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ABSTRACT: 
 
Understory trees in multi-layer stands are often ignored in forest inventories. Information about them would benefit silviculture, 
wood procurement and biodiversity management. Cost-efficient inventory methods for the assessment of the presence, density, 
species- and size-distributions are called for. LiDAR remote sensing is a promising addition to field work. Unlike in passive image 
data, in which the signals from multiple layers mix, the 3D position of each hot-spot reflection is known in LiDAR data. The 
overstory however prevents from obtaining a wall-to-wall sample of understory, and measurements are subject to transmission losses. 
Discriminating between the crowns of dominant and suppressed trees can also be challenging. We examined the potential of LiDAR 
for the mapping of the understory trees in Scots pine stands (62°N, 24°E), using carefully georeferenced reference data and several 
LiDAR data sets. We present results that highlight differences in echo-triggering between sensors that affect the near-ground height 
data. A conceptual model for the transmission losses in the overstory was created and formulated into simple compensation models 
that reduced the intensity variation in second- and third return data. The task is highly ill-posed in discrete-return LiDAR data, and 
our models employed the geometry of the overstory as well as the intensity of previous returns. We showed that even first-return data 
in the understory is subject to losses in the overstory that did not trigger an echo. Even with compensation of the losses, the intensity 
data was deemed of low value in species discrimination. Area-based LiDAR height metrics that were derived from the data belonging 
to the crown volume of the understory showed reasonable correlation with the density and mean height of the understory trees. 
Assessment of the species seems out of reach in discrete-return LiDAR data, which is a drastic drawback. 
 

1. INTRODUCTION 

Commercial forests in Finland are typically even-aged. Pine, 
spruce, and birch are the main species. A layer of shade-tolerant 
trees emerges commonly under pine and birch in ca. 10% of 
productive forest in southern Finland. Information of understory 
trees is of relevance for forest management.  
Remote sensing was applied to understory vegetation (Eriksson et 
al. 2006; Peltoniemi et al. 2005; Korpela 2008). In passive optical 
data, the signals from the over and understory are mixed, which 
hampers the interpretation. Diffuse light, shading and occlusions 
are inherent properties of the understory. In this respect airborne 
LiDAR sensors offer a promising alternative. They illuminate the 
target  and  measure  the  travel  time  of  very  short  pulses  that  can  
penetrate the canopy through gaps and reflect from several targets. 
The back-scattered photons are measured in shadow-free view-il-
lumination geometry at low scan zenith angles. A discrete-return 
(DR) LiDAR extracts 1-4 echoes, while full-waveform LiDAR 
sensors sample and store the amplitude of the returning photon 
surge at high frequency. A measurable signal is not always obtained 
from below dense canopies due to transmission losses, since the 
energy is concentrated into a narrow cone, typically 0.1–0.5 m in 
diameter. The at-target energy decreases with increasing range, 
which decreases the SNR. Consequently, fewer echoes are detected 
from higher altitudes. Reflective but small targets not always scat-
ter an adequate amount of photons to trigger an echo. However, 
even these weak interactions contribute to transmission losses, 
which complicate the interpretation of radiometric signals from the 
understory. DR sensors record the range and intensity, and intensity 
is assumed to correspond to the peak backscatter amplitude. Given 
a homogenous overstory, intensity is a potential measure of trans-
mission losses except for volumetric reflections. The intensity 
observations are not physical entities, and sensors may differ in 
how the backscattered signal is interpreted into an echo. Thus, 
calibration using in situ reference data is likely needed in 
understory inventories as well. 

The spatial pattern of understory trees, species composition, density 
and height (h) are important parameters for forestry. LiDAR point 
h- and intensity distribution metrics were used to characterize 
multiple canopy layers (Maltamo et al. 2005; Martinuzzi et al. 
2009; Hill et al. 2009; Morsdorf et al. 2010). Research done in 
seedling stands shows that the accuracy of LiDAR in measuring 
and classifying small trees is limited (Korpela et al. 2008). Results 
in LiDAR-based tree species classification also suggest that the 
intensity data are noisy (Ørka et al. 2009).  
A challenge in using h-distributions is the vertical overlap of the 
under and overstory trees. A further challenge is the represen-
tativeness of the pulse sample that reaches the understory. The 
pulse pattern may provide a biased sample. Intensity data in DR 
systems could potentially be used for discriminating between tar-
gets of different reflectance, structure and geometry. The noise due 
to transmission losses must however be accounted for. This is ill-
posed in DR data, because of the losses due to weak and volumetric 
reflections, which are incompletely described by the intensity 
observations. The fact that intensity not only depends on target 
reflectance contributes to the ill-posed nature. DR systems have a 
blind zone of 1–4 m that follows an echo. These losses are not seen 
in the intensity data. The echo-triggering probability, intensity and 
transmission losses depend also on the geometry of the pulse–target 
intersection due to the uneven energy distribution within footprints. 
Our overall aim was to explore the potential of LiDAR in mapping 
understory trees for forestry applications. Using carefully measured 
in situ data we examined the basic relationships. We focused on the 
analysis of intensity data for tree species discrimination, which is 
an important practical aspect.  
 

2. MATERIALS 

2.1 Hyytiälä study area, field plots and measurements 

The study was conducted in southern Finland in two pine-
dominated stands (Table 1). Plot A is in a 50-year-old stand on 
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moraine soil. The understory consists mainly of downy birch and 
spruce. The plot contains a gradient in both site fertility and in the 
density of the understory. The bottom flora is characterized by 20–
50-cm-high bilberry, stem moss and wood moss. Plot B is located 4 
km SSW from A, and has mature, 110-yr-old trees. It is located on 
sandy alluvial deposit with flat topography. The understory consists 
mainly of spruce and the twig layer of bilberry and lingonberry is 
sparse. Stem moss and fork mosses comprise the bottom layer.  
 

Table 1. Stand characteristics on the research plots.  
 Plot A Plot B 

Size, m 60×60 m 30×100 m 
Dominant height, Hdom, m 17.9 26.7 

Dominant trees (hrel > 0.5) 
Age in 2009, years 52 110 
Density, stems ha-1 972 393 
Basal area, m2ha-1 22.6 27.4 
Mean dbh, cm 18.6 31.6 
Mean h, m 16.5 25.4 
Stem volume, m3ha-1 182 318 
Pine, m3ha-1 180 278 
Spruce, m3ha-1 0.1 40 
Birch, m3ha-1 1.2 0.4 

Understory trees (hrel < 0.5) 
Density (living), ha-1 5681 10903 
Density (dead), ha-1 369 157 

 
We aimed at positioning accuracies of 0.25 m and 0.15 m for the 
over and understory trees, respectively. A method was developed, 
which combined photogrammetry with field triangulation and 
trilateration. All photo-visible trees were positioned in aerial 
images using monoplotting in the LiDAR point clouds. The sX and 
sY for the tree stems were 0.25 m on plot B (redundant intertree 
distance measurements). Mapping of understory followed in 6-8-
m-wide strips. A cable was tightened between two trees, which we-
re positioned by trilateration-triangulation and adjustment of 8 
distance, azimuth and XY coordinate observations, giving precision 
of 0.1 m. The position of trees with h > 0.3 m was derived by 
measuring the distance along the cable and perpendicularly to it 
using a large right-angle tool. A two-person crew measured 260 
trees per day. The accuracy was controlled by mapping the photo 
trees with the cable method. sXYcable were 0.06-0.13 m. Redundant 
distances were measured between understory trees on plot B and 
contrasted to the calculated distances. Within-strip sXYcable were  <  
0.05 m, while between-strip sXYcable were 0.07 m. All trees were 
measured for h. The dbh and h of the crown base (hc) were 
measured for the overstory trees. The h-distributions were bimodal 
(Fig. 1). The spatial pattern of the understory was uneven on both 
plots (Fig. 2). The mean h or density of the understory trees was 
tested spatially independent of the overstory trees at close distan-
ces. 
 
2.2 LiDAR data 

Four data sets from three campaigns were used (Table 2, 3). 
Sensors recorded 1-4 echoes per pulse and the trajectory data was 
included. The weather of June 2007 was very rainy and the last rain 
(6.4 mm) occurred only two days prior to the campaign. We used 
for illustrations LiDAR data from August 2004 and July, 2010. The 
XY accuracy of the LiDAR data was better than 0.25 m in photo-
grammetric targets. The elevation accuracy was evaluated at 
Network-GNSS points and campaign-level offsets of below 6 cm 
were observed. In ALTM3100 data, raw observed intensities were 
normalized for range variation using an average reference range: 

raw

a

ref
corr I

R
RI ×÷

÷
ø

ö
ç
ç
è

æ
=   (1) 

 

In ALS50-II data, corrections for both R and AGC values were 
made using an empirical correction (Korpela 2008; Korpela et al. 
2010): 
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Parameters b and c in Eq. 2 were solved using an F-test for 
intensity observations representing homogenous natural and 
artificial targets. The value of a was 2.4 in Eq. 1 and 2.5 in Eq. 2. 
They are compromises for forest canopies (Korpela et al., 2010). 
DEMs in a 0.5-m grid were estimated using the different LiDAR 
data sets with TerraScan software.  

 
Fig. 1. h-distributions of trees in plots A and B. 

 
3. METHODS 

3.1 Geometric modelling of trees 

To study LiDAR pulse-tree interaction, we geometrically modelled 
the reference trees. We confined ourselves to simple objects and the 
trees comprised of rotationally symmetric solids: a curve of 
revolution for the upper part of the crown, a cylinder for the lower 
part of deep crowns and a truncated cone for the stem.  
Fig. 3 shows a pulse penetration map that was drawn at the mean 
crown base height (HC) the overstory. The map shows the 
autocorrelation of penetration and overstory. Such maps were 
drawn on a mapping surface at h = HC above the DEM, by back-
projecting pulses to this h. 
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Fig. 2. Map of trees on plot A (left) and B (right). The symbol size 

for upper layer trees depicts hrel. Coordinates are in 
meters (KKJ-2 system). 

 
Table 2. Sensor configurations in the LiDAR data sets. 

Data set ALTM_06_1km ALS_07_1km 
Date July 25, 2006 July 4, 2007 
Instrument ALTM3100 ALS50-II 
Altitude, m, AGL 840 780 
Pulse frequency, kHz 100 116 
Scanning frequency, Hz 70 52 
Scanning angle  ±14° ±15° 
Divergence (1/e), mrad 0.3 0.15 
Automatic gain control no yes 
Data set ALS_08_1km ALS_08_2km 
Date Aug 23, 2008 Aug 23, 2008 
Instrument ALS50-II ALS50-II 
Altitude, m, AGL 960 2040 
Pulse frequency, kHz 92 109 
Scanning frequency, Hz 35 34 
Scanning angle  ±32.5° ±32.5° 
Divergence (1/e), mrad 0.15 0.15 
Automatic gain control yes yes 

 
Table 3. Characteristics of the LiDAR data sets per the plot. 

 Data set ALTM_06_1km ALS_07_1km 
Strips covering 4 2 
Pulse density, m-2 9.7 6.3 
Scanning angles, ° 4, 8, 9, 12 8, 9 
Scan range, m 776-838 724-765 
Strips covering 3 2 
Pulse density, m-2 5.7 6.1 
Scanning angles, ° 13.6, 8.2, 5.6 10.6, 5.9 

Pl
ot

 A
 

Scan range, m 827-921 765-805 
 Data set ALS_08_1km ALS_08_2km 

Strips covering 2 2 
Pulse density, m-2 2.1 0.9 
Scanning angles, ° 6, 3 13, 12 
Scan range, m 878-908 1881-1924 
Strips covering 3 3 
Pulse density, m-2 4.9 2.3 
Scanning angles, ° 25.8, 25.1, 30.0 24.6, 23.9, 24.7 

Pl
ot

 B
 

Scan range, m 1003-1102 2059-2130 
 
3.2 Pulse-target geometric analyses 

An analysis procedure was developed to study pulse-tree 
intersections, using the geometric tree objects. The procedure 
assigned echoes to objects (crown, stem or ground) using a small 
tolerance. An iterative procedure was applied to solve the 
object-pulse intersections and pulse path. All echoes with h < 0.5 
m were usually considered ground. Due to geometric imprecision, 
3-8% of the echoes always remained unassigned. These were 
mostly located in the overstory. Mathematically, the pulse was a 
cone defined by the pulse divergence. 

 
Fig. 3. Pulse penetration map from plot A (H = 8.8 m). The circles 

depict the crown area at the crown base. Red dots are 
pulses with a single return; green denotes two-return 
pulses and blue is for three- and four-return pulses.  

 
3.3 Assessment of the geometric match of LiDAR and the 
reference trees 

To validate the georeferencing accuracy in the understory, we 
allowed the trees to shift in a grid in 5-cm steps. The mean 
distances of the highest echo (h > 1 m) of each understory tree and 
the proportion of unassigned echoes were analyzed for the minima 
(Fig. 4). The 0-20-cm X and Y offsets per plot were quite similar 
across LiDAR data sets. Thus, we added the offsets to the 
coordinates of the reference trees to improve the match.   
 

 
  
Fig. 4. Mean horizontal echo-stem distance (m) of the highest echo 

in understory trees as function of X and Y offsets (cm). 
Plot B, ALTM_06_1km and ALS50_07_1km data sets.  

 
3.4 Correction of intensity data for transmission losses 

The effects of range and AGC were compensated by Eq. 1 and 2. 
Because the overstory was rather homogeneous, we assumed simi-
lar reflectance and geometric properties for scatterers across that 
layer on both plots. Variation of intensity data from the overstory 
was thus mostly due to variation in illumination area and intersect-
ion geometry. The first-return intensity data differed from single-re-
turn data. This is obvious, since single-return pulses represent 
strong reflections. Scatterers producing single-return data are dense 
or reflective. Similarly, a weak first echo implies that the pulse with 
high likelihood penetrated the canopy. The understory of both plots 
had produced first-or-single, second- and third-return data. Without 
compensation of the transmission losses, the coefficients of variat-
ion (CVs) by species were high. Despite the obvious fact that the 
compensation of transmission losses in LiDAR data is ill-posed, we 
tried it and formulated a conceptual model for the losses. It consis-
ted of three components: 
1. Below-the-SNR-losses. There are small scatterers in the 

canopy, which do not trigger an echo yet dampen the signal.  
2. Losses due to echo-triggering reflections. We assumed that 

intensity from “shallow targets” such as individual branches 
could be used for the estimation of losses occurring in these 
targets.  
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3. Unseen losses. A blind zone follows each echo in and intensity 
does not capture the losses from volumetric reflections.  

The unseen losses and the below-the-SNR-losses were assumed to 
be dependent on the pulse path. Each pulse that reached the 
understory was assigned a penetration class, pc Î (1-12). Namely, 
the crown models of dominant trees were scaled (0.5, 0.6,.., 1.5) 
and the pulse-crown intersection determined for each scaled case. 
If the pulse intersected the smallest crown model, pc was 1. Pulses 
that did not intersect the crown that was expanded by a factor of 1.5 
were assigned pc of 12. When LiDAR intensities from the 
understory were plotted against pc, a clear trend was detected. The 
trend is visible even in single-return data, which suggests that 
below-the-SNR transmission losses affect all return classes. In 
single-return data, the maximal losses were 10-15%, whereas in 
second-return data, differences of up to 60% were observed. The 
losses in second-return data consist of all three types and the de-
pendence on pc suggests that they all could depend on the pulse 
path. We tested various models for correcting the intensities of se-
cond and third returns. The models were based on observed 
intensities of previous returns and the geometry of the pulse. We 
applied stepwise multiplicative models, which first were used for 
correcting the second-return intensities, and secondly these data 
were used in correcting the third-return intensities:  
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In Eq. 3a and 3b, term m1 accounts for the pulse path geometry in 
the dominant layer. I#_corr are the AGC/range-corrected intensities. 
Different formulations of term m1 in Eq. 3 were tried. Beer’s law -
based transmission loss, penetration class (pc), and a proximity 
measure, which was the smallest horizontal pulse-trunk distance in 
a dominant tree divided by the tree h. To use the Beer-Lambert law, 
we tested 768 versions of parametric needle-density functions. 
Parameters for the models and the needle-density functions were 
found using iterative Monte Carlo search by minimizing the mean 
coefficient of variation (CVpooled) of the I#_tr data.  
   
3.5 Analysis of area-based predictors 

The plots were divided into 100-m2 squares, and for these we 
determined the forest variables per tree layer as well as LiDAR 
metrics. The mean hc of dominant trees (HC) was used as a 
threshold to separate between under and overstory. All echoes in 
the volume bounded by HC were used in deriving standard LiDAR 
metrics (Næsset, 2004). An h-threshold was applied in separating 
between ground and vegetation echoes and tested for different 
values (0.1-0.5 m), and in the end we used 0.4 m as the default.  
 

4. RESULTS OF EXPERIMENTS 

4.1 Factors explaining echo-triggering in the understory  

We first tested the factors that explain echo-triggering at the pulse-
level (Tables 4, 5). The mathematical intersection of each pulse was 
solved, and echoes were assigned to objects. The average echo-
triggering probabilities were higher (56-69%) in pulses that had not 
produced an overstory echo than in pulses with an overstory echo 
(41-58%). The echo probabilities were highest in spruce compared 
to other species. Interspecies size differences may also account for 
the different probabilities. The ALS50 data showed higher echo 
probabilities than the ALTM data. In plot B, the spruces had 
produced an echo in 61% of ALTM pulses. This could also be due 
to the differences in the sensors’ ability to measure near-ground 
first and single echoes (Fig. 5). The comparison of pulses that 
triggered an echo vs. no-echo pulses showed that the intensity in 

the overstory was higher among pulses that had not triggered an ec-
ho in the understory tree. This is explained by the transmission 
losses. Similarly, the average minimum pulse-stem distances were 
shorter for pulses that had triggered an echo. The same was observ-
ed in the minimum echo-stem distance, which was shorter in non-
first echoes than in first echoes. In the ALS50 data, the receiver 
gain values were systematically lower for the pulses that had not 
triggered an understory echo. Thus, it seems that the AGC affects 
the h-distributions in the ALS50 sensor.  
The echo-triggering mechanisms differed between the sensors (Fig. 
5). The ALTM distributions show that the lowest first returns were 
at the h of 2.2 m and these intensities were lower compared to 
single-return data. There are very few low-intensity echoes at the h 
of  1-3 m. Whereas in ALS50, the low-intensity single-return 
observations reach as low as the h of 2 m and the lowest first 
returns are at the h of 3.6 m. The relatively low intensity of ground 
returns compared to tree returns (h >  0.  5  m)  is  seen  for  the  
ALS_07_1km data, which was acquired when the forest floor was 
moist.  
 
4.2 Intensity data in species discrimination 

We observed high within-species variation in range/AGC-corrected 
intensity data. Within one LiDAR data set, the differences in mean 
intensity between classes were similar on both plots. However, the 
relative order was not always preserved between data sets. The CVs 
of intensity were higher in broadleaved trees compared to spruce 
and ground had the lowest CVs. The mean intensity of ground was 
clearly higher than in trees except for the 2007 data, in which the 
soil moisture probably had lowered the intensities. The differences 
in mean intensity between tree species were marginal, which 
implies that the potential of using intensity data for species 
discrimination on our case is very limited. Rowan showed the 
highest intensities, which is consistent with earlier observations 
made for dominant trees. The second-return data were deemed 
useless as such, because the mean intensities were almost equal 
across all target classes. 
 
4.3 Intensity normalization trials  

4.3.1 Range/AGC-normalization 
 
We computed the pooled CV for the target classes using raw and 
range/agc-corrected intensities. CV decreased in most data sets 
except for the 2008 data on plot A. The CVs were considerably 
higher in second- and third-return (> 65%) than in single- (< 48%) 
and first-or-single (< 54%) data. For single returns the low CV is 
partly explained by the inherent target selection of LiDAR– only 
strong reflections exist in this echo category. Transmission losses 
explain in part the high CV of second and third return intensities. 
The CVs were larger in the ALS50 data compared to ALTM3100 
data, which was explained by the different near-ground behaviour 
of single-return data (Fig. 5) Range- and AGC correction also 
slightly improved classification accuracy and Kappa values (results 
not shown).  
 
4.3.2 Normalization of the transmission losses 
 
The compensation of transmission losses was done only for the 
high-density LiDAR data sets. All tested models significantly 
decreased CV in second- and third-return data from 68-84% to 
45-74%. Linear models were almost as good as the non-linear 
versions. In the second-return data, inclusion of the geometric 
component (m1 in Eq. 3) lowered the CV, which implies that some 
“unseen losses” are dependent on the pulse path. The use of 
intensities of previous returns decreased the CV even in the third-
return data. Classification accuracy and Kappa values of binary 
classifications between ground and the most abundant tree species 
were also improved. The best-case values for the power c1 in Eq. 3b 
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were 1.5-1.8 in the ALTM data, while being 1.2-1.35 in the 
ALS50 data, which could indicate between-sensor differences in 
the linearity of intensity observations. The classification accuracy 
was very similar in both sensors. 
 
Table 4. Echo-triggering probabilities in understory trees in pulses 

that had mathematically intersected an understory tree.  
Plot,  data set Echo-triggering spr birc all 

P, first echo 71 57 56 A, ALTM_06_1 P, non-first echo 70 33 41 
P, first echo 69 65 63 A, ALS_07_1 P, non-first echo 63 44 46 
P, first echo 78 71 69 A, ALS_08_1 P, non-first echo 68 46 50 
P, first echo 67 66 63 A, ALS_08_2 P, non-first echo 60 41 44 
P, first echo 61 61 59 B, ALTM_06_1 P, non-first echo 60 40 54 
P, first echo 67 68 64 B, ALS_07_1 P, non-first echo 59 46 55 
P, first echo 68 51 65 B, ALS_08_1 P, non-first echo 62 45 58 
P, first echo 67 48 64 B, ALS_08_2 P, non-first echo 62 41 58 

 
Table 5. Mean intensity in overstory echoes and average minimum 

stem-pulse distance (understory) for pulses that had 
intersected an understory tree.  

Plot and data set Average first- Average 
Echo triggered yes no yes no 

A, ALTM_06_1km 27.8 30.4 0.59 0.74 
A, ALS_07_1km 47.6 58.9 0.56 0.70 
A, ALS_08_1km 34.0 40.0 0.62 0.74 
A, ALS_08_2km 22.7 31.4 0.59 0.74 

B, ALTM_06_1km 29.7 31.9 0.66 0.88 
B, ALS_07_1km 45.4 53.2 0.65 0.82 
B, ALS_08_1km 32.5 36.0 0.55 0.80 
B, ALS_08_2km 32.0 37.1 0.56 0.86 

 

 
Fig. 5. Intensity–h distributions of first-(of-many) (red) and single-

return (black) data in plots A and B.  
 
4.4 Intensity variation explained by intersection geometry and 
target properties 

Using simple univariate regression, we examined the dependence of 
several variables with the AGC/range-corrected intensity of single- 
and first-or-single returns (h > 0.5 m) as well as transmission-loss 
corrected second-return data. The general finding was that the 
dependencies were weak for the second-return intensity data even, 
if it were corrected for transmission losses. In single- and first-or-
single return data, intensity was positively correlated with the local 
density of the understory. Also, intensity decreased with the 
horizontal echo-stem distance. The length of the intersecting pulse 
path had negative correlation with intensity (volumetric reflection).  
The single-echo data, which had the lowest variation, showed 

higher intensities for echoes with h < 1.5 m, while the intensity was 
stable for higher echoes (cf. Fig. 5).  
 
4.5 Correlation of area-based features with understory 
properties 

Fig. 6 illustrates multitemporal cumulative LiDAR h-distributions 
for a 400-m2 area near plot A. The understory trees were cleared in 
2009, which shows in the h-distribution of 2010.  
 

 
Fig.  6.  Cumulative  LiDAR  h-distributions near plot A in an area 

that was cleared from dense understory in 2009..  
 
The area-based LiDAR metrics were analyzed using univariate 
regression. The proportion of ground returns over all understory 
returns was a strong predictor of the density of understory. The R2 
values were highest, when Pgnd was contrasted with over 1-m tall 
trees. The negative correlation was very low, when the density of 
all  understory  trees  (h > 0.3 m) was contrasted with Pgnd. The 
correlation thus failed for short trees. The intensity features had 
mostly positive correlation with density. The positive correlation of 
intensity and density is explained by the increasing density of 
overlapping crowns. The h-distribution density metrics showed also 
strong positive correlation with density. In the sparse data of 2008, 
the correlations were generally lower than in the dense data sets. 
The mean h was explained best by h-distribution deciles. The 
dependencies were not always linear. The estimation of the propor-
tion of broadleaved trees showed inconsistent results as the 
dependencies between intensity deciles and the proportion differed 
between plots. This could be due to differences in the understory 
trees as  the same correlation structure was observed in all  LiDAR 
data sets. This example confirms that the determination of species 
proportions can be very challenging in area-based estimation using 
intensity metrics.  
 

5. DISCUSSION 

5.1 Confines of the study 

The experiment comprised of carefully measured field reference 
data and several LiDAR data sets, but the representativeness of the 
two plots is very limited, as they cover very little of the variation 
found in two-layer pine stands in Finland. The experiment was best 
suited for the analysis of transmission losses and pulse-target 
interaction  
 
5.2 Mapping of the understory trees in the field to the 
coordinate system of the LiDAR 

We presented a new method by which it was possible to map and 
measure about 40 understory trees per hour directly into the 
coordinate system of the LiDAR under poor visibility.  
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5.3 Echo-triggering of the sensors and geometry of the LiDAR 
data in the understory  

The pulse penetration maps showed that pulses that are free from 
transmission losses reach the understory through the large openings 
in the canopy. Multi-return pulses had a particular spatial pattern, 
as they are concentrated in areas near the edges of crown project-
ions. Very few pulses reached the ground if the pulse path had tra-
versed the crown near the stem of an overstory tree. Our results 
imply that the echo-triggering probabilities in the understory trees 
may be dependent on the species. This complicates estimation of 
species proportions and may skew the density and h estimates  in  
stands comprising of several species. As could be expected, the 
overstory affected the echo-triggering probabilities and geometry in 
the different echo classes. These findings are not original, but show 
that our experiment had high geometric accuracy. There were diffe-
rences between sensors in their ability to measure the shortest trees, 
which was due to differences in the echo-triggering mechanisms 
and the blind zone that follows (and precedes) an echo. This clearly 
shows that the radiometry and geometry in LiDAR data can not be 
looked at independently. If an echo can be triggered in the under-
story depends both on the signal available and the target size being 
intersected. The near-ground h-distributions can vary considerably 
between sensors, as was shown in our data. Even the gain control in 
the receiver was shown to affect echo-triggering in the understory.  
 
5.4 Intensity data in the understory tree-layer 

Species-specific differences in intensity were very marginal and 
first-return data is by far most useful. High noise prevailed in the 
second and third-return data and it was reduced with the ran-
ge/AGC-correction and transmission-loss models. The compensat-
ion of transmission losses is an ill-posed task in LiDAR data, and 
our models attempted it by considering the intensity observations of 
previous returns and the geometry of the pulse path. This was only 
possible since the overstory was rather homogenous on both plots. 
The geometric information proved useful. Different methods for 
computing the losses due to geometry were tried, but they all 
provided similar best-case results. We tested a Beer’s law approach 
and used simple, functional approximations of foliage density dist-
ribution. It is evident that the scatterers in pine crowns are clumped 
and the assumption of a turbid medium does not hold. We could 
even show that first-return data in the understory is subject to losses 
by weak interactions that do not trigger echoes in the overstory. 
The CVs of intensity in the understory increased with scanning alti-
tude, and there were differences between the two sensors, which, in 
first-return data were due to the differences in echo triggering. In-
tensity-based classification of ground and dominant understory spe-
cies was improved, when transmission losses were corrected in 
second and third-return data for both sensors. However, the accura-
cy remained low.  It seems that the first-, second- and third-return 
intensity observations from the understory differ such that they can-
not be normalized to a single intensity variable. Single returns are 
generated by dense and/or reflective scatterers and show higher 
mean intensity and lower CV than other returns. First returns can 
vary from noise-level to strong reflections. A second or third return 
occurs in a pulse that has been subject to transmission losses, and 
the scatterers have to be reflective and/or large with respect to the 
illuminated area, to trigger an echo. This means that the echoes rep-
resent different scatterer populations. At the pulse-level, we could 
show that intensity was dependent on factors such as the local den-
sity of the understory, horizontal distance from the stem of the in-
tersected understory tree, and the length of the pulse path in the 
understory tree.   
 
5.5 Area-based  estimation  of  forestry  variables  in  the  
understory tree 

Our results are partly in line with those in Maltamo et al. (2005). 
However, their LiDAR h-distribution metrics included observations 

from the dominant trees, while our LiDAR metrics were confined 
explicitly to the understory, and indirect correlations of via the 
overstory were not employed. Our results showed that h-distribut-
ion metrics could be used for the estimation of the density of the 
understory, when restricting to trees with h > 1 m. Intensity metrics 
were dependent on the local density of the understory, but showed 
inconsistent dependencies with the proportion of broadleaved trees. 
The results on intensity are disappointing, because species discrimi-
nation is so important.   
 
5.6 Conclusions 

Intensity normalization in discrete-return data for the transmission 
losses occurring in the overstory was feasible to some degree, but 
did not significantly improve the usability of intensity data in multi-
return pulses. Non-seen losses that are due to weak intersections 
were shown decrease the intensities up to 10% in the understory. 
Full-waveform LiDAR data is fundamentally different, and the 
compensation of the losses could be feasible in such data and we 
propose research in that topic. LiDAR h-distribution metrics have 
potential in area-based detection and assessment of the understory. 
However, in our case the intensity data seems too noisy for reliable 
species discrimination, which is a serious deficiency considering 
practical applications in forest inventory.  
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