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ABSTRACT: 

 

We present a study for the evaluation of the efficiency of context features in object-based land-use classification of urban 

environments using aerial high spatial resolution imagery and LiDAR data. Objects were defined by means of cartographic 

boundaries derived from the cadastral geospatial database. Objects are exhaustively described through different types of image 

derived features (i.e. spectral and texture), three-dimensional features computed from LiDAR data, and geometrical features 

describing the shape of each object. Additionally, the context of each object is described considering several aspects: adjacency, 

urban morphology, vegetation, and geometry. Adjacency between objects was characterized by features computed using the graph 

theory. Urban morphology features are related to the shape and size of neighbouring buildings, and are often related to their socio-

economic function. The presence and density of vegetation are strongly related to the different urban typologies. Many of the 

contextual features are related to buildings, which are obtained by means of automatic building detection techniques. The meaning of 

the defined features, and their contribution to the classification accuracy were analyzed. The results showed that the inclusion of 

contextual features had a positive effect on land use classification of urban environments, increasing the overall accuracy around 4%, 

compared of using only the rest of features. The classification efficiency particularly increased in some classes, such as different 

typologies of suburban buildings, planned urban areas and historical areas. 

 

 

1. INTRODUCTION 

Half of the world’s population is currently living in cities and 

this proportion is expected to increase progressively to 70% by 

2050 (United Nations, 2010). The global increase in urban 

population and the rapid urbanisation processes was first 

experienced in developed countries in the middle of the 

twentieth century, and it is currently occurring in developing 

countries of Africa, Asia and Latin America. Urban sprawl 

phenomenon is produced due to the fast growing of cities and it 

entails diverse environmental consequences such as increasing 

the dependence on cars. The resulting reliance on fossil fuel 

causes a rise in pollution and greenhouse gas emission. 

Uncontrolled building and impervious surface construction 

leads to an increase in flood risk and a less effective absorption 

of rainfall into ground water aquifers, producing a decrease in 

land and water quality. Consequently, it is necessary to develop 

technologies and methodologies for monitoring urban sprawl 

and the side effects it causes. Remotely sensed data would 

enable the rapid adoption of policies that minimise the negative 

effects of urban sprawl. Solutions require a precise knowledge 

of the current urban environment to develop more efficient 

urban and territorial plans. 

 

The high dynamism of urban areas causes a continuous 

alteration of land cover and use, and consequently, cartographic 

information is quickly outdated. The availability of detailed and 

up-to-date cartographic and geographic information is 

imperative for an adequate management and planning of urban 

areas. Traditionally, the process of deriving land-use/land-cover 

maps of urban areas involves field visits and classical photo-

interpretation techniques using aerial imagery. These 

methodologies are expensive, time consuming, and subjective. 

Digital image processing techniques may reduce the time 

employed for manual interpretation, satisfying current demands 

for continuously and precise data that accurately describes the 

territory. 

 

The human recognition techniques employed for identifying 

elements in maps or images are performed by means of an 

intuitive analysis of individual characteristics and the 

topological features of spatial context within the overall 

environment (Hussain et al., 2007). According to Anders et al. 

(1999), the aim of retrieving structured information translated 

into more meaningful homogeneous regions can be achieved by 

identifying important structures within the initial random 

collection of objects and by understanding their spatial 

arrangement. Analogously to visual techniques used by photo-

interpreters, digital image processing techniques describe urban 

elements properties through image derived features (i.e. spectral 

and texture features), three-dimensional features computed from 

LiDAR data, geometrical features describing the shape of each 

object, and contextual features which are related to the spatial 

attributes of the overall environment. These descriptive features 

aim to emulate human cognition by numerically quantifying the 

properties of the image elements prior to classification. 

 

Urban areas can be decomposed in different aggregation levels, 

based on the categorisation, relationships, functions, and 

attributes of their various elements (Thomson and Béra; 2008). 

Objects can be defined using cartographical limits, such as plots 

or urban blocks. This is suitable for anthropogenic 

environments, where landscape units present unambiguous 
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boundaries that are relatively stable over time. Objects are 

classified usually by using two-stage approximation methods. 

After classifying land-cover type or identifying significant 

urban elements – mostly buildings – a land use is assigned to 

each plot (Zhan et al., 2000) or urban block (Bauer and 

Steinnocher, 2001; Laskari et al., 2008) by examining their 

contextual relationships. Contextual relationships have been 

often represented by using two methods: fragmentation metric 

descriptors (Alberti and Waddell, 2000), which are frequently 

used in ecological and landscape analysis (McGarigal et al., 

2002); and graph theory approach, which extends the concept 

of relational graph allowing for the representation of both, 

intrinsic and extrinsic relationships (Barnsley and Barr, 1997). 

Building information is important for characterising the land 

use of urban elements. The shape, size, and number of buildings 

per block determines its area and volume, and are often related 

to their socio-economic function. This suggests that the land use 

of an urban block may be determined by using quantitative 

observations related to the buildings that it contains. Building 

surface related features – i.e. building-to-land ratio (BTL) (Van 

de Voorde et al., 2009) – are often complemented with height 

information and volumetric descriptors when three-dimensional 

data is available (Yoshida and Omae, 2005; Yu et al., 2010; 

Vanderhaegen and Canter; 2010). 

 

As a result of the hierarchical structure of urban landscapes, it is 

necessary to consider the different aggregation levels of their 

elements. Consequently, this paper aims to define and analyse 

context-based descriptive features for classifying land use in 

urban environments – using object-based image classification 

techniques and combining high spatial resolution imagery, 

LiDAR, and cartographic data. Objects are defined by 

considering plot limits. Context is described by analysing the 

urban blocks. The meaning of context-based descriptive features 

and their contribution to improve classification accuracy are 

studied in this paper. 

 

 

2. MATERIAL AND METHODS 

Urban land use classification was carried out following an 

object-based approach. The main steps of this approach were: 

class definition; sample selection; descriptive feature extraction; 

classification of the objects; and evaluation of the results. 

Objects were exhaustively described through image derived 

features (i.e. spectral and texture features), three-dimensional 

features computed from LiDAR data, and geometrical features 

relating the shape of each object. In addition, a set of features 

regarding the context were defined. Many of the features 

derived from context are based on the detection of buildings. 

Objects were classified using decision trees algorithm combined 

with boosting multi-classifier. The descriptive features groups 

were progressively combined in order to analyze and identify 

their specific effect in the classification accuracy. 

 

2.1 Study area and data 

The study area was the town of Oliva at the province of 

Valencia (Spain). Oliva is located on the coast and contains a 

variety of urban zones with several suburban areas, surrounded 

by large areas of citrus orchards and farmlands. 

 

Image data were acquired in the framework of the Spanish 

Programme of Aerial Orthophotography (PNOA), which 

provides – among other photogrammetric products – periodic 

coverage of the entire national territory. Aerial images were 

acquired in June 2006 with a spatial resolution of 0.5 m/pixel 

and three spectral bands: infrared, red and green. The images 

were already orthorectified, geo-referenced, panchromatic and 

multi-spectral band fused, and radiometrically adjusted. LiDAR 

data was acquired in September 2009 using an Optech ALTM 

3025 sensor, with a nominal density of 2 points/m2, but with a 

high variability of the actual density distribution (see Figure 1). 

The limits of the plots were provided by cadastral cartography 

at a scale of 1:1000, produced by the Spanish National Land 

Registry Office (Dirección General de Catastro). 

 

 

  
Density: 0  9 points/m

2 
 

Figure 1. Study area in colour infrared composition (left) 

and actual density distribution map of LiDAR data (right). 

 

2.2 Definition of classes 

The definition of urban land use classes was based on the 

specifications of the Land Cover and Land Use Information 

System of Spain (SIOSE) database. This data was generated by 

Spanish public administrations at a scale of 1:25,000. SIOSE 

divides the territory in polygons that separate different 

environments or uses. The urban land use classes considered 

were: historical, urban, open urban, detached housing and 

terraced/semidetached housing (see examples in Figure 2.a). In 

addition, agricultural/vegetation related classes were defined 

into orchards, croplands and bare/arable lands in order to fully 

classify the study zone. These last two classes were finally 

merged in a single category. According to the internal 

variability of the defined classes, a total of 1,129 samples were 

collected. 

 

2.3 Building detection 

Buildings were detected by means of a thresholding-based 

building detection approach (Hermosilla and Ruiz, 2009). This 

method is founded on the establishment of two threshold 

values: one referred to the presence of vegetation, defined by 

using the normalised difference vegetation index (NDVI) 

image; and other referring to the height, applied over the 

normalised digital surface model (nDSM). The nDSM, i.e. the 

difference between the digital surface model and the digital 

terrain model (DTM), was generated from LiDAR data. The 

DTM was computed by using an iterative algorithm – fully 

described in Estornell et al. (in press) – that eliminates points 

belonging to any above ground objects, such as vegetation or 

buildings. 

 

The threshold values for vegetation and height were determined 

in a semi-automatic manner by collecting samples of both 

classes to be differentiated. Gaussian curves modelling their 

histogram were computed with the mean and standard deviation 

values of both sample classes. The threshold value was defined 
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as the point where both curves intersected. The binary images 

produced during the thresholding steps were softened using 

morphological opening and closing filters, and small objects 

were eliminated to remove noise. Finally, the two binary images 

(vegetation and height) were intersected, revealing the detected 

buildings. Buildings and vegetation masks were used to define 

several descriptive features.  

 

2.4 Descriptive features 

Object-based features describe each object as a single entity 

based on several aspects that reflect the information typology 

used: multi-spectral, three-dimensional, geometry, etc. These 

features are computed using an object-based image analysis 

software: FETEX 2.0 (Ruiz et al., in press). Object-based 

features were divided in three groups: spectral features, texture 

features, and three-dimensional and shape features. Spectral 

features provide information about the intensity values of 

objects in the different spectral bands. Mean, standard 

deviation, minimum and maximum descriptors were computed 

for each object in the available bands and in the NDVI image. 

Texture features quantify the spatial distribution of the intensity 

values in the analysed objects. The following descriptive 

features were derived: kurtosis and skewness of the histogram; 

grey level co-occurrence matrix (GLCM) derived descriptors 

proposed by Haralick et al. (1973); edgeness factor descriptors 

(Sutton and Hall, 1972); and semivariogram based features 

defined by Balaguer et al. (2010). Three-dimensional features 

are derived from the nDSM computed from LiDAR data, each 

object being characterised by the mean, standard deviation, and 

maximum values of the heights. Shape features describe the 

dimensions of the objects and their contour complexity. Area, 

perimeter, compactness, shape index and fractal dimension were 

computed. 

 

The context-based features provide information about the 

properties of the super-object created by merging adjacent 

objects (plots). This merging produces new entities with a 

higher aggregation level, corresponding to urban blocks in 

urban areas. Context is described by considering the spatial 

relationships of adjacent objects by means of building-based, 

vegetation-based, geometrical and adjacency features. 

Adjacency between objects was characterised based on the 

study of graphs, or mathematical structures used to model 

pairwise relations between objects from a collection (Laurini 

and Thompson, 1992). This theory was introduced for image 

classification purposes to describe the spatial relationship of 

adjacency – corresponding with edges in the graph – between 

geographical objects represented by vertices in order to quantify 

the adjacency relationships between objects, several features 

were defined: the number of correspondences with surrounding 

objects; the mean distance of these adjacencies; and the 

standard deviation of the distances between adjacent objects. 

These features are closely related to both, object and super-

object dimensions. 

 

Buildings correspond to basic elements of urban areas, and their 

characteristics shape our perception of the various urban 

morphological areas. Bi-dimensional and three-dimensional 

features describing the buildings inside each urban block were 

computed. Bi-dimensional features refer to built-up surface and 

built-up percentage, which is usually referred to as building 

coverage ratio (BCR) or sealed surface. As shown in Figure 2.b, 

in general, buildings in the historical and urban classes include 

urban blocks with small inner light wells. The open urban class 

 

 

a.
 H

is
to

ri
ca

l 

   

 

b
. 

U
rb

an
 

   

 

c
. 

O
p

e
n

 u
rb

a
n
 

   

 
. 

D
et

ac
h

ed
 h

o
u

si
n

g
 

   

 

e.
 S

em
id

et
ac

h
ed

 h
o

u
si

n
g

 

   

                        a                                                b                                                  c 

Building Vegetation       Height: 0  20 m 
 

Figure 2. Examples of the urban classes defined in (a) 

colour infrared composition, and (b) details of the built-up and 

vegetation covered surface, and (c) distribution of building 

heights. 

 

usually has only a portion of built-up area in a plot or urban 

block. The detached housing class tends to include several 

small buildings distributed in variable size plots and large urban 

blocks. The semi-detached/terraced housing class has larger 

built-up areas in small plots and urban blocks. 

 

Buildings contained in an urban block were also characterised 

using a set of three-dimensional features, i.e. mean and standard 

deviation values of their heights, and also features related with 

the volumetric information of buildings. Using the volume of 

each building derived from LiDAR data, the mean volume is 

computed as the total volume of buildings divided by the 

number of buildings contained in an urban block. Height and 

volume are strongly related to the type of buildings (see 

building height distribution in Figure 2.c). Historical class is 

mainly characterised by the irregularity of building heights and 

dimensions. Urban class contains taller buildings with more 

uniformity, larger dimensions, and higher volume values. Open 

urban class buildings have a diversity of dimensions and 

heights, but these are regular and lack internal variability. 

Individual semi-detached/terraced housing buildings normally 

have smaller dimensions, but taller buildings than the detached 

housing class. Semi-detached/terraced housing constructions 
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are attached and so produce elongated building rows with high 

unitary volumes at the urban block level. 

 

The presence and density of vegetation is strongly related to the 

different urban areas. The percentage of surface covered by 

vegetation within an urban block was defined. Additionally, 

statistical descriptors (mean and standard deviation) were 

computed from the pixels identified as vegetation from nDSM 

and NDVI, respectively. Little vegetation is found in industrial 

areas and in other urban classes. In contrast suburban residential 

areas show abundant vegetation (Figure 2.b). 

 

The geometrical properties of the urban blocks were described 

using area, perimeter, compactness, shape index, and fractal 

dimension features. Historical blocks are characterised by the 

extreme irregularity of their contours and by small and medium 

surface areas. In contrast, the urban class blocks show regular 

shapes with an abundance of perpendicular junctions that are 

similar to the open urban block. This class reveals especially 

variable dimensions. Suburban single-family blocks also present 

a variety of sizes. Detached housing blocks are commonly 

square, while semi-detached/terraced housing reveals 

significantly elongated shapes. 

 

2.5 Classification and accuracy assessment methods 

Four classifications were done by progressively adding 

descriptive features groups: spectral, texture, three-dimensional 

and shape, and context. Classification was performed using 

decision trees built with the C5.0 algorithm and the boosting 

multi-classifier method. This algorithm searches the features 

that best separate one class from the others by using mutually 

exclusive conditions, until homogeneous subgroups are 

generated, i.e. all the elements in a subgroup belong to the same 

class, or a stopping condition is satisfied. 

 

The evaluation of the four classifications performed was done 

by analysing the confusion matrix. The overall accuracies of the 

classifications were computed, as well as the producer and user 

accuracies for each class (which respectively reveal the errors of 

omission and commission). To improve the efficiency of the 

number of samples, the leave-one-out cross-validation 

technique was employed. In addition, a specific confusion index 

was defined to quantify the misclassification between classes by 

pairs, computed as the sum of their mutual errors divided by the 

total objects from that pair of classes. Confusion index values 

range from 0 (absence of per-class-pair errors) to 1 (all the 

objects of both classes are misclassified). 

 

3. RESULTS 

The classification results showed that the progressive addition 

of feature groups increases the classification accuracy, 

indicating the complementary nature of these feature groups 

(Table 1). The lowest values were obtained when only spectral 

features were considered. The addition of texture features 

slightly increased the accuracy. Three-dimensional and 

geometrical data offered valuable information (over 9% of 

overall accuracy increase). Finally, context based features also 

produce noticeable increases (4.3%) in overall accuracy. 

 

User’s and producer’s accuracies per class for the various 

feature group combinations are respectively shown in Figure 3 

and Figure 4. Analogously to the overall accuracy values, the 

least accurate performances were achieved when only spectral 

features were considered. The combination of different feature 

groups increased accuracy values, with the exception of the 

texture features, that negatively affected the producer’s accuracy 

of urban class and the user’s accuracy of historical and open 

urban classes. The agricultural classes performed properly 

considering only spectral and texture features. In general, urban 

classes presented low accuracy values considering only image 

derived features. The addition of LiDAR derived three-

dimensional features yield a noticeable increase of the user’s 

and producer’s accuracies, and the addition of context based 

features improves the accuracy, being significantly remarkable 

for the user’s accuracy of the urban class. When all feature 

groups were considered, accuracy values of all classes were 

closer or higher than 90%, with the only exception of the user’s 

accuracy of the terraced/semi-detached housing class, which 

was slightly lower than 80%. 

 

 

Features Overall accuracy 

Spectral 77.5% 

Spectral + Texture 80.0% 

Spectral + Texture + 3D & Shape 89.2% 

Spectral + Texture + 3D & Shape + Context 93.5% 

 

Table 1. Classification overall accuracy combining feature 

groups. 
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Figure 3. User’s accuracies as feature groups are combined. 
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Figure 4. Producer’s accuracies as feature groups are 

combined. 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-4/W19, 2011
ISPRS Hannover 2011 Workshop, 14-17 June 2011, Hannover, Germany

108



 

0%

5%

10%

15%

20%

25%

Detached housing vs

Terraced/semi-detached

housing

Urban vs Historical Urban vs Open urban

Pairs of classes

C
o

n
fu

si
o

n
 i

n
d

ex
 . 

 
Spectral  Spectral + Texture  Spectral + Texture + 3D & Shape 

 Spectral + Texture + 3D & Shape + Context 

 

Figure 5. Evolution of confusion index when descriptive 

features are successively introduced into the classification 

model. 

 

Three pairs of classes presented high levels of confusion due to 

their spectral similarities and the absence of a framework for 

contextualising their differences: detached housing and 

terraced/semidetached housing; urban and open urban; and 

urban and historical. The per-class-pair confusion index for 

these classes (see Figure 5) noticeably decreases when three-

dimensional and geometrical based features are considered. This 

is especially evident for the detached housing and 

terraced/semidetached housing classes, since plots contained in 

the semi-detached/terraced housing class are characterised by 

smaller dimensions and taller buildings than detached housing 

plots. The successive addition of the contextual features reduces 

the confusion between both classes up to a value of 8%. Figure 

6.a and Figure 6.b shows an area mainly occupied by the classes 

detached housing and terraced/semi-detached housing. 

Similarly, urban and open urban classes present a slightly high 

initial per-class-pair confusion index that is considerably 

reduced when tree-dimensional and context based features are 

considered in the classification. 

 

Historical and urban classes show a high per-class-pair 

confusion index, but it is remarkably reduced as three-

dimensional and also contextual features are used in the 

classification. The plots from these classes present similar 

object level features, being their main differences at urban block 

level. The urban class blocks usually belong to a previously 

planned and ordered environment. Urban blocks of historical 

areas have irregular and complex shapes. Figure 6.c graphically 

shows how historical and urban classes are in general 

efficiently discriminated, in spite of some minor errors 

produced in isolated objects. 

 

 

4. CONCLUSIONS 

This paper describes a set of context-based descriptive features 

for urban environment land-use classification computed from 

high spatial resolution imagery and airborne LiDAR data. These 

features aim to imitate human cognition through the numerical 

quantification of the discrimant properties of image elements. 

The results of the classification show that the inclusion of 

contextual features has a positive effect on land use 

classification of urban environments, producing an increase of 

the overall accuracy of 4%, compared to the one obtained using 

only the other type of features: spectral, texture, three- 

 

a.   

b.   

c.   
Legend: Croplands & bare/arable lands    Orchards    Historical    Urban 

              Open urban    Detached housing    Terraced/semidetached housing 

 

Figure 6. Cartographic compositions details of the 

automatic classification. 

 

dimensional and geometrical. The classification efficiency is 

particularly increased in some classes, such as different 

typologies of suburban buildings, planned urban areas and 

historical areas, since a framework for contextualising the 

differences of these classes is provided. This methodology, 

based on automated descriptive feature extraction from LiDAR 

data, images and context information using an object-based 

approach, provides new tools to increase the frequency and 

efficiency of urban studies, being applicable for mapping cities, 

urban landscape characterisation and management, and 

updating geospatial databases. 
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