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ABSTRACT:

This paper introduces the concept of a space-scale partition, which we term the space-scale cube – analogous with the space-time cube
(first introduced by Hägerstrand, 1970). We take the view of ‘map generalization is extrusion of 2D data into the third dimension’
(as introduced by Vermeij et al., 2003). An axiomatic approach formalizes the validity of the partition of space in three dimensions
(2D space plus 1D scale). Furthermore the paper provides insights in how to: 1. obtain valid data for the cube, 2. obtain a valid 2D
polygonal map at variable scale from the cube and 3. which other possibilities the cube brings for obtaining maps having different map
scales over their domain (which we term mixed-scale maps).

1 INTRODUCTION

For displaying geographic information a map is an often used tool
to portray characteristics of some geographic phenomena. User
interfaces in Geographic Information Systems (GIS) mainly use
maps to let users interact with the geographic phenomena under
study. An important feature of maps is that they show topologi-
cal relationships between geographic objects, which can be made
explicit in data structures (Hoel et al., 2003; van Oosterom et al.,
2002). As limited space is available for portrayal on any medium
(e. g. paper, screen, projector), it is not sensible to show repre-
sentations of geographic objects with all their details. It is better
to adjust the level of detail to the amount of space available (i. e.
apply generalization for smaller map scales).

This paper introduces the concept of a space-scale partition, which
we term the space-scale cube (analogous with the space-time
cube proposed by Hägerstrand, 1970). Map generalization of 2D
polygonal regions is seen as extrusion into the third dimension
(similar to Vermeij et al., 2003, where this idea was introduced
first). We formalize what we consider valid data for this cube.
The focus is on maps of polygonal regions in planar partitions,
because for a lot of applications polygons are a useful building
block for modelling, amongst others, administrative units, land
use, soil maps, topographic maps, zoning plans, etcetera. The
space-scale cube permits us to obtain an integrated 3D model,
composed of both the dimensions of 2D space and 1D scale (or
level of detail). From the 3D cube it is possible to extract a consis-
tent 2D map at variable scale (as the cube is one integrated model
of space and scale any derived slice from the cube must again be
a valid 2D planar partition). The formalization stems from re-
searching the topological Generalized Area Partitioning (tGAP)
structures (Meijers et al., 2009; van Oosterom, 2005) and the de-
sire to express what is valid data stored in the structures. The cube
encodes both a description of space at variable map scale as well
as the generalization process (transitions in scale dimension).

The questions that we explore in this paper are the following:

• How can valid, polygonal regions forming a valid partition
(in 2D) be transformed in a 3D space-scale cube and when
do we consider a space-scale cube valid?

• What possibilities does the cube offer us to obtain a consis-
tent 2D map?

Section 2 introduces the primitives we use for modelling 2D space,
describes what we term a valid polygon and how we build a par-
tition of 2D space. Section 3 explains our vision of how the inte-
grated 3D space-scale cube encodes both 2D space and 1D scale
at the same time. Section 4 describes how the cube can be used
for deriving a 2D polygonal map. Section 5 concludes the work
and suggests further research.

2 A VALID 2D DESCRIPTION OF SPACE

To obtain input for a valid 3D space-scale cube (SSC), we first
give a formal description of data for a 2D planar partition. It is
not the intent to redefine the common notion of what is a valid
polygon (c. f. van Oosterom et al., 2003), but to give a formal
basis for input data on which we can run a generalization process
for deriving a valid SSC (and later on the formal description will
be extended for the 3D SSC).

In the formal description we use notions from set theory and
borrow ideas from the formalization approach that Erwig and
Schneider (1997) describe. Keep in mind that here we aim at
a formal and reasonably abstract model, but that this model later
will have to be translated in data structures in a computer; an im-
plementation of those data structures are not the main purpose
now, but sometimes we will look forward and act if we were al-
ready targeting an implementation of the SSC.

2.1 Spatial building blocks

We define primitives from which we build a 2D planar partition
and a 3D SSC (in the next section). For the definitions and axioms
holds that we only consider cases where k at maximum is 3 (as
we deal with 2D maps and 1D scale).
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Definition 1. Given a k-dimensional Euclidean space Rk, called
X .

Definition 2. In X , we distinguish k + 1 distinct types of primi-
tives.

Definition 3. We name a i-dimensional primitive pi, where i is:
0 a node (p0), 1 a edge (p1), 2 a face (p2) and 3 a volume (p3).

Definition 4. The primitives pi are non-empty subsets of points
of M i, that is pi ⊂ M i. Here M i is a supporting subspace of
dimension i with M i ⊂ X and where for the dimension i holds:
0 ≤ i ≤ k. Primitives pi are connected and open in M i (or
relatively open in X ). Open means that for any given point x in
a primitive pi, there exists a real number ε > 0, such that, given
any other point y in pi, which has an Euclidean distance smaller
than ε to x, y also belongs to p (the ε distance defines an open
ball with infinitesimal small radius). Connected means that for
every pair of points x, y ∈ pi holds that there is always a path
within the interior of pi that connects the two points.

What needs to be true for all primitives P in X (note that P is
used to name the set with all primitives p that cover X ):

Axiom 1. X is not empty; X 6= ∅.

Axiom 2. Every primitive p is part of X ; ∀p ∈ P : X ∩ p =
p ∧ p 6= ∅.

Axiom 3. All primitives are pairwise disjoint, i. e. no points are
shared between primitives; ∀i, j ∈ P, i 6= j : i ∩ j = ∅.

Axiom 4. The union of all primitives P totally covers X ; ∪pp ∈
P = X .

Based on definitions and axioms, what also has to be true for
primitives is that:

Theorem 1. There is at least one k-dimensional primitive p in
X .

Proof. X is totally covered (Axiom 4) andX 6= ∅ (Axiom 1) and
for implementation finite primitives are used⇒ ∃pk ∈ X

Remember that k is the highest dimension, that is, the dimension
of the embedding space X . In theory it is possible to cover X
with an infinitely refined space filling curve.

2.2 Map objects and labels

To represent real world objects, we now introduce map objects
that we term zones. We define the names of the i-dimensional
zones as follows.

Definition 5. We term a i-dimensional zone ω where i = 0 a
vertex (ω0), i = 1 a polyline (ω1), i = 2 a polygon (ω2) and
i = 3 a polyhedron (ω3).

To discriminate a zone from all other zones, we introduce the
concept of labelling zones. A label is meant for giving a proper
identity to the zones, i. e. a label is a globally unique identifier.

Axiom 5. All zones have a globally unique label λ.

Furthermore, we require that zones form a closed and connected
entity:

Definition 6. All zones are closed and connected.

Apart from all real world objects that are mapped, we also have a
zone that represents the unmapped domain, a zone that represents
the space outside the mapped domain:

Definition 7. A zone with label ⊥ represents the space ‘outside’
the mapped domain.

Note that the ‘outside’ zone is allowed to have multiple parts:
exactly one part that is not completely bounded (in the direction
of infinity) and optionally other parts that are completely bounded
(e. g. this is the case with exclaves of the ‘outside’ zone).

To represent a zone in X , we associate the zones with the primi-
tives in X :

Axiom 6. A zone ω is formed by the union of its associated prim-
itives. These primitives have the same and lower dimensions as
ωi. A i-dimensional zone ω is formed by i ∪ i − 1 ∪ . . . ∪ 0-
dimensional primitives.

To end up with valid zones, we label all primitives P based on
the labels that the zones have:

Axiom 7. For a zone ω we require that there is exactly one prim-
itive p with the same label λ and same dimension as the zone.

And we require that a labeling procedure to give labels to the
primitives in X is carried out as follows:

Axiom 8. All primitives in X have to be labelled following this
recipe:

1. All primitives start with an empty label set.

2. For every zoneωi, add its label λ to all associated primitives
of dimension i.

3. Add to each remaining primitive p, that has a dimension i
smaller than that of its associated zone(s) and has not been
labelled, the set of labels of the points that are inside an
epsilon disc ε centered on the points of p.

After labelling we can derive the interior, exterior and boundary
primitives of an i-dimensional zone ω (Figure 1 illustrates these
concepts):

Definition 8. Interior (ω◦) of a zone: the associated i-dimensional
primitive that has a label set with exactly one label and which is
equal to the label of the zone.

Definition 9. Boundary (∂ω) of a zone: the set of< i-dimensional
primitives that have the label of the zone in its label set.

Definition 10. Exterior (ω−) of a zone: all primitives in X not
having the label of the zone in their label set.

However, we have not yet unambiguously labelled all boundary
primitives. For example, what is allowed by the set of axioms and
definitions is loose-lying segments inside a polygon, or spikes in
the boundary of a polygon. Figure 2 illustrates two of those cases.
To prevent the degenerate cases, we introduce an additional ax-
iom to restrict valid zones:
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(a) Boundary,
0D zone

(b) Interior, 0D
zone

(c) Exterior,
0D zone

(d) Boundary,
1D zone

(e) Interior, 1D
zone

(f) Exterior, 1D
zone

(g) Boundary,
2D zone

(h) Interior, 2D
zone

(i) Exterior, 2D
zone

Figure 1: Boundary, interior, exterior for 0D, 1D and 2D zones
(intent illustrated in black/dark grey). Note that a 0D zone does
not have a boundary (by definition there will not be any primitives
with dimension < 0).

{A}

{⊥}

{A,⊥}

{⊥}

(a) Spike in boundary.

{B}

{B,⊥}
{B}

{⊥}
(b) Loose-lying segment

in interior.

Figure 2: Degenerate cases will be prevented by correct labelling.

Axiom 9. For a space X where k = 2 the primitives P ∈ X
have to be labelled as follows:

• p0: three or more different labels

• p1: two different labels

• p2: exactly one label

It has been defined how a zone is represented and is composed by
its associated, unambiguously labelled primitives. Loose bound-
ary parts and spikes, such as shown in Figure 2, are prevented, as
those segments would only have one distinct label and as these
degeneracies do not add any extra information (e. g. it is already
known that that part of the space belongs the polygon) it is use-
ful to prevent these situations. As a final remark, note that this
set of statements allows holes to exist in polygonal regions and
multi-part polygons are not allowed (Axiom 7).

2.3 A valid 2D planar partition

For a valid 2D planar partition we will not allow zones with lower
dimension than k to exist, which means that when k = 2 we only
allow polygons.

Axiom 10. For X , we only allow k-dimensional zones.

We also state that zones are not allowed to overlap each other in
their interior:

Axiom 11. Zones are only allowed to share associated primitives
in their boundary and not in their interior: ∀ω1, ω2 ∈ Ω, ω1 6=
ω2 : pk1 ∩ pk2 = ∅ with Ω the set of all zones.

From the definitions and axioms, we can now derive that the in-
teriors of zones are unambiguously labelled.

Theorem 2. The interior of a zone, pk primitive, is labelled with
exactly one label.

Proof. Following from that primitives are not allowed to over-
lap (Definition 3), that for every zone there is a labelled primi-
tive having the same dimension (Axiom 7) and that there are no
shared primitives between zones (Axiom 11) follows that the in-
terior of a zone has to be labelled with exactly one label.

2.4 Targeting implementation

To make it easier to translate the abstract model to a suitable data
structure for a computer and to be able to define incidence and
adjacency (see next subsection), in addition to Axiom 6 where
we state that a zone is a collection of primitives, we add:

Axiom 12. For every dimension i ∈ {0, . . . , k} there is at least
one primitive associated with zone ω.

This then does translate nicely to data-structures, like DCEL, to
encode the incidence relationships of the boundaries (but where
the interior point set is not represented explicitly). From the
topology point of view a closed ring of a single island zone does
not have a node (p0). From the implementation point of view it
is nice if every edge (p1) starts and ends at a node (two p0, possi-
bly equal). We will have to add nodes where previously this was
not the case and it it is necessary to replace Axiom 9 (as such a
node has just 2 labels and not 3 or more labels as for topologically
defined nodes):

Axiom 13. For a planar partition where k = 2, the primitives
P ∈ X have to be labelled as follows:

• p0: two or more labels

• p1: exactly two labels

• p2: exactly one label

As last requirement, we will define that subsets of points in an
edge have to be straight in geometrical sense (not curved).

Definition 11. Connected subsets of points in an edge (p1) are
on a straight line (in 2D following the equation: y = ax+ b).
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(a) Planar partition of four
polygons

f1

f2

f3

f0 e1

e0 e2

e3
e4

e5
e6

e7

e8

n0

n1n2
n3

n4n5

(b) Associated primitives of four
2D zones (polygons).

f0

e0 e1 e3

f1

e2 e4

f2

e5 e6 e7

f3

e8

n0 n2 n1 n3 n5 n4

2-dim

1-dim

0-dim

(c) Incidence graph for the primitives representing the four polygons
in (a) and the associated primitives in (b). The 2 polygons for
which their interior is represented by f0 and f1 are 1-adjacent, as
two paths exist that overlap (and the highest dimensional primitive
in the overlap is at the 1-dim level, therefore 1-adjacent),
f0, e1, n0 and f1, e1, n0.

Figure 3: Incidence and adjacency can be defined by drawing a
graph of how the composing primitives for zones are related.

2.5 Incidence and adjacency

From how the primitives are associated with zones, we can obtain
a Directed Acyclic Graph (DAG), termed the incidence graph
(Lévy and Mallet, 1999). Figure 3(c) shows the incidence graph
for the primitives drawn in Figure 3(b). The highest dimensional
primitives will form the top nodes of this directed graph. Edges
in the graph represent how a k-dimensional zone is composed
of primitives. Primitives having the same dimension are drawn
on the same level in the tree structure. Based on the drawing of
the DAG, we can define incidence relationships of primitives and
adjacency relationships of zones. With respect to incidence, we
can also define the term degree of a primitive as the number of
incoming graph edges within the DAG.

Incidence Two primitives are said to be incident, when there ex-
ists a path between two primitives in the DAG.

Adjacency If two zones have paths in the incidence graph, that
partly overlap, and the highest dimensional overlapping prim-
itive is at level i, then the two zones are said to be i-adjacent.
Furthermore, these two zones will be said to be strongly con-
nected when i is exactly one dimension lower than the zone,
that is, i = k − 1.

3 FROM 2D SPACE AND 1D SCALE TO 3D SSC

As limited space is available for portrayal on any medium (e. g.
paper, screen, projector), it is not always sensible to show repre-
sentations of geographic objects with all their details. It is better
to adjust the level of detail to the amount of space available (i. e.
apply generalization for smaller map scales). This section puts
forward how we see that the result of a generalization process of
a 2D map can be represented by a description of 3D space and
what statements we need to add to the statements of the previous
section, to enforce a valid partition in 3D.

3.1 Generalization operations

A generalization process is often seen as a process, that for an in-
put map outputs a completely new and independent derived map

with lower level of detail (Mackaness et al., 2007). To make such
a generalized representation, we define a set of generalization op-
erations to derive a representation with less details than the input.
For every generalization operation holds that both its input as well
as its output has to be valid according to the set of axioms for
2D partitions (i. e. correctly labelled, with no overlaps between
the interior of primitives). For the time being, we discriminate 3
types of operations: merge, split and simplification of boundaries.

Merge Replace the label of a polygonal zone with the label of
one other polygonal region that is one of its direct neighbours.
Then relabel all primitives, that are not correctly labelled any
more (e. g. boundary between the two input polygons).

Collapse Divide a polygonal zone over two or more of its direct
neighbours (Bader and Weibel (1997) gives an example). Relabel
primitives that are not correctly labelled any more (e. g. bound-
ary between the two input polygons), introduce new primitives as
new boundaries between the direct neighbours and label the prim-
itives with the label of the correct neighbour. A split operation is
useful in the case of linear features (e. g. re-assign different parts
of a road or water zone to adjacent neighbours, instead of to one
neighbour only, which would have been the case when applying
a merge operation).

Simplification (of boundaries) Make the geometrical shape of
a boundary primitive simpler (i. e. less points in the point set).
Simplifying the shape has to be carefully performed, without in-
troducing any invalidly labelled primitives (c. f. Dyken et al.,
2009; Meijers, 2011).

3.2 A step-wise sequence of generalization operations

Research into multi-representation databases has changed the no-
tion that map generalization produces independent maps at dif-
ferent scales — with derived and stored links between the objects
with different levels of detail the maps are not completely inde-
pendent (see e. g. Ellsiepen, 2007; Persson, 2004).

This notion of linking multiple representations is taken a step fur-
ther by van Oosterom (2005) by introducing a step-wise general-
ization process, where a merge operation is iteratively applied
and a binary tree structure stores the result of those generaliza-
tion operations (into what is called the ‘tGAP face tree’). Storing
the sequence of generalization steps leads to variable-scale data:
at every step a reduction of the number of objects to be displayed
on the map takes place.

Figures 4(a) – (d) show a sequence of generalization operations.
First, a road object is split over its 3 neighbours, then the forest
area is merged into neighbouring farmland and finally the bound-
ary between farmland and water area is simplified. To cope with
the results of the split operation we modify the original binary
tree structure into a Directed Acyclic Graph (DAG) structure for
storing the result. Figure 4(e) illustrates the resulting DAG.

3.3 The SSC as resulting 3D planar partition

We realized that we can ‘stack’ all the derived maps on top of
each other in a 3D space. We can say that the stacking takes
place in an extra 1D dimension, orthogonal to the 2D space, i. e.
this 1D level-of-detail-dimension describes how 2D map content
is reduced, by storing the result of a generalization process step-
by-step. Via extrusion the 2D zones in the partition become 3D
zones living in 3D space. Figure 4(f) gives an illustration of the
3D resulting zones. We can fully describe the resulting SSC with
a 3D geometrical approach (where dimension k will become 3)
and therefore it is necessary to now replace Axiom 13 for how we
label (as this is the only Axiom that is dependent on k):
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(a) Original
map

(b) Result of
collapse

(c) Result of
merge

(d) Result of
simplify

water”

forest’ water’farmland’

forestfarmland waterroad

farmland”

(e) Generalization operations applied,
describing the lineage of polygons on
every map

(f) Space-Scale Cube
(SSC)

Figure 4: Illustration of generalization process and the resulting
SSC.

Axiom 14. For a planar partition where k = 3, the primitives
P ∈ X have to be labeled as follows:

• p0: two or more labels

• p1: two or more labels

• p2: exactly two labels

• p3: exactly one label

Note that normally in a purely 3D topological setting an edge
(p1) should have three or more labels (and a node four or more).
Furthermore, in our implementation setting, the labelling is based
on the fact that we also want faces in the resulting SSC to be flat
(similar to straight subsets in the 2D case):

Definition 12. Points in a face (p2) are planar (in 3D following
the equation: ax+ by + cz + d = 0).

3.4 Incidence and adjacency revisited

The definitions and axioms describe what we term a valid space-
scale cube in 3D. This cube captures the result of the general-
ization process, but from this cube we can also determine what
generalization operations were applied. The split, merge and sim-
plify generalization operations introduce horizontal and vertical
polygons (orthogonal to the space dimension) in the space-scale
cube: Extruded boundaries between polygons in 2D (line seg-
ments) become vertical (planar) polygons in 3D. As the polyhe-
drons will have to have a boundary, a ‘roof’ primitive has to be
put on top of a volume – these polygons define the end of the
scale range for a polyhedron and will be parallel with the bottom
plane of the space-scale cube (see Figure 4(f) and 6(a)). Note
that for a single zone, there will be one polyhedron; e. g. the wa-
ter zone extends from top to bottom in the SSC of Figure 4(f),
but for orientation purpose some non-existing interior horizontal
faces are depicted.

These parallel polygons define that two volumes are incident with
each other in the scale dimension. This means that the top-most
volume is the result of applying a generalization operation to the

other, lower volume. Thus the incidence relationship via hori-
zontal polygons permits to derive what generalization operations
were applied, i. e. this relationship captures the generalization
process. Based on the incidence relationships duality of the vol-
umes can be defined – only in the vertical direction, the scale
dimension, the duality really reflects the generalization process
(‘scale neighbours’), while horizontally ‘normal’ space neigh-
bours can be obtained.

4 OBTAINING VALID 2D MAPS FROM A SSC

The axioms we have given in Section 2 and 3 define what we
consider a valid 3D space-scale cube. We described the general-
ization process as extrusion of a 2D planar partition into a third
dimension (the level-of-detail-dimension) leading to a 3D parti-
tion of space. Now we want the inverse of this process: deriving
a 2D map from the 3D partition. Obtaining this map means to
derive a cross-section of the 3D cube that is parallel with the bot-
tom plane of the space-scale cube (Figure 5(a) illustrates taking
such a slice).

Theorem 3. A derived 2D cross-section from a SSC will conform
to the axioms for a valid 2D map.

Proof. The proof for horizontal slices is easy: at the bottom of
the cube (finest detail, largest scale) the input was already a valid
planar partition, every generalization operation makes sure that
the next representation is again a valid planar partition, and in
between only simple extrusion in the scale dimension takes place
and then slicing is equal to the planar partition just below the slice
plane.

For other, non-backfolding slicing surfaces the proof is less obvi-
ous. In fact the result will be a ‘planar partition’ with potentially
multi-part zones (which were not allowed according to our defi-
nition of a valid planar partition).

When the cross-section is exactly colliding with horizontal prim-
itives in the cube, it will be important to be careful when ‘slicing’
horizontally through the cube at a specific scale. Then the ques-
tion arises, which of the 2 labels to display in the 2D map. The
label to be shown would be the label of the top-most volume (as
this then generates a consistent set of 2D maps, i. e. also at the
bottom plane of the cube data will be shown).

Figure 5(b) shows another use of the cube: Obtain a sequence of
cross-sections by moving the plane that defines a cross-section up
or down in the cube. This way it is possible to re-play the steps of
the generalization process showing how the map changes in the
scale dimension. This can be beneficial for progressive transfer
or smooth display. To efficiently encode differences between two
cross-sections might however need different techniques (e. g. as
in Haunert et al., 2009; Sester and Brenner, 2005), as data be-
tween the first and second cross-section will be mostly similar.

5 CONCLUSION AND FUTURE WORK

This paper introduced the space-scale cube (SSC) as a theoretical
framework guaranteeing valid data at any level of detail present in
the cube. As representations are non-overlapping and the amount
of detail is decreasing when going to the top of the cube, incon-
sistencies in the derived 2D maps are also prevented. The space-
scale cube thus provides provable consistent representations.

Open questions remain, such as:
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(a) Normal cross-section,
parallel to bottom of cube.

(b) Set of cross-sections
(moving cross-section up
is less detailed data,
moving down means more
details): replaying steps of
the generalization process.

(c) Tilted cross-section,
leading to a mixed-scale
map (in this case more
details are shown at front
of cross-section, and less
details at back).

(d) Another possibility for a
mixed-scale map (lots of
detail on front, less detail
at back). Such a map will
be useful in a 3D virtual
world (more detail close
to eye of observer, less
detail further away).
Using a curved surface
even smoother transitions
can be obtained.

Figure 5: Possible cross-sections.

• How is the cube most efficiently represented in an imple-
mentation, e. g. in a data structure with nodes, edges and
faces, but without explicit vertical polygons (Meijers et al.,
2009), or by indeed using a full topological 3D structure
(c. f. Zlatanova et al., 2004, for alternatives)?

• Figure 5(c) and 5(d) show more possibilities for obtaining
cross-sections using a tilted plane. This leads to a ‘mixed-
scale’ map – i. e. a map with more detail in one part of the
map than in the other parts of the map. This can be useful
for 3D virtual worlds, where 2D data is projected into the
3D world, where close to the eye of the viewer more detail is
required, compared to at a larger distance. A similar effect
can be seen when a magnifying glass is placed over a 2D
map (e. g. see Harrie et al., 2002) – in the SSC case this
means that the cross-section is a bell-shaped plane.

One question is: Does such type cross-sections impose spe-
cific requirements on the data structures for efficient retrieval
of the resulting 2D map? Another question arises when such
a mixed-scale map is derived, whether the axioms are not
too strict. Intersecting with a non-horizontal slice plane can
lead to multi-part polygons, which is disallowed by the cur-
rent set of axioms (e. g. two patches of one polygonal area,
one at one side of the map, one patch at the other side of the
map).

• It would be possible to allow curves and curved surfaces as
primitives inside the cube: This way a more continuous look
and feel between cross-sections can be obtained leading to
even ‘smoother’ visualizations or morphs (for progressive
transfer).

• Instead of using just horizontal and vertical faces, defin-
ing the prism parts of the polyhedra, it would als be pos-
sible to use tilted faces. These would then be corresponding
to a gradually changing representation (van Oosterom and
Meijers, 2011). Our definition of a valid SSC further re-
mains equal.

(a) Data inside the space-scale
cube. Note that horizontal
‘roof’ polygons are left out
and no simplification of
boundaries was performed.

(b) Cross-sections of data
from the space-scale
cube at different levels
of detail.

Figure 6: Example of a space-scale cube (looking from above
into the cube) together with some derived cross-sections.

• How to extend the dimensionality of the cube into 4D (either
increasing the dimension to 3D space, or adding a 1D time
dimension) and even 5D (3D space, 1D time, 1D scale), as
proposed by van Oosterom and Stoter (2010)?
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