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ABSTRACT: 
 
A huge amount of geographical datasets are becoming available in distributed environments like Spatial Data Infrastructures (SDI). 
These datasets are very heterogeneous since they come from different independent sources and surveys and are structured in 
different formats. In the context of a national SDI that needs to assure an adequate quality level of the data it provides, it is necessary 
to face the problem of data validation in an uniform way independently from the chosen implementation technology. 
In this paper we present the tools and methodology for data validation which have been developed to support the construction of the 
Italian SDI. These tools are conformant to the relevant ISO 19100 and Open Geospatial Consortium (OGC) standards. 
 
 

1. INTRODUCTION 

The GeoUML Methodology (Belussi et al., 2006) and the 
GeoUML Tools (Belussi et al., 2009) described in this paper 
have been developed in order to support the management of  a 
geographical Conceptual Schema and to perform the automatic 
validation of the conformance of a Data Product to a given 
Conceptual Schema. The fundamental principles of this 
development have been:  
• to adhere to the ISO 19100 standards whenever they apply 
• to be implementable on current technology 
• to be independent from any specific (commercially or 

open) GIS product 
• to keep a clear separation between the conceptual and the 

implementation levels. 
The development of this approach has been financed by CISIS, 
the coordinating authority of Italian Regions for spatial data, in 
order to guarantee that the spatial databases created by the 
different Regions satisfy common spatial properties. This is 
considered a fundamental requirement for the national SDI. A 
particular difficulty which had to be solved is constituted by the 
different technical solutions adopted by different Regions for 
physically storing their databases. For this reason the common 
data content and the spatial constraints must be defined at 
conceptual level, but they must be checked on databases 
implemented with different implementation models. The 
checking of globally defined conceptual constraints on local 
databases is necessary and cannot be replaced by a global SDI 
check on a common GML-based format for several reasons: (i) 
data quality is also a local requirement; (ii) data surveys must 
be evaluated at the initial stage of the local spatial database 
creation; (iii) data have to be checked against integrity 
constraints during the update process that is managed locally.  
The tool which manages the Conceptual Schema is called 
GeoUML Catalogue; the model used for defining the schema is 
called GeoUML (model) (Belussi et al., 2006a; Belussi et al. 
2006b). GeoUML and GeoUML Catalogue are described in 
Section 2. 

The tool used for checking whether a Data Product is 
conformant to a given Conceptual Schema is called GeoUML 
Validator and is described in Section 3. 
The Data Product to be validated must be implemented using 
one of several predefined Implementation Models (IM), which 
transform the Conceptual Schema into a physical structure. 
Implementation Models are described in Section 4. 
The implementation of the GeoUML Catalogue and Validator 
tools is complete and a beta-testing phase is now underway, as 
described in Section 5. 
The Catalogue and Validator Tools are an example of a 
“Conceptual Model Driven Architecture”, which can be used to 
develop other tools, as described in Section 6. 
 
 

2. GEOUML MODEL AND CATALOGUE 

The GeoUML model consists of the following elements: 
a. the UML model for class diagrams (conceptual schema 

language) as defined in (ISO/TC 211, 2005) with some 
restrictions concerning the use of DataTypes and multiple 
inheritance 

b. a profile of the ISO Spatial Schema (ISO/TC 211 2003), 
called Extended Simple Feature (ESF) 

c. a set of predefined OCL (Object Constraint Language, the 
reference language for constraint specification in UML) 
templates which allow to define spatial constraints 
referring to the classes and attributes of (a) and to the 
spatial types of (b) 

d. a set of additional (optional) specialized features (like, 
predefined UML schemas for the specification of 
segmented and subregion properties). These features are 
not further treated here. 

The ESF spatial profile is essentially the Simple Feature model 
(SF) (ISO/TC 211 2004), which is adopted by current GIS 
technology; the extensions are oriented to support some features 
which are currently present in Data Products and go beyond the 
SF; an evolution of SF is also underway at OGC (OGC, 2010).  
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The main extensions in ESF are: 
• 3D point and curve types, including 3D spatial 

relationships between geometries of these types (e.g. the 
intersection of two 3D curves is defined in 3D), and also a 
“planar” function which allows to refer explicitly to the 2D 
projections of 3D geometries 

• 2D surfaces with a 3D boundary; in this case topological 
relationships can refer to the 2D surface (like 
“planar(point3D) IN surface”) or to the 3D boundary (like 
“point3D IN boundary3D(surface)”) – these kinds of 
surfaces are a formally correct way to express topological 
relationships on geometries which are managed by current 
GIS technology under several names and are essentially 
representing 3D rings (the so called “polygonZ” of 
shapefiles). 

As a consequence of the 3D extensions introduced in the ESF 
model, the constraint templates (c) can express 3D properties. 
The detailed description of the constraint structure is not given 
here; refer to (Belussi et al., 2006a; Belussi et al. 2006b)for a 
description of the template structure and of the reasons why the 
templates are necessary. It is not convenient and to some extent 
not even possible to use directly OCL constraints + spatial 
functions in order to express and automatically verify 
constraints. Other similar approaches in literature are described 
in (Demuth et al. 1999, 2001; Duboisset, 2005). 
A GeoUML Schema can be created using a tool called 
GeoUML Catalogue; the Catalogue has the following functions: 
• it checks that the Schema is syntactically correct directly 

during the editing 
• it allows to add descriptive information to the formal 

definitions of the Schema 
• it produces documentation of the Schema and additional 

information (this documentation is necessary in order to 
support for example a legally mandatory specification for 
data production) 

• it produces a standard OGC ISO 19109 compliant 
Application Schema (AS) in XMI format which can be 
imported in a CASE tool; the standard AS is obtained by 
transforming the ESF spatial types into 19107 Spatial 
schema types and by converting the constraint templates 
into standard OCL formulas, which are added as comments 
to the constrained classes 

• it exports and imports the specification in a published 
XML format (called SCS format). 

As an example of the application of the Constraint Templates 
consider the following textual constraints taken from the 
D2.8.I.7 INSPIRE Data Specification on Transport Networks – 
Guidelines: 

Requirement 10: In a Transport Networks data set 
which contains nodes, these nodes shall only be present 
where Transport Links connect or end. 

In GeoUML they would be expressed in the following way, 
which can be interpreted by the GeoUML Validator: 

TransportNode.Geometry (TC) exists  
(InNetwork = TransportNode.InNetwork) 
TransportLink.CenterlineGeometry 

which is a short form for the OCL constraint: 
context TransportNode 
inv:TransportLink.allInstances ->  
      exists(a: TransportLink |  
        self.InNetwork = a.InNetwork and  
        self.Geometry.check(TC,  
          a.CenterlineGeometry)) 

where 
• TransportNode is the class representing nodes in the 

INSPIRE Specification and it has a spatial attribute 
Geometry representing the node location 

• TransportLink is the class representing links in the 
INSPIRE Specification and it has a spatial attribute 
CenterlineGeometry representing the center line of 
the link 

• a.check({r1,…,rn}, b) is a short form for 
representing the disjunction of a set of relations (a.r1(b) 
or … or a.rn(b)) 

• InNetwork is a role that defines the object of the class 
Network to which a NetworkElement (node or link) 
belongs. 

• Finally TC is a short form for the Touch topological 
relation as defined in GeoUML (it coincides with the 
Touches relation of SF). 

 
 

3. GEOUML VALIDATOR 

The GeoUML Validator is a Tool which is capable to read a 
Data Product and to check its conformance with a Conceptual 
Schema previously created with the GeoUML Catalogue. 
Since reading a Data Product requires to know its physical 
structure, the mapping between the conceptual schema and the 
physical structure must be known to the validator. This problem 
is treated in the next section. 
The aspects which the validator checks are the following: 
• the structure of the input datasets; e.g. existence of classes 

and attributes, domain values, referential integrity, etc… 
• the validity of each geometry with respect to the properties 

of the ESF types (notice that this implies checking also 3D 
properties, e.g. a 3D ring must be closed in 3D) 

• the fulfillment of all spatial integrity constraints which are 
defined in the conceptual schema. 

A critical problem in the implementation of the Validator has 
been regarding metric aspects and resolution; as it is well 
known, with current technology it is possible that two different 
systems evaluate the topology of the same data differently, due 
to rounding, Floating Point approximation and the use of 
different algorithms (for example, in the computation of unions 
used in some kinds of constraints). To deal with these aspects, 
the GeoUML Validator is based on the following principles: 
• the resolution of the input dataset must be at least 10 times 

less than the internal resolution used by the validator to 
represent coordinates values 

• the minimum distance between any point and any segment 
is required to be 10 times the internal resolution of the 
validator 

• the evaluation of topological properties is exact, i.e. two 
points are equal if and only if their coordinates are 
identical at binary level, two segments are equal if they 
have equal endpoints, and so on. 

The GeoUML Validator produces an error diagnostics which is 
stored in a Derby database, from which it can be queried, 
specialized reports can be derived, etc… A particular kind of 
reporting which is architecturally possible but not implemented 
yet is the production of “instance metadata” which can be 
stored in the Data Product itself; the problem with instance 
metadata is that some types of errors (e.g. a gap in “soil 
covering”) cannot be associated with a single object instance, 
and therefore we are designing a more complex model for 
dealing with instance metadata. 
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A complicated aspect of the error diagnosis is that the validator 
operates at the physical level but it has to trace back the error to 
the conceptual level in order to allow its interpretation in terms 
of the Conceptual Schema; just associating the error with the 
physical object would not be sufficient, since the Validator’s 
result has to be interpreted in terms of the conceptual properties 
which have been violated. 
In order to minimize the dependency of the Validator from the 
physical structure of the input, the architecture of the validator 
is based on a fundamental component, called the Normalized 
Database, which is a PostGIS database having an SQL schema 
which is derived from the Conceptual Schema following the 
internally defined Normalized Implementation Model; a Reader 
loads the input dataset into the Normalized Database and 
performs also some controls which depend on the particular 
input structure, but the main part of the topological controls is 
done on the normalized database and is therefore independent 
from the physical structure of the input. 
 

4. IMPLEMENTATION MODELS 

The concept of Implementation Model (IM) allows to cover the 
gap between the conceptual level and the physical level. 
Every Data Product has a physical structure which is described 
by some kind of Physical Schema. The way in which the 
physical schema is defined depends on the technology used for 
implementing the data product, e.g: 
• SQL Data Definition Language for Geo-relational 

databases 
• XML Schema language (XSD files) for GML datasets 
• a set of void Shapefiles for ESRI© shapefile technology. 
The details which specialize a Data Product with respect to the 
Conceptual Schema are stored in a Data Product Specification 
(DPS); for each Conceptual Schema there can be several DPS 
(they are all stored in the SCS file associated to the Conceptual 
Schema). The most important component of a DPS is a data 
structure called CPMapping, which defines the correspondence 
between the Conceptual and the Physical Schema. 
An Implementation Model is a set of rules which allows to 
produce from a Conceptual Schema a corresponding Physical 
Schema and CPMapping. 
For every Implementation Model which is added to the 
architecture it is necessary to develop the following two 
components: 
1. the Mapping Generator: this component is added to the 

GeoUML Catalogue and allows to produce the Physical 
Schema and CPMapping by applying the rules of the IM to 
the Conceptual Schema stored in the Catalogue 

2. the Reader: this component is added to the GeoUML 
Validator and is capable to read a dataset having a physical 
schema conforming to the Physical Schema produced by 
the Catalogue and to load it in the Normalized Database. 

In Fig. 1 the complete architecture constituted by the Catalogue, 
Validator, Mapping Generators and Readers is shown. 
The Implementation Models can be divided into two categories: 
Transfer IMs, which should be used for implementing datasets 
with the aim to transfer information, and Database IMs, which 
are designed for implementing databases that are conformant to 
a given conceptual schema. The main difference between these 
two kinds of IMs is: 
• Transfer IMs must be rigidly specified, since the producer 

and the consumer of the dataset must agree on all details of 
the physical schema 

• Database IMs have more flexibility, so that the database 
owner can modify some aspects of the physical schema 

and CPmapping which is generated (e.g., change the 
names of tables, attributes, add specific attributes, etc) 

Currently the IMs which have been implemented in the 
available tools are the following: 
Transfer IMs: 
• ESF GML: this IM is based on the standard encoding rules 

for GML (ISO/TC 211, 2007) 
• Shape_Flat: this IM has been defined in order to simplify 

the aerophotogrammetric data production process and to 
obtain data which is easily usable with current GIS 
systems (the technology supporting GML was not 
considered sufficiently mature) 

• Shape_Topo: this IM is similar to Shape_Flat with respect 
to technology and goals, but it stores the geometries of 
several classes together in a so called “Topological Layer”, 
implemented as a shapefile, instead of storing each 
geometry in the corresponding “Class” shapefile. 

Database IMs: there are two general SQL IMs, from which 
currently the Oracle and PostGIS IMs are derived: 
• ESF_SQL_Flat: this IM stores conceptual classes into SQL 

tables without using nested structures 
• ESF_SQL_Monogeometry: this IM is a modification of the 

previous one, consisting in breaking those SQL tables that 
contain more than one geometry column – this IM was 
defined to support the use of some technologies which are 
not capable of dealing with multiple geometries in a table. 

 
5. CURRENT APPLICATIONS 

The Implementation of the Catalogue, Validator and of the 
Schema Generator and Reader for several Implementation 
Models have been completed (available at 
www.spatialdbgroup.polimi.it). 
The Catalogue has been already extensively used; the most 
important application has been the definition, in 2009, of the 
Conceptual Schema of the minimal shared database content of 
the Italian Regions, called National Core (NC). The NC 
application has introduced some complications, because the NC 
has the role of a Meta-specification, i.e. a Reference 
Specification that all Regional Specifications must include. This 
has led to the complex problem of compatibility between 
different specifications, especially since the project aimed to 
recover also data which has been produced before the definition 
of the NC, using different schemas. Some features have been 
introduced in the Catalogue in order to deal with this problem, 
for example the possibility to compare different schemas, but 
further study is necessary in order to deal with semantic 
differences between schemas. 
The case test for the development of the Validator has been the 
Spatial Database of the Municipality of Cremona (a town in 
Northern Italy - Lombardy Region): 72200 inhabitants, 70390 
square meters, 80 feature classes, 370000 features. The 
database, which is based on ORACLE Spatial, has been 
redesigned using the Catalogue and adapted as far as possible to 
the NC specification, thus performing a kind of “reverse 
engineering” from the physical to the conceptual level, which 
will be important in many situations. The validation of the 
whole database, with 60 spatial integrity constraints, takes 5 
hours and 30 minutes on a Intel Core i7 920 - 2,67GHz machine 
(8 Gbyte RAM) with GNU/Linux (Fedora Core 14 - 64 bit), 
postgresql 8.4.8, postGIS 1.5.2 and Oracle 10g (by introducing 
some optimizations, like a parallel execution of queries, the 
time can be reduced to about 2 hours). Details about this first 
test are reported in Appendix A. 
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The Beta test of the Validator in Aerophotogrammetric data 
productions is underway with Veneto Region for the 
Shape_Flat IM and Region Piemonte for the Shape_Topo IM. 

In these productions the validator should be used not only by 
the tester who has the responsibility to finally accept or reject 
the data, but also by the data providers.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Validation of a Dataset with Conceptual Schema SC and Implementation Model MIx 
 
During these experiments we hope to better understand how 
constraints should be written in order to obtain the best possible 
quality of the provided datasets. An interesting aspect which is 
emerged already during the Cremona case is that, although the 
Validator checks only the “intrinsic correctness” of the data, i.e. 
the consistency of data with itself, since it cannot know 
anything about the real world, this kind of check allows the 
tester also to discover many errors with respect to the 
correspondence between the data and the real world. 
 
 

6. CONCLUSIONS AND EVOLUTIONS 

The GeoUML Validator is a first example of the larger class of 
GeoUML Tools which could be implemented in this 
architecture. The main characteristic of these tools is that the 
work they perform is driven by a Conceptual Schema (SC.scs 
file). Thus, we can say that each GeoUML tool is based on a 
“Conceptual Model Driven” Architecture. 
Some tools can be implemented in a very simple way by just 
substituting in the structure of Fig. 1 the final component, the 
Check Integrity Constraints component, with a different 
component. For example, possible additional components are: 
• An Extractor Component, that is able to extract data from 

the Normalized database and to represent them in a given 
Implementation Model. A Converter Tool, that is able of 
converting data from IMx to IMy can be obtained by just 
the combination of a Reader for IMx and an Extractor for 
IMy. 

• A Merger Component, that is able to merge two data 
products that share the same conceptual schema but adopt 
different IMs. In this case we need two readers, one for 
IMx and one for IMy, and a Merger that is able to discover 
common instances and solve attribute conflicts. 

These examples show that if the datasets share the same 
Conceptual Schema, i.e. they share the same content although 
they are different in physical structure, many useful operations 
can be performed using an approach based just on 
Implementation Models. Remark that with most commercially 
available approaches to data conversion it is difficult to 
recognize that two datasets with different structures share a 
common content, because the conceptual and physical levels 
are not clearly separated. 
Real differences of contents (semantic differences) between two 
datasets must instead be modeled at conceptual level. In order 
to deal with semantic differences an extension of both the 
GeoUML Catalogue and of the Merger Component is required. 
Some experiments have been performed in order to analyze 
how to extend the GeoUML Tools in order to support 
elementary semantic differences. The general architecture 
envisages that the  Catalogue must represent the semantic 
mapping among elements of the two conceptual schemas, and 
the Merger Component has to apply the semantic mapping to 
the data in the Normalized Database. Although the field of 
semantic mapping has enormous complexity and only very 
elementary semantic differences have been experimented, 
coupling the different IMs with some elementary semantic 
mappings, like the mapping of domain values, can be extremely 
valuable in many practical situations.  
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APPENDIX 

Table 1 lists the two most time consuming spatial integrity 
constraints that have been tested during the application of the 
Validator on the spatial database of the Municipality of 
Cremona. The table shows, for each tested constraint: its formal 
definition (column 1), the constrained class and its cardinality 
(column 2), the constraining classes and their cardinality 
(column 3), the number of violations (column 4) and the time 
required for performing the test (column 5). 

The first constraint requires the disjointness or adjacency (DJ or 
TC) between all elementary volumes (class Volumetric Unit) 
which are at ground level. The second constraint requires that 
the 2D projection of the position of all Driveway (which have a 
3D point geometry) must be contained inside the surface 
representing the occupancy of a building at ground level. 

The very small amount of violations is due to the fact that the 
Database was operational and had already been extensively 
checked and corrected during use and update. 

Constraint definition Constrained class 
(initials) - #obj 

Constraining classes 
(initials) - #obj 

Number of 
violations  

Time (in seconds) 

(type = "ground") 
VOL_UNIT.basic_surface.surface 
(DJ | TC) forall  
(type = "ground") 
VOL_UNIT.basic_surface.surface 

 
Volumetric Unit 

(VOL_UNIT) - 24057 

 
Volumetric Unit 

(VOL_UNIT) - 24057 

 
2 

 
5160 

ACC_PC.Position.PLN  
(IN) exists  
CR_EDF.groundOccupancy.surface 

 
Driveway 

(ACC_PC) - 23000 

 
Building 

(CR_EDF) - 21700 

 
12 

 
7320 

 
Table 1.  Time required for testing the two most time consuming spatial integrity constraints (see Appendix)   
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