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ABSTRACT: 

 

In this study, the impact of the use of backscattering intensity and texture features obtained from TerraSAR-X images for LULC 

classification of agricultural and forest areas, and its combination with features extracted from Landsat 7 EMT+ optical imagery is 

analyzed. The performance of texture descriptors on radar images is evaluated. After data pre-processing and the definition of classes 

in the study area, every object is described by means of a set of features computed from the TerraSAR-X and optical imagery, using a 

plot-based approach. Cadastral cartographic limits are employed for objects definition. Next, objects are classified using decision 

trees combined with boosting techniques. The classification results are compared to the LULC contained in the testing database, and 

the errors evaluated in terms of the different groups of variables, the source of data used, and their performance for the variety of 

classes considered. The classification results bring some possibilities and limitations of combining features from optical and radar 

imagery, evidence the complementary information provided by both types of data to face these applications. 

 

 

1. INTRODUCTION 

The demand of updated geographic data is constantly 

increasing, due to changes in the landscape and the influence of 

these changes on the decisions affecting management of the 

territory. Object-based image classification techniques are being 

incorporated in Land-Use/Land-Cover (LULC) geospatial 

database updating processes. High frequency and massive data 

acquisition generates high volume of information that needs to 

be efficiently processed to be used in different applications, and 

object-based techniques are efficient combining multisensor 

data, since they significantly reduce the data to be processed. 

The segmentation method employed is key in the descriptive 

features that are derived from objects to be used in the 

classification, since these will differ depending on the algorithm 

and selected parameters. Plot-based image classification is a 

particular object-based classification case that uses 

cartographical limits to create objects. These limits better enable 

the definition of significant objects in the real world than 

automatic pixel aggregation. This is an especially suitable 

methodology for anthropogenic environments such as 

agricultural areas. The use of cartographic limits to perform the 

image segmentation enables to easily relate the information 

derived from the imagery with the LULC geospatial databases. 

 

Landsat imagery has been used in multiple researches and 

analysis for change detection and LULC classification (Bauer et 

al., 2003). In spite of the medium spatial resolution (30 meters), 

Landsat data present seven spectral bands (plus one 

panchromatic) and high acquisition frequency (16 days). This 

enables to periodically monitor the LULC of a territory. 

 

A radar system is an active sensor, illuminating a ground target 

area with its own energy signal. Radar surface feature 

interaction, or scattering, and the characteristics of this scattered 

energy, or backscatter, are dependent upon the geometric and 

electrical factors of the ground target area. Such factors include 

target material, orientation, moisture content and the degree of 

surface roughness (Herold et al., 2004). Radar image 

backscatter is often a direct result of the ground surface texture 

(Dobson et al., 1995). Radar data have been used solely or 

combined with optical imagery in the literature for land use/land 

cover classification and change detection tasks in several 

scenarios such as agricultural areas (Nizalapur, 2008; Zou et al., 

2010), forest (Dutra et al., 1998; Milne et al., 2000), or urban 

environments (Del Frate et al., 2008; Yang et al, 2009). Most of 

the analyses concerning radar data have been carried out using a 

pixel-based approach. However, some authors (Hong et al., 

2007; Liu et al., 2008; Qi et al., 2010) have explored the 

possibilities of object-based image analysis approaches, where 

image objects are defined using automatic segmentation 

methods.  

 

This study evaluates the effect on the classification accuracy of 

combining Landsat 7 ETM+ imagery with backscattering data 

acquired with TerraSAR-X, using a plot-based approach. Plot-

based image classification is performed with decision trees 

together with boosting multiclassifier method. Errors are 

evaluated in terms of the different groups of descriptive 

features, source of data used, and their performance for the 

classes defined. The study area is an agricultural zone mixed 

with forest and shrublands located in the northwest of Spain. 

 

 

2. STUDY AREA AND DATA 

The study area was defined in the local administrative area of A 

Limia, located in the region of Galicia (Spain). The landscape is 

characterized by a broad combination of sparse villages and 

rural settlements, diverse agriculture, forest and shrubland. 

Several tests have been carried out in this area to assess the 

classification performance when considering high spatial 
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resolution imagery (Hermosilla et al., 2010a) combined with 

geographic ancillary information (Recio et al., 2010) or LiDAR 

data (Hermosilla et al., 2010b), and high spatial resolution 

multispectral imagery (Ruiz et al., 2011). 

 

Cartographic boundaries were used to define the analysis 

objects (plots), and were obtained from the Spanish Land 

Parcel Identification System (SIGPAC), a National geospatial 

database for agriculture management. The plots represent a 

continuous area of land within a parcel for a single agricultural 

use. 

 

RADAR imagery has 3 m/pixel spatial resolution and was 

acquired by TerraSAR-X on October 27th, 2008. With its active 

phased array X-band SAR antenna (wavelength 31 mm, 

frequency 9.6 GHz), TerraSAR-X acquires new high-quality 

RADAR images, circling Earth in a polar orbit at 514 km 

altitude. The orbit is selected such that the satellite follows a 

sun-synchronous orbit. TerraSAR-X is designed to carry out its 

task independently of weather conditions and illumination. 

 

Multispectral image data were acquired with Landsat 7 

Enhanced Thematic Mapper Plus (ETM+) on December 23rd of 

2008. Bands 1 (0.45-0.515 µm), 2 (0.525-0.605 µm), 3 (0.63-

0.69 µm), 4 (0.75-0.90 µm), 5 (1.55-1.75 µm) and 7 (2.09-2.35 

µm) were considered in the analysis. These bands have a spatial 
resolution of 30 m/pixel. A detail of the data employed in the 

study area is shown in Figure 1. 

 

 

  
 

Figure 1. Study area images in Landsat 7 ETM+ colour 
infrared composition (left) and TerraSAR-X (right). 

 

Five simple classes were defined: forest, shrublands, irrigated 

crops, arable lands, and urban areas. Using photointerpretation 

techniques and field information, around 50 training samples 

per class were selected avoiding the missed strips produced due 

to the scan line corrector failure in the ETM+. 

 

 

3. METHODOLOGY 

3.1 TerraSAR-X data preprocessing 

The TerraSAR-X image was acquired in the Stripmap mode in 

single polarization HH. It was provided in the Enhanced 

Ellipsoid Corrected mode (EEC). In this mode, the image is 

projected and re-sampled to the WGS84 reference ellipsoid and 

the distortions caused by varying terrain height are corrected 

using an external DEM (Fritz and Eineder, 2009). The pixel 

localization in these products is usually very accurate, 

depending the final accuracy on the type of terrain as well as the 

quality and resolution of the DEM and the incidence angle. 

 

Prior to descriptive feature extraction process, the radiometric 

calibration of TerraSAR-X image was done. A full description 

of the employed method is in Infoterra (2008). Firstly, the 

values of radar brightness or Beta Naught (β0) are computed 

according to the equation (1): 
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where ks is the calibration factor given in the TerraSAR-X data 

delivery package annotation file, and DN is the digital number 

given in the image product. The values of the radar reflectivity 

per unit area in the ground range, known as Sigma Naught (σ0), 

are derived from Beta Naught values taking into account the 

local incident angle, according to the equation (2): 
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where θloc is the local incidence angle between the radar beam 

and the normal to the illuminated surface. This value is 

provided for each pixel in the Geocoded Incidence angle Mask 

(GIM). 

 

3.2 Descriptive feature extraction 

Descriptive features were computed using the FETEX 2.0 

object-based image analysis software (Ruiz et al., in press). 

Spectral features were computed from Landsat 7 ETM+ 

imagery. These features are particularly useful in the 

characterization of spectrally homogeneous classes, such as 

herbaceous crops or fallow fields. Mean and standard deviation 

values were computed from the six spectral bands considered, 

and also from the Normalized Difference Vegetation Index 

(NDVI), calculated by using the red and the near infrared 

bands. 

 

A set of texture descriptive features were extracted from the 

TerraSAR-X image. Texture information may be as important as 

spectral in radar images since the backscattering depends on the 

roughness of the surface and this can be captured using the 

values of the neighbourhood of pixels. Thus, texture features 

quantify the spatial distribution of the intensity values in the 

analysed objects, providing additional information useful to 

characterize the LULC (Ruiz et al., 2004). A considerable 

number of quantitative texture features and approaches have 

been reported using different methodologies, that are 

traditionally computed considering the neighbourhood of each 

pixel on the image. In this study, each texture feature value is 

referred to a particular object, since it is extracted from each 

group of pixels that constitute an object. Texture features are: 

edgeness factor, first order histogram descriptors, grey level co-

occurrence matrix (GLCM) and wavelet transform derived 

variables. 

 

The Edgeness factor represents the density of edges present in a 

neighbourhood (Laws, 1985), in our case, it is determined by 

the limits of the object itself, and was characterized by using the 

mean and the standard deviation values of the edgeness factor 

inside each plot First order texture descriptors, skewness and 

kurtosis, are directly related to the shape and distribution of the 

frequency histogram of an object. 
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The following GLCM based features (Haralick et al., 1973) 

were computed: contrast, uniformity, entropy, variance, 

covariance or product moment, inverse difference moment and 

correlation. Since an object-oriented approach is used, only one 

GLCM is computed for each object, describing the co-

occurrences of the pixel values that are separated at a distance 

of one pixel inside the plot, and considering the average value 

of four principal orientations (0º, 45º, 90º and 135º). Figure 2 

shows some examples of GLCM computed for plots with the 

defined classes. 

 

A group of texture features was derived by applying the wavelet 

transform to the TerraSAR-X image. The wavelet transform 

allows for the decomposition of a signal using a series of 

elemental functions called wavelets and scaling, which are 

created by the scaling and translation of a base function, known 

as the mother wavelet. Since the most relevant texture 

information is lost in the lowpass filtering process, only 

fluctuations are used to calculate texture descriptors. If the 

inverse transform is applied to the fluctuations, three 

reconstructed images, or details, are obtained: horizontal, 

vertical and diagonal. This process is called multiresolution 

analysis. Different texture features have been extracted from 

wavelet details or fluctuations using the Coiflet wavelet with a 

support of 6 pixels. A total of eight Haralick’s features derived 

from the GLCM were extracted from the image containing the 

sum of the reconstructed details (mean, contrast, uniformity, 

entropy, variance, covariance, inverse difference moment, and 

correlation), as well as the mean and standard deviation of the 

edgeness factor. In order to avoid the analysis of pixels located 

out of the considered objet, an erosion filter using a circular 

structuring element with a diameter size equal to the support of 

the wavelet function was applied to the final image. 

 

3.3 Classification and accuracy assessment 

Three classifications were performed, considering (i) spectral 

information derived from Landsat 7 ETM+ imagery, (ii) texture 

information computed using TerraSAR-X imagery, and (iii) 

combining both information sources. Plots were classified by 

applying the decision-trees built with the C5.0 algorithm 

(Quinlan, 1993). This algorithm searches the features that best 

separate one class from the others by using mutually exclusive 

conditions, until homogeneous subgroups are generated, i.e. all 

the elements in a subgroup belong to the same class, or a 

stopping condition is satisfied. In addition, a boosting multi-

classifier method was used, based on the assignment of weights 

to the training samples, enabling an increase of the 

classification accuracy. 

 

Classification accuracy assessment was based on the analysis of 

the confusion matrix (Congalton, 1991), by comparing the class 

assigned to each evaluation sample with the information 

contained in the reference database. The overall accuracies of 

the classifications were computed, as well as the producer and 

user accuracies for each class, revealing the errors of omission 

and commission respectively. Since the collection of significant 

training samples was a difficult task, and a representative set of 

testing data was needed to ensure a correct evaluation, the 

leave-one-out cross-validation technique was used. This method 

is based on using a single observation from the original sample 

as the validation data, and the remaining observations as the 

training data. This is repeated such that each observation in the 

sample is used once as the validation data. 

 

In addition to the classification accuracy assessment, a study of 

the relationships between the descriptive features and their 

specific contribution to the classification accuracy was 

performed. Statistical linear discriminant analysis was used to 

determine the significance of the features for the particular 

classification problem. 

 

 

    
a. Forest 

    
b. Shrublands 

    
c. Urban areas 

    
d. Irrigated crops 

    
e. Arable lands 

Co-occurrence frequency: min  max 

 

Figure 2. Examples of parcels of the defined classes in 
TerraSAR-X (left) and their graphic representation of the 

GLCM computed per-object (right). 
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4. RESULTS 

The results of the first classification performed using Landsat 7 

ETM+ imagery-derived spectral descriptive features are shown 

in the confusion matrix presented in the Table 1. Overall 

classification accuracy reaches a value of 84.6% for the five 

simple classes considered. Highest user’s and producer’s 

accuracy values are obtained for irrigated crops class, which 

barely presents misclassifications. Arable lands plots are 

classified with a high rate of success, presenting some 

confusions with urban class. This class also presents a good 

performance, with user’s and producer’s accuracies values 

higher than 80%. The classes forest and shrublands have the 

lowest classification performance and elevated mutual 

confusion. This is due to the limitations presented by 

exclusively considering spectral features to describe the objects 

(plots). 

 

 Reference 
U
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%
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p
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b
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U
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Forest 40 10   2 77 

Shrublands 10 36  1 3 72 

Irrigated crops   49  1 98 

Arable lands    44 4 92 

Urban  4  4 45 85 

Producer’s acc. (%) 80 72 100 90 82 84.6 

 

Table 1. Confusion matrix of the classification using 
spectral features from Landsat 7 ETM+ data. 

 

When only texture information extracted from TerraSAR-X 

imagery is considered the classification overall accuracy 

obtained is 75.4%, as it is shown in the confusion matrix of 

Table 2. The distribution of errors radically changes regarding 

to the Landsat 7 ETM+ data. Urban class plots are almost 

perfectly classified. The rest of classes present many confusions. 

There are especially noticeable misclassifications in the case of 

irrigated crops and arable lands, producing the lowest values 

in the user’s and producer’s accuracy indices. Shrublands class 

attains accuracy values that are comparable to those reached 

considering only Landsat 7 ETM+ imagery, but errors are 

distributed among several classes. Besides, the use of textures 

derived from TerraSAR-X imagery produces a slightly increase 

on the accuracy of forest class, significantly reducing its 

confusion with shrublands class. 
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Forest 44 3 4 2  83 

Shrublands 2 35 6 6  71 

Irrigated crops 1 6 25 9  61 

Arable lands 2 6 14 32  59 

Urban 1    55 98 

Producer’s acc. (%) 88 70 51 65 100 75.4 

Table 2. Confusion matrix of the classification using texture 
features from TerraSAR-X data. 

 

The combination of spectral features computed from Landsat 7 

ETM+ imagery with texture features extracted from TerraSAR-

X data produces a synergic effect that significantly improves the 

classification results (see confusion matrix in Table 3), reaching 

an overall accuracy value of 95.3%. User’s and producer’s 

accuracy values are more balanced and higher than 90% for 

almost all classes. Main misclassifications are produced in 

forest and shrublands, with some mutual confusions and minor 

errors with other classes. Object-based image analysis enables 

the combination of both data with different spatial resolution. 
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Forest 45 4    92 

Shrublands 3 44  1  92 

Irrigated crops  1 49   98 

Arable lands  1  48  98 

Urban 2    55 96 

Producer’s acc. (%) 90 88 100 98 100 95.3 

 

Table 3. Confusion matrix of the classification combining 
Landsat 7 ETM+ and TerraSAR-X data. 

 

The specific contribution of the descriptive features in the 

classification model computed by means of linear discriminant 

analysis is shown in Figure 3. The first variable included in the 

model, i.e. the most discriminative, is the edgeness factor 

standard deviation computed from TerraSAR-X. The single 

addition into the model of this descriptive feature produces a 

classification overall accuracy higher than 50%. Afterwards, the 

following most discriminate variables are three spectral features 

derived from Landsat 7 ETM+ the means of the NDVI, 4th and 

3rd bands. 
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Figure 3. Evolution of the estimated overall accuracy as 
new descriptives features are introduced into the discriminant 

model when Landsat 7 ETM+ and TerraSAR-X data are 

combined. 

 

Using only these features, the overall accuracy reaches a value 

close to 85%. The subsequent feature added to the discriminant 

model is again a texture feature, corresponding to the mean 
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value of the object computed from the TerraSAR-X data, which 

increases the overall accuracy up to 93%. The addition of new 

descriptive features has no significant effect on the overall 

accuracy value. The results of this analysis illustrate the 

complementary nature and effect of the proposed descriptive 

features, as well as the possibility of increasing the efficiency of 

the classification in terms of accuracy and reducing the number 

of variables by using only a selected and highly discriminant 

group of features. 

 

 

5. CONCLUSIONS 

This paper presents and analyzes a methodology for LULC 

classification using generic classes and a plot-based 

classification approach using Landsat 7 ETM+ imagery and 

TerraSAR-X imagery. The classification was performed using 

decision trees and combining different descriptive features. 

Object-based image analysis facilitates the combination of radar 

and middle resolution imagery, since they are not required to 

have the same pixel size, and the border effect characteristic of 

the texture analysis is avoided. Spectral descriptive features – 

derived from optical images – and texture descriptive features – 

derived from radar images – are complementary, enabling a 

correct description of land cover types with homogeneous or 

heterogeneous structures. The proposed methodology provides 

the means for reducing the updating periods in land parcel 

identification systems obtaining accurate information with 

reduced costs. 
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