they are still not suitable for an
operational use, obtained results remain encouraging, consider-
ing input data. A very good completeness rate is indeed reached
for Toulouse test areas (almost 100%), while still “interesting”
one (almost 75%) is obtained for La Réunion (since it revealed
that some true changes have been missed by operators on a very
small area).
One important limit for an operational use is the bad correctness
rate (< 30%): too many false alarms are launched. Nevertheless,
this can be improved by generalizing alarms, submitting to val-
idation patterns of alarms instead of isolated alarms (such as on
figure 5). Thus, the correctness rate increases while completeness
rate remains similar. (Using a 10 meter radius neighbourhood to
group patterns of alarms, the correctness rate increased from 48%
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Table 1: Completeness rates for approaches “classif” (land
cover classification), “dDSM” (interdate DSM comparison), and
“merged” (merged alarms of both methods). Number of simu-
lated (new/demolished) objects is given in the second column.

area nb simul classif dDSM merged
New buildings

Highway 30 97% 93% 93%
CHU 10 100% 100% 100%
Réunion 251 80% 74% 71%

Demolished buildings
Highway 5 100% 100% 100%
CHU 7 100% 100% 100%

Table 2: Correctness rates for approaches “classif”, “dDSM” and
“merged” alarms.

area classif dDSM merged
New buildings

Highway 40% (257) 48% (201) 56% (128)
CHU 30% (193) 19% (242) 46% (98)
Réunion 48% (509) 33% (687) 65% (321)

Demolished buildings
Highway 14% (57) 73% (11) 100% (5)
CHU 15% (59) 36% (20) 70% (10)

to 52% in La Réunion test area.)
An other possible solution consists in merging results obtained
by this approach with results obtained from other methods such
as (Champion et al., 2010) for instance : confidence indices can
then be calculated for each alarm and only the most relevant ones
would be submitted to validation. Other sources such as crowd-
sourcing could be used too.
Completeness seems to be a very important point too since it
is important to be exhaustive, to be sure not to miss changes.
Nevertheless, this criterion could become less important in case
of a more important image acquisition frequency. Intermediate
satellite images could now be acquired between two consecutive
(4 years apart) aerial images acquisition campaigns. Therefore,
there would be less time to treat them and some (semi-)automatic
change detection tools would become necessary to cope with such
amount of data. As a consequence, completeness would become
less important than nowadays, since even if change detection was
not perfect but sufficiently good for these intermediate images,
some few changes would be missed by (semi-)automatic tools
whereas they would be detected afterwards when a complete in-
vestigation would be performed on aerial images by an operator
two years later. Investigation by operators remains indeed neces-
sary, since this is the only way for the moment to detect changes
for some other themes than buildings and roads. However, pre-
sented automatic tools could help change detection or database
verification, even though they still need “manual” investigation.
Interesting results have been obtained but more experiments re-
main necessary, for instance to know the robustness to parameters
and to different kinds of landscape, e.g. with additional themes
such as water or slate (dark blue) roofed buildings. An other im-
portant point has been shown : even the first approach remains de-
pendent on “sufficiently good” 3D information (that is to say on
the correlation DSM) to be able to discriminate between ground
and above ground classes with quite similar radiometry and thus
requires stereoscopic acquisition.
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Figure 6: Change detection example in La Réunion. Old database
is drawn in magenta. On the left, modifications (in green) plotted
by IGN operators. On the right, launched alarms (in green) for
detected “new building parts” by the “land cover classification”
approach.
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Matikainen, L., Hyyppä, J., Ahokas, E., Markelin, L. and Kaarti-
nen, H., 2010. Automatic detection of buildings and changes in
buildings for updating of maps. Remote Sensing 2(5), pp. 1217–
1248.

Olsen, V. and Knudsen, J., 2005. Automated change detection
for validation and update of geodata. In: Proceedings of 6th Ge-
omatic Week, Barcelone, Spain.

Pierrot-Deseilligny, M. and Paparoditis, N., 2006. A multireso-
lution and optimization-based image matching approach: An ap-
plication to surface reconstruction from SPOT5-HRS stereo im-
agery. In: International Archives of the Photogrammetry, Re-
mote Sensing and Spatial Information Sciences (IAPRS), Vol. 36
(1/W41), Ankara, Turkey.

Poulain, V., Inglada, J., Spigai, M., Tourneret, J.-Y. and Marthon,
P., 2009. Fusion of high resolution optical and SAR images with
vector data bases for change detection. In: IEEE International
Geoscience and Remote Sensing Symposium, Cape Town, South
Africa.

Radke, R., Andra, S., Al-Kofahi, O. and Roysam, B., 2005. Im-
age change detection algorithms: A systematic survey. IEEE
Transactions on image processing 14(3), pp. 294–307.

Rottensteiner, F., 2007. Building change detection from digi-
tal surface models and multi-spectral images. In: International
Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences (IAPRS), Vol. 36 (3/W49B), Munich, Ger-
many.

Trias-Sanz, R., 2006. Semi-automatic high-resolution rural land
cover classification. PhD thesis, Université Paris 5, Paris, France.
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