
VALIDATION OF GEOGRAPHICAL DATASETS
AGAINST SPATIAL CONSTRAINTS AT CONCEPTUAL LEVEL

A. Belussi a, F. Liguori b, J. Marca b, S. Migliorini a, M. Negri b, G. Pelagatti b, P. Visentini b

a Dipartimento di Informatica, Università di Verona, Verona, Italy - (alberto.belussi, sara.migliorini)@univr.it

b DEI, Politecnico di Milano, Milan, Italy – (giuseppe.pelagatti, mauro.negri)@polimi.it

Commission IV/8

KEY WORDS: Conceptual modelling of spatial databases, Spatial integrity constraints, Spatial data validation, Model-driven

architecture, Geographical applications, Spatial data infrastructures.

ABSTRACT:

A huge amount of geographical datasets are becoming available in distributed environments like Spatial Data Infrastructures (SDI).
These datasets are very heterogeneous since they come from different independent sources and surveys and are structured in
different formats. In the context of a national SDI that needs to assure an adequate quality level of the data it provides, it is necessary
to face the problem of data validation in an uniform way independently from the chosen implementation technology.
In this paper we present the tools and methodology for data validation which have been developed to support the construction of the
Italian SDI. These tools are conformant to the relevant ISO 19100 and Open Geospatial Consortium (OGC) standards.

1. INTRODUCTION

The GeoUML Methodology (Belussi et al., 2006) and the
GeoUML Tools (Belussi et al., 2009) described in this paper
have been developed in order to support the management of a
geographical Conceptual Schema and to perform the automatic
validation of the conformance of a Data Product to a given
Conceptual Schema. The fundamental principles of this
development have been:
• to adhere to the ISO 19100 standards whenever they apply
• to be implementable on current technology
• to be independent from any specific (commercially or

open) GIS product
• to keep a clear separation between the conceptual and the

implementation levels.
The development of this approach has been financed by CISIS,
the coordinating authority of Italian Regions for spatial data, in
order to guarantee that the spatial databases created by the
different Regions satisfy common spatial properties. This is
considered a fundamental requirement for the national SDI. A
particular difficulty which had to be solved is constituted by the
different technical solutions adopted by different Regions for
physically storing their databases. For this reason the common
data content and the spatial constraints must be defined at
conceptual level, but they must be checked on databases
implemented with different implementation models. The
checking of globally defined conceptual constraints on local
databases is necessary and cannot be replaced by a global SDI
check on a common GML-based format for several reasons: (i)
data quality is also a local requirement; (ii) data surveys must
be evaluated at the initial stage of the local spatial database
creation; (iii) data have to be checked against integrity
constraints during the update process that is managed locally.
The tool which manages the Conceptual Schema is called
GeoUML Catalogue; the model used for defining the schema is
called GeoUML (model) (Belussi et al., 2006a; Belussi et al.
2006b). GeoUML and GeoUML Catalogue are described in
Section 2.

The tool used for checking whether a Data Product is
conformant to a given Conceptual Schema is called GeoUML
Validator and is described in Section 3.
The Data Product to be validated must be implemented using
one of several predefined Implementation Models (IM), which
transform the Conceptual Schema into a physical structure.
Implementation Models are described in Section 4.
The implementation of the GeoUML Catalogue and Validator
tools is complete and a beta-testing phase is now underway, as
described in Section 5.
The Catalogue and Validator Tools are an example of a
“Conceptual Model Driven Architecture”, which can be used to
develop other tools, as described in Section 6.

2. GEOUML MODEL AND CATALOGUE

The GeoUML model consists of the following elements:
a. the UML model for class diagrams (conceptual schema

language) as defined in (ISO/TC 211, 2005) with some
restrictions concerning the use of DataTypes and multiple
inheritance

b. a profile of the ISO Spatial Schema (ISO/TC 211 2003),
called Extended Simple Feature (ESF)

c. a set of predefined OCL (Object Constraint Language, the
reference language for constraint specification in UML)
templates which allow to define spatial constraints
referring to the classes and attributes of (a) and to the
spatial types of (b)

d. a set of additional (optional) specialized features (like,
predefined UML schemas for the specification of
segmented and subregion properties). These features are
not further treated here.

The ESF spatial profile is essentially the Simple Feature model
(SF) (ISO/TC 211 2004), which is adopted by current GIS
technology; the extensions are oriented to support some features
which are currently present in Data Products and go beyond the
SF; an evolution of SF is also underway at OGC (OGC, 2010).

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-4/C21

28th Urban Data Management Symposium (UDMS 2011), September 28-30, 2011, Delft, The Netherlands 89

The main extensions in ESF are:
• 3D point and curve types, including 3D spatial

relationships between geometries of these types (e.g. the
intersection of two 3D curves is defined in 3D), and also a
“planar” function which allows to refer explicitly to the 2D
projections of 3D geometries

• 2D surfaces with a 3D boundary; in this case topological
relationships can refer to the 2D surface (like
“planar(point3D) IN surface”) or to the 3D boundary (like
“point3D IN boundary3D(surface)”) – these kinds of
surfaces are a formally correct way to express topological
relationships on geometries which are managed by current
GIS technology under several names and are essentially
representing 3D rings (the so called “polygonZ” of
shapefiles).

As a consequence of the 3D extensions introduced in the ESF
model, the constraint templates (c) can express 3D properties.
The detailed description of the constraint structure is not given
here; refer to (Belussi et al., 2006a; Belussi et al. 2006b)for a
description of the template structure and of the reasons why the
templates are necessary. It is not convenient and to some extent
not even possible to use directly OCL constraints + spatial
functions in order to express and automatically verify
constraints. Other similar approaches in literature are described
in (Demuth et al. 1999, 2001; Duboisset, 2005).
A GeoUML Schema can be created using a tool called
GeoUML Catalogue; the Catalogue has the following functions:
• it checks that the Schema is syntactically correct directly

during the editing
• it allows to add descriptive information to the formal

definitions of the Schema
• it produces documentation of the Schema and additional

information (this documentation is necessary in order to
support for example a legally mandatory specification for
data production)

• it produces a standard OGC ISO 19109 compliant
Application Schema (AS) in XMI format which can be
imported in a CASE tool; the standard AS is obtained by
transforming the ESF spatial types into 19107 Spatial
schema types and by converting the constraint templates
into standard OCL formulas, which are added as comments
to the constrained classes

• it exports and imports the specification in a published
XML format (called SCS format).

As an example of the application of the Constraint Templates
consider the following textual constraints taken from the
D2.8.I.7 INSPIRE Data Specification on Transport Networks –
Guidelines:

Requirement 10: In a Transport Networks data set
which contains nodes, these nodes shall only be present
where Transport Links connect or end.

In GeoUML they would be expressed in the following way,
which can be interpreted by the GeoUML Validator:

TransportNode.Geometry (TC) exists
(InNetwork = TransportNode.InNetwork)
TransportLink.CenterlineGeometry

which is a short form for the OCL constraint:
context TransportNode
inv:TransportLink.allInstances ->
 exists(a: TransportLink |
 self.InNetwork = a.InNetwork and
 self.Geometry.check(TC,
 a.CenterlineGeometry))

where
• TransportNode is the class representing nodes in the

INSPIRE Specification and it has a spatial attribute
Geometry representing the node location

• TransportLink is the class representing links in the
INSPIRE Specification and it has a spatial attribute
CenterlineGeometry representing the center line of
the link

• a.check({r1,…,rn}, b) is a short form for
representing the disjunction of a set of relations (a.r1(b)
or … or a.rn(b))

• InNetwork is a role that defines the object of the class
Network to which a NetworkElement (node or link)
belongs.

• Finally TC is a short form for the Touch topological
relation as defined in GeoUML (it coincides with the
Touches relation of SF).

3. GEOUML VALIDATOR

The GeoUML Validator is a Tool which is capable to read a
Data Product and to check its conformance with a Conceptual
Schema previously created with the GeoUML Catalogue.
Since reading a Data Product requires to know its physical
structure, the mapping between the conceptual schema and the
physical structure must be known to the validator. This problem
is treated in the next section.
The aspects which the validator checks are the following:
• the structure of the input datasets; e.g. existence of classes

and attributes, domain values, referential integrity, etc…
• the validity of each geometry with respect to the properties

of the ESF types (notice that this implies checking also 3D
properties, e.g. a 3D ring must be closed in 3D)

• the fulfillment of all spatial integrity constraints which are
defined in the conceptual schema.

A critical problem in the implementation of the Validator has
been regarding metric aspects and resolution; as it is well
known, with current technology it is possible that two different
systems evaluate the topology of the same data differently, due
to rounding, Floating Point approximation and the use of
different algorithms (for example, in the computation of unions
used in some kinds of constraints). To deal with these aspects,
the GeoUML Validator is based on the following principles:
• the resolution of the input dataset must be at least 10 times

less than the internal resolution used by the validator to
represent coordinates values

• the minimum distance between any point and any segment
is required to be 10 times the internal resolution of the
validator

• the evaluation of topological properties is exact, i.e. two
points are equal if and only if their coordinates are
identical at binary level, two segments are equal if they
have equal endpoints, and so on.

The GeoUML Validator produces an error diagnostics which is
stored in a Derby database, from which it can be queried,
specialized reports can be derived, etc… A particular kind of
reporting which is architecturally possible but not implemented
yet is the production of “instance metadata” which can be
stored in the Data Product itself; the problem with instance
metadata is that some types of errors (e.g. a gap in “soil
covering”) cannot be associated with a single object instance,
and therefore we are designing a more complex model for
dealing with instance metadata.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-4/C21

28th Urban Data Management Symposium (UDMS 2011), September 28-30, 2011, Delft, The Netherlands 90

A complicated aspect of the error diagnosis is that the validator
operates at the physical level but it has to trace back the error to
the conceptual level in order to allow its interpretation in terms
of the Conceptual Schema; just associating the error with the
physical object would not be sufficient, since the Validator’s
result has to be interpreted in terms of the conceptual properties
which have been violated.
In order to minimize the dependency of the Validator from the
physical structure of the input, the architecture of the validator
is based on a fundamental component, called the Normalized
Database, which is a PostGIS database having an SQL schema
which is derived from the Conceptual Schema following the
internally defined Normalized Implementation Model; a Reader
loads the input dataset into the Normalized Database and
performs also some controls which depend on the particular
input structure, but the main part of the topological controls is
done on the normalized database and is therefore independent
from the physical structure of the input.

4. IMPLEMENTATION MODELS

The concept of Implementation Model (IM) allows to cover the
gap between the conceptual level and the physical level.
Every Data Product has a physical structure which is described
by some kind of Physical Schema. The way in which the
physical schema is defined depends on the technology used for
implementing the data product, e.g:
• SQL Data Definition Language for Geo-relational

databases
• XML Schema language (XSD files) for GML datasets
• a set of void Shapefiles for ESRI© shapefile technology.
The details which specialize a Data Product with respect to the
Conceptual Schema are stored in a Data Product Specification
(DPS); for each Conceptual Schema there can be several DPS
(they are all stored in the SCS file associated to the Conceptual
Schema). The most important component of a DPS is a data
structure called CPMapping, which defines the correspondence
between the Conceptual and the Physical Schema.
An Implementation Model is a set of rules which allows to
produce from a Conceptual Schema a corresponding Physical
Schema and CPMapping.
For every Implementation Model which is added to the
architecture it is necessary to develop the following two
components:
1. the Mapping Generator: this component is added to the

GeoUML Catalogue and allows to produce the Physical
Schema and CPMapping by applying the rules of the IM to
the Conceptual Schema stored in the Catalogue

2. the Reader: this component is added to the GeoUML
Validator and is capable to read a dataset having a physical
schema conforming to the Physical Schema produced by
the Catalogue and to load it in the Normalized Database.

In Fig. 1 the complete architecture constituted by the Catalogue,
Validator, Mapping Generators and Readers is shown.
The Implementation Models can be divided into two categories:
Transfer IMs, which should be used for implementing datasets
with the aim to transfer information, and Database IMs, which
are designed for implementing databases that are conformant to
a given conceptual schema. The main difference between these
two kinds of IMs is:
• Transfer IMs must be rigidly specified, since the producer

and the consumer of the dataset must agree on all details of
the physical schema

• Database IMs have more flexibility, so that the database
owner can modify some aspects of the physical schema

and CPmapping which is generated (e.g., change the
names of tables, attributes, add specific attributes, etc)

Currently the IMs which have been implemented in the
available tools are the following:
Transfer IMs:
• ESF GML: this IM is based on the standard encoding rules

for GML (ISO/TC 211, 2007)
• Shape_Flat: this IM has been defined in order to simplify

the aerophotogrammetric data production process and to
obtain data which is easily usable with current GIS
systems (the technology supporting GML was not
considered sufficiently mature)

• Shape_Topo: this IM is similar to Shape_Flat with respect
to technology and goals, but it stores the geometries of
several classes together in a so called “Topological Layer”,
implemented as a shapefile, instead of storing each
geometry in the corresponding “Class” shapefile.

Database IMs: there are two general SQL IMs, from which
currently the Oracle and PostGIS IMs are derived:
• ESF_SQL_Flat: this IM stores conceptual classes into SQL

tables without using nested structures
• ESF_SQL_Monogeometry: this IM is a modification of the

previous one, consisting in breaking those SQL tables that
contain more than one geometry column – this IM was
defined to support the use of some technologies which are
not capable of dealing with multiple geometries in a table.

5. CURRENT APPLICATIONS

The Implementation of the Catalogue, Validator and of the
Schema Generator and Reader for several Implementation
Models have been completed (available at
www.spatialdbgroup.polimi.it).
The Catalogue has been already extensively used; the most
important application has been the definition, in 2009, of the
Conceptual Schema of the minimal shared database content of
the Italian Regions, called National Core (NC). The NC
application has introduced some complications, because the NC
has the role of a Meta-specification, i.e. a Reference
Specification that all Regional Specifications must include. This
has led to the complex problem of compatibility between
different specifications, especially since the project aimed to
recover also data which has been produced before the definition
of the NC, using different schemas. Some features have been
introduced in the Catalogue in order to deal with this problem,
for example the possibility to compare different schemas, but
further study is necessary in order to deal with semantic
differences between schemas.
The case test for the development of the Validator has been the
Spatial Database of the Municipality of Cremona (a town in
Northern Italy - Lombardy Region): 72200 inhabitants, 70390
square meters, 80 feature classes, 370000 features. The
database, which is based on ORACLE Spatial, has been
redesigned using the Catalogue and adapted as far as possible to
the NC specification, thus performing a kind of “reverse
engineering” from the physical to the conceptual level, which
will be important in many situations. The validation of the
whole database, with 60 spatial integrity constraints, takes 5
hours and 30 minutes on a Intel Core i7 920 - 2,67GHz machine
(8 Gbyte RAM) with GNU/Linux (Fedora Core 14 - 64 bit),
postgresql 8.4.8, postGIS 1.5.2 and Oracle 10g (by introducing
some optimizations, like a parallel execution of queries, the
time can be reduced to about 2 hours). Details about this first
test are reported in Appendix A.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-4/C21

28th Urban Data Management Symposium (UDMS 2011), September 28-30, 2011, Delft, The Netherlands 91

The Beta test of the Validator in Aerophotogrammetric data
productions is underway with Veneto Region for the
Shape_Flat IM and Region Piemonte for the Shape_Topo IM.

In these productions the validator should be used not only by
the tester who has the responsibility to finally accept or reject
the data, but also by the data providers.

Figure 1. Validation of a Dataset with Conceptual Schema SC and Implementation Model MIx

During these experiments we hope to better understand how
constraints should be written in order to obtain the best possible
quality of the provided datasets. An interesting aspect which is
emerged already during the Cremona case is that, although the
Validator checks only the “intrinsic correctness” of the data, i.e.
the consistency of data with itself, since it cannot know
anything about the real world, this kind of check allows the
tester also to discover many errors with respect to the
correspondence between the data and the real world.

6. CONCLUSIONS AND EVOLUTIONS

The GeoUML Validator is a first example of the larger class of
GeoUML Tools which could be implemented in this
architecture. The main characteristic of these tools is that the
work they perform is driven by a Conceptual Schema (SC.scs
file). Thus, we can say that each GeoUML tool is based on a
“Conceptual Model Driven” Architecture.
Some tools can be implemented in a very simple way by just
substituting in the structure of Fig. 1 the final component, the
Check Integrity Constraints component, with a different
component. For example, possible additional components are:
• An Extractor Component, that is able to extract data from

the Normalized database and to represent them in a given
Implementation Model. A Converter Tool, that is able of
converting data from IMx to IMy can be obtained by just
the combination of a Reader for IMx and an Extractor for
IMy.

• A Merger Component, that is able to merge two data
products that share the same conceptual schema but adopt
different IMs. In this case we need two readers, one for
IMx and one for IMy, and a Merger that is able to discover
common instances and solve attribute conflicts.

These examples show that if the datasets share the same
Conceptual Schema, i.e. they share the same content although
they are different in physical structure, many useful operations
can be performed using an approach based just on
Implementation Models. Remark that with most commercially
available approaches to data conversion it is difficult to
recognize that two datasets with different structures share a
common content, because the conceptual and physical levels
are not clearly separated.
Real differences of contents (semantic differences) between two
datasets must instead be modeled at conceptual level. In order
to deal with semantic differences an extension of both the
GeoUML Catalogue and of the Merger Component is required.
Some experiments have been performed in order to analyze
how to extend the GeoUML Tools in order to support
elementary semantic differences. The general architecture
envisages that the Catalogue must represent the semantic
mapping among elements of the two conceptual schemas, and
the Merger Component has to apply the semantic mapping to
the data in the Normalized Database. Although the field of
semantic mapping has enormous complexity and only very
elementary semantic differences have been experimented,
coupling the different IMs with some elementary semantic
mappings, like the mapping of domain values, can be extremely
valuable in many practical situations.

REFERENCES

Belussi A., Negri M., Pelagatti G., 2006. An ISO TC 211
Conformant Approach to Model Spatial Integrity Constraints in
the Conceptual Design of Geographical Databases. In John F.
Roddick et al. (ed.) Lecture Notes in Computer Science,
Berlin/Heidelberg, Springer, Proceedings of ER 2006

Mapping
Generator
(for IMx)

Conceptual Schema CS

Check
Integrity

Constraints

other
Mapping

Generators

GeoUML Catalog

GeoUML Validator

CS.scs

Reader
(for IMx)

Dataset
(CS, IMx)

Normalized
Database
(PostGIS)

Error
Diagnostics

(Derby)

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-4/C21

28th Urban Data Management Symposium (UDMS 2011), September 28-30, 2011, Delft, The Netherlands 92

(CoMoGIS workshop), Tucson, AZ, USA, Nov. 6-9 2006, pp.
100-109.

Belussi A., Negri M., Pelagatti G. 2006. Modelling Spatial
Whole-Part Relationships using an ISO-TC211 conformant
approach. Information and Software Technology (48): 1095-
1103.

Belussi A., Migliorini S., Negri N. & Pelagatti G. 2009. From
the Conceptual Design of Spatial Constraints to their
Implementation in Real Systems. In Proceedings of The 17th
ACM SIGSPATIAL International Conference on Advances in
GIS, Seattle, Washington, USA, Nov. 4-6, 2009, pp. 448-451.

Demuth B., Hußmann H. 1999. Using UML/OCL Constraints
for Relational Database Design. Proc. of the Conference on the
Unified Modeling Language, USA (1999), pp. 598-613

Demuth B., Hußmann H., Loecher S. 2001. OCL as a
Specification Language for Business Rules in Database
Applications. Proc. of the Conference on the Unified Modeling
Language, USA (2001), pp. 104-117.

Duboisset M., Pinet F., Kang M.A., Schneider M. 2005. Precise
Modeling and Verification of Topological Integrity Constraints
in Spatial Databases: From an Expressive Power Study to Code
Generation Principles. 24th International Conference on
Conceptual Modeling (ER), Austria (2005), pp. 465-482.

ISO/TC 211, 2003. ISO 19107:2003, Geographic information -
Spatial schema, text for FDIS, doc. N 1324, 2002-09-09

ISO/TC 211, 2004. ISO 19125-1:2004 Geographic information
- Simple feature access - Part 1: Common architecture, text for
IS, doc. N 1563, 2004-01-23

ISO/TC 211, 2005. ISO 19109:2005, Geographic Information -
Rules for application schema, text for FDIS, doc. N 1538, 2003-
11-26

ISO/TC 211, 2007. ISO 19136:2007 Geographic information –
Geography Markup Language (GML), text for ISO, doc. N.
2174, 2007-03-12

OGC, 2010. OCG 06-103r4 OpenGIS Implementation Standard
for Geographic information - Simple feature access - Part 1:
Common architecture, Version: 1.2.1, 2010-08-04

APPENDIX

Table 1 lists the two most time consuming spatial integrity
constraints that have been tested during the application of the
Validator on the spatial database of the Municipality of
Cremona. The table shows, for each tested constraint: its formal
definition (column 1), the constrained class and its cardinality
(column 2), the constraining classes and their cardinality
(column 3), the number of violations (column 4) and the time
required for performing the test (column 5).

The first constraint requires the disjointness or adjacency (DJ or
TC) between all elementary volumes (class Volumetric Unit)
which are at ground level. The second constraint requires that
the 2D projection of the position of all Driveway (which have a
3D point geometry) must be contained inside the surface
representing the occupancy of a building at ground level.

The very small amount of violations is due to the fact that the
Database was operational and had already been extensively
checked and corrected during use and update.

Constraint definition Constrained class
(initials) - #obj

Constraining classes
(initials) - #obj

Number of
violations

Time (in seconds)

(type = "ground")
VOL_UNIT.basic_surface.surface
(DJ | TC) forall
(type = "ground")
VOL_UNIT.basic_surface.surface

Volumetric Unit

(VOL_UNIT) - 24057

Volumetric Unit

(VOL_UNIT) - 24057

2

5160

ACC_PC.Position.PLN
(IN) exists
CR_EDF.groundOccupancy.surface

Driveway

(ACC_PC) - 23000

Building

(CR_EDF) - 21700

12

7320

Table 1. Time required for testing the two most time consuming spatial integrity constraints (see Appendix)

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-4/C21

28th Urban Data Management Symposium (UDMS 2011), September 28-30, 2011, Delft, The Netherlands 93

http://www.di.univr.it/dol/main?ent=persona&id=57&lang=it

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-4/C21

28th Urban Data Management Symposium (UDMS 2011), September 28-30, 2011, Delft, The Netherlands 94

