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ABSTRACT: 
 
In this work, we propose a state-of-the-art on statistical analysis of polarimetric synthetic aperture radar (SAR) data, through the 
modeling of several indices. We concentrate on eight ground classes which have been carried out from amplitudes, co-polarisation 
ratio, depolarization ratios, and other polarimetric descriptors. To study their different statistical behaviours, we consider Gauss, log-
normal, Beta I, Weibull, Gamma, and Fisher statistical models and estimate their parameters using three methods: method of 
moments (MoM), maximum-likelihood (ML) methodology, and log-cumulants method (MoML). Then, we study the opportunity of 
introducing this information in an adapted supervised classification scheme based on Maximum–Likelihood and Fisher pdf. Our 
work relies on an image of a suburban area, acquired by the airborne RAMSES SAR sensor of ONERA. The results prove the 
potential of such data to discriminate urban surfaces and show the usefulness of adapting any classical classification algorithm 
however classification maps present a persistant class confusion between flat gravelled or concrete roofs and trees. 
 
 

1. INTRODUCTION 

Statistical modelling is essential to SAR image interpretation. It 
can provide a technical support for a comprehensive 
understanding of terrain scattering mechanism, which helps to 
develop algorithms for effective image interpretation and 
creditable image simulation [1]. For that purpose, we 
concentrate to eight ground classes which have been carried out 
from amplitudes, co-polarisation ratio, depolarization ratios, 
and other polarimetric descriptors [2,3]. 
 
In the first part of this work, particular attention to several 
different theoretic and heuristic models for the probability 
distribution function (pdf) of SAR descriptors is proposed. 
After analyzing several parametric statistical distribution 
models (Gauss, Gamma, Beta, Weibull, Log-normal, Fisher), 
their parameters are estimated on real data according to 
different methods: method of moments (MoM), maximum-
likelihood (ML) methodology, and log-cumulants method 
(MoML) [4]. Then the fitting of the estimated models is 
checked using K-S (Kolmogorov-Smirnov) test, correlation 
coefficients and visual analysis [5]. 
 
In the second part, a supervised technique for classification is 
proposed. For that purpose, an adapted likelihood distance 
measurement based on the previous statistical analysis is 
introduced in a Maximum Likelihood algorithm. In order to 
assess the performance of our method, our result is compared 
with other results from supervised classification such as SVM 
[6] or supervised ML Wishart classification [7]. The 
experiments are held on a POLSAR image provided by the 
RAMSES SAR sensor of ONERA over a suburban area. 
 
The studied area and radar data are presented in the next part of 
this paper. We describe shortly the polarimetric indices used in 
the feature vector [8]. Then in the third part, we briefly expose 
the principle of the statistical analysis and results. In part four, 

we deal with supervised classification methods and results. 
Conclusions are presented in the last part of the paper. 
 

2. SITE AREA AND DATA SET 

2.1 SAR data 

We investigate the potential of X-band fully polarimetric data 
for discriminating between the principal classes present over a 
site around Toulouse, France (Figure 1). Data is from the 
ONERA airborne RAMSES (Radar Aéroporté Multi-Spectral 
d'Etude des Signatures) SAR [9, 10] and is delivered in SLC 
(Single Look Complex) format, acquired in 2006 with an 
incidence angle of 60° and a sub-metric pixel size in both 
azimuthal and range directions. These sampling sizes allow 
observing lots of urban objects (large and small buildings, 
natural and artificial soils). Because of the large incidence 
viewing angle, roofs are well represented whereas the facades 
are not visible [3]. 
 
2.2 Training data 

The main objective is to estimate different urban classes, in 
particular we are interested in discriminating three types of 
building roofs: flat concreted or graveled roofs, sloped tiled 
roofs and metallic roofs. The other classes are labeled "lawns", 
including lawns and bare soils, "trees" including trees and small 
shrubs, "highways" including roads and car parks, and also two 
classes, "radar shadows" and "bright pixels" that have appeared 
useful to limit the misclassification rate. 
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Figure 1. Studied site (Toulouse, France), represented in RGB 

Pauli composition 
 

We define two sets of knowledge: training samples as input in 
the supervised classification and control samples to assess the 
classification performance. Training and control data has been 
manually extracted by visual interpretation of optical views and 
the radar image using the RGB Pauli representation. The list of 
knowledge data is summarized in Table 1. 
 

Classes  Training data Control data 

Radar shadows 3596 2083 

Highways (roads, parks…)  8538 12537 

Lawns (lawns, bare soils) 17955 10163 

Trees (trees, small shrubs) 4281 3719 

Bright pixels 1990 766 

Metallic roofs 546 423 

Flat graveled or Concrete roofs 4958 2615 

Sloped tiled roofs  235 240 

Table 1.  Training and control samples in pixel number 
 
2.3 Polarimetric descriptors 

The fully polarimetric radar system records the complete 
characterization of the scattering field in all the configurations 
(HH, VV, HV, and VH), with their intensities or amplitudes 
and relative phases. The recorded polarimetric data allows a 
better characterization of the scatters based on the 
decomposition theorems [8]. In this work, we use several 
descriptors of interest summarized in Table 2. 
 

3. STATISTICAL ANALYSIS 

The precise knowledge of the statistical properties of the SAR 
data plays a central role in SAR image processing and 
understanding. The purpose of this part of paper is to test the 
availability of discriminating each type of surface according to 
its statistical behavior and modeling the polarimetric indices by 
a theoretical model. The process of parametric modeling 
consists of: (1) selecting several known statistical distribution 
models; (2) estimating the distribution parameters; (3) assessing 
the goodness-of-fit of the models [1]. 

Table 2.  Polarimetric parameters considered in this work 
 

We selecte the most widely used distributions in the literature, 
which are the Gauss, Gamma, Weibull, Beta I, Lognormal, and 
Fisher pdfs. The goal is to determine which one is the most 
appropriate for SAR data statistical characterization. We expect 
the Fisher distribution to be the more appropriate as it has 
already been adopted for the high-resolution SAR statistics over 
urban regions [4,11,12]. 
 
Three methods of estimation of the parameter are considered. 
These methods are method of moments (MoM), maximum-
likelihood (ML) methodology, and log-cumulant method 
(MoML) [4]. For comparison, we represent in Figure 2, the 
different results of estimated parameters of Gamma, Weibull, 
Log-normal, and Fisher distributions for one descriptor and two 
classes using MoM and ML. We notice that the curve of the 
Fisher distribution is situated between the Gamma distribution 
and Weibull distribution curves.  
 

 

 
Figure 2.  Empirical |HV|-histograms and pdfs estimated using 
ML or MoM for two classes 
 
We use different approaches to realize a GoF (Goodness-of-Fit) 
test between empirical model and theoretical parametric model 
[12]: the popular Kolmogorov-Smirnov test, correlation 
coefficients and visual analysis. As general remark, the ML 
estimation method is more accurate than the MoM. 
Nevertheless, in the case where the number of the independent 

No.    Feature Expression 
1 |Red Pauli |  R p=|Shh - Svv |/(√2)  
2 |Blue  Pauli |  Bp =|Shh + Svv |/(√2) 
3 Amplitude  |Shh|  
4 Amplitude  |Svv|  
5 Amplitude  |Shv|  
6 Entropy (H)  ∑ Pi log(Pi)  
7 Anisotropy  A= (λ2- λ3 )/ (λ2+ λ3)  
8 Alpha  α= α1P1+P2 α2 + P3 α3  
9 Copolarisation ratio  |HH|/|VV|  
10 |HV|/|VV|  
11 

Depolarisation ratios  
|HV|/|HH|  
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samples is sufficients, the MoM provides a precise estimate of 
the value of the parameters with a lower computation time. 
With our high-resolution image, it turns out that the Fisher 
distribution leads to the best modeling of SAR descriptors. 
Fisher parameters estimated by the MoML fit better the 
empirical distributions than the one estimated by MoM whereas 
the one estimated by ML are the most relevant. However, in 
some cases, ML estimation does not lead to any result. For these 
reasons, we select the Fisher distribution, using MoML, to 
model POLSAR descriptors. The result of the statistical analysis 
using Fisher pdf, in each of all eight classes, for two different 
descriptors, is shown in Figure 3. 
 

 

 
Figure 3.  Estimated Fisher distribution by MoML for the eight 

classes and two different descriptors 
 

4. CLASSIFICATION AND RESULTS 

4.1 Methodology 

For classification of polarimetric SAR images, several methods 
have been proposed. Some of them are based on physical 
scattering mechanisms using various polarimetric 
decomposition methods. For example, the target entropy (H) 
and scattering angle (α) are calculated from such 
decomposition. H provides information on the scattering degree 
of randomness and α indicates the nature of the scattering 
mechanism. By dividing H and α plane into eight zones, 
different physical scattering characteristics of a terrain can be 
classified [13,24]. Or using more descriptors, the polarimetric 
information is converted into three parameters (H, α and 
Anisotropy A) to which a physical interpretation is associated 
[15].  
Some other classification methods are based on statistical 
characteristics of data and coherency matrix and derive a 
distance measure based on the complex Wishart distribution [7] 
or the complex Gaussian distribution. We use it for maximum-
likelihood (ML) classification of single-look polarimetric SAR 
data. 
Also there exist classification algorithms based on image 
processing techniques: unsupervised approaches using for 
instance the Markov theory [11,16,17] or supervised 

approaches, for example using Support Vector Machine (SVM) 
[6]. 
 
In a first experiment [3], the data made from the 11 polarimetric 
descriptors, was classified using unsupervised H/α Wishart 
classification (with POLSARPRO). The result was very 
confused. Then a decision tree was manually built, in order to 
reduce classification ambiguities. This leads to better results, 
with overall accuracy close to 70%. This first experiment tends 
to the object that the initial classification algorithms have not 
exploit all the statistical information of the 11 polarimetric 
descriptors. However, a decision tree is not a good solution as it 
is manually built according to the class ambiguities that we can 
observe in the classified image. Using a supervised 
classification such as SVM, a decision tree seems to be less 
useful (see Table 3). However, some ambiguities, in particular 
between shadows and highways and between flat roofs and trees 
are present in both results. 
 
So, we think that an automatic classification algorithm may be 
built, based on adapted statistical criteria, and improve the 
result. In this context, we propose a supervised ML 
classification method based on Fisher pdf as prior knowledge. 
The performance of this new algorithm, implemented in 
MATLAB, is compared with three different methods of 
supervised approaches: SVM classification (using ENVI), G-
ML (circular Gaussian-based ML) classification (MATLAB 
code) and Complex Wishart classification (MATLAB code). 
For this last method, the ML criterion is performed on the 
polarimetric covariance matrix and not on the 11 descriptors. 
 
4.2 Results 

Table 3 give the performance of the different approaches. Let us 
note that each classification result is largely improved by a local 
5x5 majority vote. Besides, in order to use ENVI SVM 
algorithm, we were compelled to reduce the size of the training 
samples. 
 
The adapted ML Fisher classification based on the 11 
descriptors has not led to better results than the G-ML 
algorithm (figure 4). This may be due to the fact that we assume 
in our Fisher criterion that the 11 descriptors are independent. 
In addition, ambiguities between highways and radar shadows 
and also between flat roofs and trees still occur. 
The Wishart based classification result is more noisy than the 
two previous ones. In the SVM result, important confusions 
occur between highways and shadows. 
The rate of good classification of sloped tiled roof pixels seems 
perfect. However the image shows few sloped roofs and we 
think that in a larger area, one class (and so one training 
sample) should be defined for each different orientation of slope 
compared to the radar antenna side-looking angle. 
 

5. CONCLUSIONS AND PERSPECTIVES 

This paper has presented a validation of the Fisher pdf to model 
eleven polarimetric descriptors and a new supervised ML 
classification based on the Fisher pdf. The result is compared 
with several supervised classification results (SVM, ML based 
on a Gaussian pdf, Complex Wishart ML algorithm). The 
overall performance obtained with the different classifications is 
around 70%. The classification result from Fisher ML criterion, 
although it does not show the best overall accuracy, seems less 
noisy than the others. Nevertheless misclassifications still occur 
between flat graveled or concrete roofs and trees. 
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Although the results could seem poor compared to those that 
one can obtain using an optical data, a first work has shown that 
the radar classified image provide a complementary information 
to a spectral classified map [18]. 
 
In the future works, we will study a new Fisher ML criterion 
that take into account the correlation between the eleven 
descriptors. Besides, polarimetric correlation descriptors should 
be introduced in our analyse. Then we project to extend our 
work to unsupervised ML algorithm. 
 
From these results, we think that contextual information is 
necessary to discrimate flat graveled or concrete roofs from 
trees. Contextual information could be other radar images (with 
different wavelength), spectral data, or geometric information 
(shape or elevation). These topics may be investigated in future 
studies. 
 
 Shadows Highways Lawns Trees Bright 

Pixels 
Metallic 
roofs 

Flat 
roofs 

Sloped 
roofs 

Kappa Averall 
Accuracy 

SVM 68% 63% 67% 32% 74% 70% 55% 100% 0.48 60.8% 
SVM + 
DT 

68% 63% 65% 36% 74% 70% 54% 100% 0.48 60.8% 

G-ML 81% 73% 92% 55% 87% 73% 60% 100% 0.69 76.8% 
W-ML 82% 47% 74% 18% 86% 81% 59% 97% 0.45 57.1% 
F-ML 86% 69% 84% 35% 84% 67% 86% 99% 0.65 72.8% 

Table 3.  Performance of tested classification methods. 
DT=Decision Tree. F-ML = ML method based on Fisher pdf. 

W-ML = Wishart ML classification 
 

   
(a)  (b) 

  
(c)  (d) 

Figure 4: Classification result: (a) SVM (b) G-ML (c) F-ML (d) 
Wishart ML 
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