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ABSTRACT:

Remote sensing methods are used to obtain diffeheds$ of information about the state of the envinemt. Within the cooperative
research project HiReSens, funded by the German BMBi#yperspectral scanner, an airborne laser scaatieermal camera, and
a RGB-camera are employed on a small aircraft terd®te roof material parameters and heat bridgdwuao$e tops over the city
Oldenburg, Lower Saxony.

HiReSens aims to combine various geometrical higbdplved data in order to achieve relevant evideorit the state of the city
buildings. Thermal data are used to obtain the gnelistribution of single buildings. The use of Bygpectral data yields
information about material consistence of roof@rfrairborne laser scanning data (ALS) digital stsefenodels are inferred. They
build the basis to locate the best orientationsédar panels of the city buildings.

The combination of the different data sets offees @apportunity to capitalize synergies betweerediffitly working systems. Central
goals are the development of tools for the coltecdf heat bridges by means of thermal data, splemilection of roofs parameters
on basis of hyperspectral data as well as 3D-captibuildings from airborne lasers scanner data.

Collecting, analyzing and merging of the data aretrigial especially not when the resolution andwacy is aimed in the domain
of a few decimetre. The results achieved need teebarded as preliminary. Further investigatiore still required to prove the
accuracy in detail.

1. INTRODUCTION handled by this method. Béatat al. (2005) and Lemp and
Weidner (2004) developed an automatic procedudetermine
Urban development plays an important role in oudemo time.  roof parameters from hyperspectral and lidar dafaey
Humans live together ever more closely. The nattesburces subdivided five roof classes. For the classificatia partly
become less and energy related questions ariselwidd. The  gbject-oriented approach was implemented.
steady progress of urban sealing has influence unvwell-  Klarle (2009) used a Riegl LMS Q560 airborne lassmser
being, the health and local climate. Remote sensicigniques  (ALS) within the project SUN-AREA to infer the optih

may assist to obtain necessary information to Bustaeven |ocation for photo voltaic solar panels for the &ite of the city
improve the quality of our environment. In order dddress  Qsnabriick, Germany.

these issues from a planning point of view, spatidigh
resolved 3D data at different wavelengths is needelirborne  For the project HiReSens hyperspectral data in teible to
data are mostly suitable for these purposes. Ealpesihen  near infrared region are collected to derive roafameters of
using more than one sensor at a flight, airbornghous  QOldenburg. The processed hyperspectral data haspatal
become fairly cost efficient and can cover largeaar resolution of 0.5 m. Details, such as chimneysyuus, etc.,
are detected and can be excluded from the classific In
Hyperspectral data can be used to differentiatéovarurban  addition to the hyperspectral measurements, theraml
surface cover types. Due to the strong heterogenéiurban  airborne laser scanner data are gathered to aderesgy
areas, geometrically high resolved data is requifel many related issues. The merging of all these diffeiéntls of data
applications a resolution of 50 cm or even betterdesirable.  results in a vast pool of information. Generallyearan say that
With a coarse resolution of 1m or even less mixgelpdo not  the exactness of classification results increasesiderable by
allow to separate details. Roeseesl. (2010) used a spectral synergy effects. For the classification a decisioee and
unmixing algorithm to reduce the problem with thewl support vector machine algorithm are used.
resolution 7m pixel size DAIS hyperspectral data.
Mori et al. (2008) classified and analysed roof materials inThe innovative core of the project lies, among otiéngs, in
Japan based on a handheld spectrometer using fteetarce  the challenging data acquisition of high spectradl spatial
between 350 — 2500 nm as a basis. But only singitssian be  resolved data, an accuracy of all georeferencetiwia few
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decimetre, and the fusion of the different commersor data.
The products serve as additional input data forcB{p models
as well as for a GIS database.

2. OBSERVATIONS

Within the project HiReSens three flights at diffgrémes are
performed over the city of Oldenburg, Germany. Tbé&l

project area size is 3.8 km x 1.8 km. Within thistuct it is

focused on a core area of 1.8 km x 1.0 km wherelitrersity of
city of Oldenburg is reflected mostly.

The operated FLIR SC3000 thermal
hyperspectral system AISA+ is owned by the Anhaitvdrsity
of Applied Sciences. The Riegl LMS Q560 airborneetas
scanner and IGI INS/GPS AeroControl system are gealiby
the project partner Milan Geoservice.

Alpha Luftbild, another project partner, providethdy the
RGB camera Rollei AIC P45 with 39 megapixels and peréat
the measurement flight on 25 March 2010. The fligititude
of 580 m results in a ground resolution of abod &n. The
data were georeferenced by the traditional methdd
triangulation. The end lap was 68%, the side lag8Due to
the high spatial resolution, the RGB data is usagfasence for
the co-registration of the other sensors. Furthezmahey
provide a reference for the training areas forrlatgport vector
machine classification.

More than 60 GBytes hyperspectral, thermal and aiddaser
scanner raw data are collected. The observatioms wsried
out using the Cessna 207 aircraft of Milan Geoservcsystem
description is given in detail by Bannedial. (2006).

The weather conditions required are different far individual
sensors. For the hyperspectral analysis cleas skie a high
sun elevation is wanted. Similar conditions aredeelefor RGB
measurements. When collecting thermal data the mgtible
weather conditions are low temperatures in the mgrnno
snow, no dew, and a uniform cloud cover. For aitbetanergy
analysis the heating of the buildings is importddhheated,
cold buildings show a mostly uniform temperaturstrithution
compared to heated buildings.

Airborne laser scanner can be operated under meather
conditions unless it is raining or snowing. Fog atew also
prevent the measurements.

Beside the RGB flight two additional flights are cadriout. For
the second research flight the thermal camera FLORB0B0
was mounted together with the Riegl LMS Q560 airedaser
scanner in the aircraft. The observations carriet aosely
before sunrise at an altitude of approximately 500on 28
April 2010. The third flight with the hyperspectrakensor
AISA+ was performed on 16 June 2010.

The infrared camera allows detecting small diffeem in
temperature. Thus it is most suitable to deteatntiaé bridges
and energy loss of buildings. The employed infraraghera has
a detector size of 320 x 240 pixels (76.800 pixdts)spectral
response lies between 8 and 9 um. Up to 50 imagesgeond
can be taken. For the present project the dataisitign rate
was set to 10 Hz. This high sampling rate assurdsgh
overlapping in flight direction and hence minimizes angular
effect of emissivity. During the measurement thandard
temperature range of the IR camera was set to -2BC°C.
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This temperature range is resolved with 16 bit eesllts in
temperature resolution of 30 mK.

The thermal camera was geometrically calibrated ttie
laboratory with a 3D test field (Luhmanet al. 2011) and
radiometrically with a standard black body calibrat

The imaging spectrometer AISA+ is a non cooled esystlt
serves for monitoring and detection of environmedtamnages,
determination of water constituents of lakes amérs, forest
state examination, and atmosphere research. @p4spectral
channels with a bandwidth of 2.5 nm wavelengthloadefined
within the spectral range from 400 nm to 980 nmor Ehe
project HiReSens 107 spectral channels with a baftdwof

camera and the@bout 5 nm are preset as tradeoff between noipesexe time

and channel bandwidth.
The AISA+ system was radiometrically calibrated Hye
manufacture Specim. According to Specim is the mayuover
the whole spectrum about 10%. This accuracy iscritical for
the current investigation.

3. PROCESSING

oThe AISA+ hyperspectral system and the Riegl airbdaser
scanner LMS-Q560 are connected to an IGI
AeroControl INS/GPS. This system samples the aircnation
data (roll, yaw, pitch) with 256 Hz and the GPSadaith 10
Hz. In post processing using SAPOS correction dha
accuracy for the direct rectification of the geerehced
hyperspectral scanner varies between 0.0 to 2Pomthe ALS
an accuracy of 0.5 m is achieved. About the disameies can
only be speculated at the moment. It is likely thatesight rest
errors or time drifts of the AISA+ system may caube
problem. In order to minimize the errors the hypecdral data
were co-registered to the RGB data to minimize thaadien.

All data were finally transformed into UTM 32N, W&4.

3.1 Rollei AIC-P45

The Rollei RGB data serve from the georeferenced pwint
view as reference data because of their high $patalution.
Furthermore, they provide a basis for collectinguaily
different roof types for a subsequent classifigatio

For the core region 8 flight legs with 56 imagesaverocessed.
In total 18 manhole covers are taken as groundrabpbints.
They were collected with DGPS. More than 700 maighi
points were selected. Two to three points wereqaakanually
for each image. The rest were picked automaticafin
underlying digital surface model is used to gereeeamosaiced
orthophoto.

3.2 FLIR SC3000

The temperature range measured during the fielétrerpnt
was between 3.5°C and 9.5°C. For this temperaturgeran
iron color table with 8 bit is applied to visualitee measured
temperatures (see figure 1).

Since the thermal camera was not connected to dli8®3he

data were georeferenced by means of control poamd

matching points using the Erdas LPS software in dhme
manner as the RGB data processing was done.

The result of the preprocessed data is presentdiyune 1.

Some thermal features of the roof tops are alreddiple.

Buildings are generally cooler, illustrated in bluban the

CCNS4
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surrounding roads and free areas. One also cam smarse
variation in blue of the individual buildings. Farmore deepen
analysis it is necessary to extract the thermalfea in detail.

35°C 9.5°C
Figure 1: A 500 m x 500 m subset thermal infrared
orthorectified image section of Oldenburg, Lowex&@wy. The
spatial resolution is about 50 cm.

One must be very careful with the interpretatiorthef thermal
images because the temperatures displayed depentheon

emissivity € of the roof materials which are very different in
general. Variations of between 0.80 — 0.94 and more are very

common. This can result in a temperature differevfcseveral

Kelvin, depending on the temperature level itself.

Without any further information, it is not possibie decide

whether the different temperatures are due to #réaton of

the emissivity or arise from different surface temgiures of the
buildings.

Later on, a decision tree algorithm is presenteghtphasize the
thermal energy distribution of the individual buiids.

In the spectral response region of the infrarederan8-9 m)
an atmospheric window (8-14 um) exists. Hence tpeeted
influence of the atmosphere on the signal shouldabieer low.
Nevertheless, Modtran radiative transfer calcutetiare carried
out for a flight altitude of 500 m assuming a stmidaerosol
size distribution and a standard atmospheric @ofiBy not
regarding the atmospheric effect, a possible efd).5 K may
be introduced as a result from the radiative temsdlculations.
In this case the introduced error is small andarnif over all
the area. Hence it was neglected for further psingsAlso not
the absolute but the relative temperature distidiouts mainly
of interest.

In situ measurements confirm the result. They walen at
several places during the overpass of the aircraft.
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3.3 AISA+

The processing of the hyperspectral data includesbresight
calibration, radiometric correction, rectificatiaggoreferencing,
orthorectification, and mosaicing. Eleven flightgse are
required to cover the region.

Due to not ideal weather conditions it was decittedse the so
called FODIS ratio as reflectance rather than apglyan
atmospheric correction. The FODIS ratio is theoraif the
downwelling irradiance (measured by the FODIS detd@nd
upwelling radiance (measured by AISA sensor). Unutetial
cloudiness and diffuse illumination the ratio o tlipwelling to
downwelling radiation provides better results.

In order to achieve a high geometric accuracyhgperspectral
sensor AISA was calibrated using a newly procedieresloped
by the project group (Piechelal., 2011). It turned out, that the
results from this calibration cannot be used in@adiGeo tool,
despite the documentation saying it possible toaufactor for
radial distortion. Figure 2 shows the preprocessfidctance
CIR color image of the hyperspectral sensor AISA+m&alark
and bright spots within the image are caused byclinediness.
To verify the measured data, in situ measuremeitts avfield
spectrometer are carried out. The reflectance Wérdnt roof
tops was collected during the over passes of tloeadti using a
hand spectrometer. The comparison indicates afaztsy
agreement of airborne and ground truth spectra.

Figure 2: A 500 m x 500 rsubset of the preprocessed CIR
reflectance image of the hyperspectral scanner AlShe
spatial resolution is 50 cm.

3.4 AirborneLaser Scanner LM S Q560

The preprocessing of the laser data with a spag&lution of
about 25 cm were made by the Milan Geoservice.ddta were
resampled to 50 cm. It consists of the digitataier model
(DTM) and the digital surface model (DSM). Besideegh
rasterized data, the point cloud data was alsolablai Its
resolution is about 23 points per square meter.

Figure 3 shows a shaded relief of Oldenburg. Thatialp
resolution is 50 cm. Oldenburg is can be charadriby
mostly small buildings.
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Figure 3: A 500 m x 500 m subset of the shadeéfrdlgital
surface model derived from a Riegl LMS Q560 airbdeser
scanner of Oldenburg.

4. PRODUCTSAND ANALYSIS

After preprocessing the ALS, hyperspectral, therraal RGB
data various products can be derived.

In most cases rather than the absolute temperttiareelative
differences of the roof temperatures already irtdicheat
bridges or heat losses. In order to highlight thiesgures a
decision tree algorithm was setup.

In a first step the NDVI is calculated from the bkygpectral
data. These data are used to discriminate singilapératures of
the roofs from the vegetation. The vegetation waBured

black if the NDVI was greater than 0.35. The cadted NDVI

is presented in Figure 4.

Figure 4: Calculated NDVI from the wavelengths o86im
and 849 nm, 500 m x 500 m subset.

The height of the buildings above ground was cated by
subtracting the digital terrain model from the thgisurface
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model. All data are excluded from further procegsih the
height is less than 7 m. They are also marked blacoing so
the road temperatures are separated from the eogfdratures.
In the last step the color was assigned to theespanding
temperature in steps of 1 K. Figure 5 shows tmeptgature
differences. As mentioned earlier, only the rekatixariations
are of interest, since they provide information wbhdhe
potential heat bridges. In figure 5 chimneys andnuos are
still included.

Figure 5: Individual temperature differences of titg
buildings of Oldenburg extracted from hyperspecteserscan,
and thermal data using a decision tree algoritt0f, & x
500 m subset.

For solar potential it is interesting to know thiggament of
roofs within a city. In order to estimate the pdignof solar
energy, in general the number of flat roofs, rosfh a certain
angle and the total area has to be known.

For solar collectors the most suitable orientatfosouth with a
pitch of about 30°. These data are valid for Geyramd vary
slightly depending on the local weather conditi¢eg. clouds).
Regarding these constraints, the roof orientatidr@ldenburg,
which are highly valuable for installing solar pkmeare
derived. The method employed is also based on ®lsim
decision tree algorithm. In this case the diffeeen€the digital
surface model minus digital terrain model plus N}ka were
employed. Using the NDVI makes it is easier to dismate
trees from buildings. In the present case the timlesfor the
NDVI was set to 0.35 and the threshold for the cbfeeight
was set to 7 m. A building or roof is detectechié NDVI is less
than 0.35 and the height is more than 7 m. In a s&p, the
slope is computed. If the slope is less than 18, kuilding’s
roof is regarded as flat roof and marked blue.dsecthe slope
is found between 10° and 50° and also the oriemtatif the
roof is between 120° and 240°, then the buildings marked
green. This orientation is regarded as optimairfstalling solar
panels. The red marked areas indicate no suitdatep for a
potential use of solar panels. The result of theisiten tree
classification is shown in Figure 6. Due to thgmaifhent, only a
relative small number of mostly private housesugable for
installing solar panels. Most appropriate are theblip
buildings with flat roofs. They are marked blue.
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Figure 6: Potential for the use of solar panel®lofenburg, 500
m x 500 m subset. Blue are flat roofs. Green magkeds are
roofs with a slope between 10°-50° and an oriemiabietween
120°-240°. Red marked areas are houses which asuitable

for installing solar cells.

4.1 Roof Classification

The roof classification is aiming for separatindfetient roof
surface materials. The classification consistsnaf parts. One
part is the binary classification of roofs itsélhe other part is
then to classify the surface material within thesas.

The first step, the roof classification, is basedtloe rasterized
ALS-data and the NDVI calculated from the hypersrzdata.
Also the plane normals are calculated within inxa in raster
from the original point cloud. This is done usihg robust least
median of squares technique for plane fitting witttie 1x1 m
cells. These 1m raster cells are resampled to 5b¢he match
the other data.

The normalized digital surface model (hDSM = DSNDFM)
and rasterized normals are used for a segmentgtisimg
eCognition). This segmentation is set to be ovemseged in
order to get the proper building boundaries. A bighegment
size results in a higher risk to miss a buildingidary. The left
image of figure 7 shows the initial segmentation.

Then the roof segments are classified via a thidshanDSM-
height (higher than 2.5m) and NDVI (less than 0.42e the
middle image of figure 7.

Further on, some refinements are done using asetléor the
image objects. The resulting roof mask is showrthia right
part in Figure 7.
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Figure 7: From left to right: basic eCognition
segmentation (yellow = segment boundary), initial
classification (roofs = red), classification aftate set
and merging; background is the nDSM image

The second step is the classification of the roafamals. In the
literature support vector machine classificatiomved to be
very suitable for classifying hyperspectral datae(@&ni &
Bruzzone, 2004; Plaz al., 2009; Wasket al. 2009).

A manual classification serves as reference datsdone using
a true orthofoto mosaic, calculated by Heiko HiradHer
(Hirschmdiller, 2008) and the DSM extracted from #EeS
data. At this time, the manual classification otysists of roof
outline polygons with the material and homogenagattribute.
Roof polygons are recognized as homogenous, if tvergig
surface material is only one material, and if thare only few
areas (less than about 10% in area) of disturbljgcts like
dormers and chimneys. Only these homogenous rdgfqas
are used as training candidates for the classiicaFrom these
training candidates, a subset of 100 random pigefsclass is
selected. These pixels serve as the training datégheé SVM
classification. The SVM classification result iethmasked by
the roof outline mask, which was generated in tee efore.
Results are shown in figure 8. There, the left imsigews the
RGB channel combination of the AISA hyperspecttrahd@he
middle image shows the reference classificationsisbimg of
homogenous and nonhomogenous roof polygons. Andghe
image shows the classification result as a comionaif SVM
classification and eCognition roof mask.

Up to now, the manual classification lacks in det@nd
completeness. Furthermore, not all material classesssigned
correctly within the manual classification. Moreokvledge of
the local environment is needed for a detailed rahnu
classification.

Some georectification errors still left in the hyggectral data
lead to misclassifications at the building bounésri In
addition, some misclassifications are induced Wfedint solar
illumination angles, mainly north vs. south aligmedf planes.
Minimizing these errors is part of the ongoing egsh.
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Figure 8: Preliminary classification example;
left: AISA+ RGB image,
middle: generalized reference image,
right: SVM classification result using masked hg t
eCognition roof mask

5. CONCLUSIONS AND OUTLOOK

From different kinds of remote sensing data prosiustich as
the temperature distributions of roof tops andalgnments of
the roofs suitable for installing solar panels, aveterived
applying a decision tree algorithm.

From the hyperspectral data the roof material diaristics are
inferred using a support vector machine classificat The
fusion of different data sets makes it possibleoléain more
information by synergic effects as indicated by therived
guantities. It also shows that precise georectificaof all data
is the basis for reliable results.

Due to the lack of a thorough quality check soméhefresults
achieved regarded as preliminary. Further invesitiga are still
required to refine the algorithms applied.
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