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ABSTRACT:

One of the main novelties introduced by the contemporary spaceborne SAR sensors is the fine Ground Sample Distance (GSD). The 
GSD of 1 m, which is available now, is comparable to the resolution offered by optical sensors. It creates the conditions to bring  
closer SAR and optical data and directs research towards SAR processing methods of comparable accuracy with optical processing  
methods. This paper focuses on the capability offered by contemporary SAR sensors to identify fine man-made and physical features  
of earth's surface. 3D road edges are treated as Ground Control Information, in order to compute the projective transformation that 
relates the 3D features of the object space with their 2D projection in a SAR image. The computation of the projection is done with a 
novel ICP-based method that matches a network of 3D Free-form Linear Features of the object space with their 2D projections in the 
image space. The proposed method is tested for the georeference of a whole TerraSAR-X scene. Computed results are evaluated with  
independent Check Points. The quality of the results are superior to those computed with salient point based approaches.

1. INTRODUCTION

SAR  is  an  all-weather,  day  and  night  sensor,  offering 
information  about  the  properties  of  the  targets,  their  3D 
geometry  and  their  evolution  through  time.  Contemporary 
satellite  SAR sensors  are of high resolution,  offering Ground 
Sampling  Distance  (GSD)  as  small  as  1  meter.  This  novel 
characteristic,  makes  it  possible  to identify  fine  linear 
characteristics of earth's surface, such as roads  (Eineder et al, 
2009), which were not possible to identify in data sets collected 
by the previous generation of satellite SAR sensors. Despite the 
unprecedented  high  resolution  of  contemporary satellite  SAR 
sensors,  the  identification  of  salient  characteristic  points 
remains an ambiguous process, due to the speckled and fuzzy 
nature  of  SAR images,  the  severe  distortions  inherited  from 
their geometry and the absence of true color.
This paper takes advantage of the fine resolution introduced by 
contemporary  high  resolution  SAR  sensors,  in  order  to 
determine a rigorous  mathematical relationship  between SAR 
data and heterogeneous (multimodal and multitemporal) remote 
sensing  and  geospatial  data.  Linear  features,  which  are 
potentially  identified  more  robustly  than  salient  points,  are 
investigated  as  complementary  or  even  alternative  ground 
control  information  to  salient  points,  for  geometric  processes 
such as georeference and registration.
A  novel  method  based  on  Iterative  Closest  Point  (ICP) 
algorithm  (Besl and McKay,  1992;  Zhang,  1994)  is used for 
accurate  and  robust  heterogeneous  free-form  linear  features 
(FFLFs) global matching. The method was initially introduced 
in (Vassilaki et al, 2008a) and (Vassilaki et al, 2008c), in order 
to match 2D heterogeneous FFLFs with a rigid transformation. 
It was further expanded in (Vassilaki  et al, 2008b), (Vassilaki 
et al, 2009b), (Vassilaki et al, 2010b), in order to match FFLFs 

of different  dimensionality (2D-3D) with  non-rigid  projective 
transformation. It does accurate global matching of a single pair 
of  FFLFs  of  the  same  (2D-2D,  3D-3D)  or  of  different 
dimensionality  (3D-2D),  without  constraints  on  the 
transformation type, the projection type or the geometric type of 
the FFLFs.  No prior knowledge of points correspondences or 
FFLFs relative position is required.
In this paper the method is extended and reformed in order to 
match multiple 3D FFLFs (network) with their 2D projections. 
The use of networks of FFLFs is required because a single pair 
of FFLFs may not represent the datasets in their entirety, as it 
may be confined to a small region of the datasets. The use of 
multiple  pairs  of  FFLFs  also  increases  the  robustness  of  the 
whole process. The method is used to recover the relationship 
between the 3 dimensional object space and its projection in a 2 
dimensional  TerraSAR-X  image.  The  performance  of  the 
proposed  method  is  tested  by the  georeference  of  the  whole 
scene of a Single Look Slant Range Complex (SSC) TerraSAR-
X image,  captured  with  the High  Resolution  SpotLight  (HS) 
acquisition mode. The results are compared to those computed 
through a salient points-based approach.

2. MATCHING NETWORKS OF FFLFs

2.1 The Problem of Matching Networks of FFLFs

In  the  case  of  matching  networks  of  FFLFs  two  unique 
problems, which are not present in single pair FFLFs matching, 
have to be faced:
(a) It is generally not known which 3D FFLF corresponds to 

which 2D FFLF. Thus the correspondences of the FFLFs 
must  be  established  before  application  of  the  ICP 
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algorithm.
(b) All the pairs of FFLFs are related by a common projective 

transformation. Thus it is not possible to match each pair 
independently,  since  each  matching  would  result  into 
different  parameters  of  the  transformation.  All  the  pairs 
should be matched simultaneously in order to determine a 
single and more robust projective transformation.

Figure 1.  Networks of heterogeneous FFLFs.

2.2 Automated Identification of Correspondent FFLFs

In order to identify the FFLFs correspondences, it is assumed 
that  the  two  datasets  are  initially  pre-aligned.  With  this 
assumption the correspondences would seem easy to identify. A 
FFLF of the first dataset corresponds to the FFLF of the other 
dataset  which  is  “closest”  to  it.  However,  the  definition  of 
“closest” is ambiguous for a FFLF which may span many other  
FFLFs (Figure 1). Different nodes of the same FFLF may be 
closest  to  nodes  of  different  FFLFs.  Vassilaki  et  al,  2009a 
introduced the term “distance” as a measurement of how far or 
how different are two FFLFs as a whole.  The pair of FFLFs 
who have the least  “distance”,  are  assumed to  correspond  to 
each other. Four candidates for the “distance” were suggested; 
the  euclidean  distance  between  characteristic  homologous 
points  such  as  the  first  node  (d1),  the  last  node  (dN),  or  the 
centroid (d), and the absolute difference of the FFLFs lengths 
(ΔS). For  robustness,  the biggest  of these four  values can be 
used as the “distance” of the FFLFs. In the very unlikely case 
that the “distance” is ambiguous (almost the same) for two or 
more pairs of FFLFs, application of the full ICP (Vassilaki et al, 
2008a) can be used to determine which FFLFs are homologous. 
ICP is the best and more robust approach,  but it is very time 
consuming and should be avoided if possible.
Manual pre-alignment of the FFLFs is difficult as the varying Z 
coordinate  of  the  3D  FFLFs  and  the  distortions  of  the  2D 
FFLFs due to the SAR sensor make their shapes incompatible. 
Move, scale and rotate operations are not enough to cancel the  
non-rigid nature of the SAR projection. Instead, the 3D FFLFs 
must be projected to the image space of the 2D FFLFs using a 
good approximation of the unknown projective transformation, 
which is obtained automatically by a single pair of FFLFs as 
described in (Vassilaki et al, 2010b). The correspondence of the 

single pair of FFLFs is chosen manually by the user, so that in 
this sense the datasets are manually pre-aligned. However, other 
than this, the procedure is fully automated. 

2.3 Unified One-Step Least Squares Adjustment

The projective transformation is common to all pairs of FFLFs. 
In  order  to  compute  the  common transformation  the  LSM is 
applied to all the pairs of FFLFs simultaneously. The equations 
produced by the homologous points of all pairs of FFLFs are 
assembled into the same LSM matrices. The LSM computes the 
transformation  which  best  fits  all  the  pairs  of  FFLFs.  The 
computed transformation brings the FFLFs closer together, and 
thus the correspondences are reevaluated, in case the previous, 
poorer, transformation led to a few false correspondences.
Each computed pair of closest points,  introduces 2 equations,  
while the unknowns of the problem are the N parameters of the 
transformation  (eg.  N=11  for  the  3D-DLT  projection). 
Assuming Mi closest  points  on the ith  pair of FFLFs,  and m 
FFLFs, the dimensions of the design matrix [A] of the LSM are: 

(2∑i=1
m

M i)×N   (1)

 

2.4 Matching FFLFs of Different Dimensionality (2D-3D)

The different dimensionality of the FFLFs (3D-2D) is handled 
through  the  method  proposed  in  (Vassilaki  et  al,  2008b; 
2009b). The 3D nodes of the 3D FFLFs are projected to the 2D 
image space using a previous approximation of the projective 
transformation parameters; the association of each 3D node and 
its 2D projection is saved. For each 2D node of the projected 
FFLFs, its closest point in the 2D FFLF is computed, producing 
2D-2D pairs.  The 2D-2D pairs are converted to  3D-2D pairs 
through the saved associations. The LSM is applied to the 3D-
2D  pairs  to  compute  better  approximation  of  the  projective 
transformation parameters.
The steps of the matching algorithm are summarized below:

a. Use  a  single  pair  of  FFLFs  to  compute  the  first 
approximation  of  the  projective  transformation 
parameters.

b. Project  the 3D FFLFs to the image space using the 
transformation  parameters.  Save  associations  of  3D 
nodes and their projections.

c. Determine FFLFs correspondence by least “distance”.
d. For each FFLF pair apply ICP to find 2D-2D pairs of 

closest points.
e. Use the association to convert 2D-2D pairs to 3D-2D 

pairs.
f. Apply  LSM  to  3D-2D  pairs  to  compute  better 

approximation of the transformation parameters.
g. Repeat b-f steps until convergence.

The final result of the algorithm are the matched FFLFs and the 
projective transformation parameters. The transformation relates 
the 3D FFLFs, or the object space, to the 2D FFLFs which lie 
on the image. Because the network of FFLFs spans the image, 
the  transformation  in  effect  relates  the  image  to  the  object 
space.

3. APPLICATION

3.1 Test site – Data sets

The proposed method was implemented in FORTRAN and was 
embedded  into  an  open  source  CAD  (Stamos,  2007)  for 
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convenience and usability. The applicability, the efficiency and 
the accuracy of the method was tested using real data. The study 
area is in the greater north-eastern region of Athens, Greece. It  
has steep mountainous terrain, with average elevation 270m and 
it is generally covered by sparse vegetation. It also includes two 
small urban regions. The data used are:
(a) a  whole  scene  of  a  Single  Look  Slant  Range  (SSC) 

TerraSAR-X product which was captured in 2009 with 300 
MHz High Resolution SpotLight imaging mode. The scene 
covers an area of about 50 Km2 (5x10 Km).

(b) a medium scale old topographic map; the original map was 
in analogue form at a scale of 1:5,000 and it was compiled 
by stereo-restitution  of  aerial  photos,  taken  in  1970 (40 
years  before  the  acquisition  of  the satellite  image).  The 
map is part of a series which cover the whole territory of 
Greece. They are readily available for the test and they cost 
much less than a GPS survey. 

The  area  under  study  changed  widely  during  the  40  years 
between the two data collection phases (2009 and 1970). The 
area used to be an agricultural area but now it exhibits a great 
variety of land uses, as it serves as a near Athens holiday resort. 
As in virtually all multitemporal cases, the available map and 
the image share few common features. Most of these common 
features  are roads which  unfortunately  evolved  through time. 
Many  sections  of  the  roads  present  wide  temporal  changes 
during the 40 years between data acquisitions, as it is shown in 
the next paragraphs.

Figure 2.  The 2D road network (FFLFs) on the TerraSAR-X 
image.

Figure 3.  The 3D road network (GCLFs) on the old map.

3.2 FFLFs extraction

The 2D road edges extraction was done manually, by digitizing 
the lines appeared on the data. Most of the roads digitized are 
paved, as they appear better in the SAR images (Eineder et al,  

2009). The road centerlines were obtained from the edges using 
skeletonization techniques. The road centerline is preferred to 
road edges as control FFLF, because it has less error than the 
edges  and  it  fully  represents  the  geometry of  the  road.  The 
length of the road centerlines varies from a few hundred meters 
to 8.5 Km (Figures 2 and 3). The contour lines of the map were 
also  digitized.  Then  they  were  converted  to  Triangulated 
Irregular Network (TIN) via Delaunay triangulation, which was 
used as DTM in order to extract elevation information of the 
road  centerlines.  The  road  centerline  profiles  are  in  general 
rough, due to the scale of the map and the fact that the map does 
not  have elevation information along the surface of the road. 
The  centerline  elevation  was  computed  by  the  surrounding 
terrain.

3.3 Mathematical Model

Four distinct projection models were used to test the method;  
first and second order 3D Polynomial Functions (PFs) (Toutin, 
2004),  3D Direct  Linear  Transform (DLT)  and  3D Rational 
Polynomial Functions (RPFs) of first order, with 8, 16, 11 and 
14 unknown parameters respectively (Eq. 2 to 5).

x=a1 X a2 Y a3 Z a4 y=b1 X b2 Y b3 Z b4   (2)

x=a1 X+a2 Y +a3 Z+a4+a5 X 2+a6 Y 2+a7 Z 2+a8 XY
y=b1 X +b2 Y +b3 Z+b4+b5 X 2+b6 Y 2+b7 Z 2+b8 XY    (3)

x=
a 1 X a2 Y a3 Za 4

c1 X c2 Yc3 Z1
x=

b1 Xb2 Yb3 Zb 4

c1 X c2Y c3 Z1
 (4)

x=
a 1 X a2 Y a3 Za 4

c1 X c2 Yc3 Z1
x=b1 X b2 Y b3 Z b4

d 1 X d 2 Y d3 Z1
 (5)

In  the  following  paragraphs  these  mathematical  models  are 
applied to real data in a high relief area with a variety of land-
uses (urban, agricultural and forest land), in order to investigate 
the performance of the method.

3.4 Tests and Results

Three different cases were tested. For all the tests, a preliminary 
georeference was computed using a single pair of correspondent 
FFLFs.  The  computed  projective  transformation  was  used  to 
bring the FFLFs close together.
In the first test (Test A) the centerlines of 4 roads were used as 
Ground  Control  Linear  Features  (GCLFs).  Using  the 
preliminary  georeference  it  was  possible  to  determine  and 
eliminate  the  sections  of  the  roads  which  exhibited wide 
temporal changes.
In the second test (B) the centerlines of 14 roads were used as  
GCLFs. In this test the whole lengths of the roads were used,  
regardless of the temporal changes that were identified.
In the third test (C) the same 14 centerlines as in (B) were used, 
but  the  sections  of  the  roads  which  exhibited  wide  temporal 
changes were eliminated as identified in (B).
The  matching  results  are shown in  Figures  4  to  6.  The  3D 
GCLFs  that  were  extracted  from the  map  appear  with  cyan 
color,  their  2D  projection  in  the  SAR  image  appear  with 
magenta color, while the matched 3D GCLFs to the 2D FFLFs, 
with the proposed method appear with black dashed line.
In  Figure  7  characteristic  sections  of  the  roads  with  wide 
temporal changes are presented (Test B). The magnitude of the 
changes is shown in pixels.
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Figure 4. Test A: Matching results.

Figure 5. Test B: Matching results.

Figure 6. Test C: Matching results.

Figure 7. Test B: Road sections with wide temporal changes.

In  order  to  check  the  accuracy  of  the  georeference,  16 
independent Check Points (CPs), which were extracted from the 
medium scale old map and were identified in the SAR image 
were used. Figure 8 shows the distribution of the CPs.

Figure 8.  CPs distribution.

Table 1 shows the RMSE (in pixels) computed by the 16 CPs 
using the 4 projective transformation models (first and second 
order PFs, DLT and RPFs), for each one of the 3 tests (A, B and 
C). In addition, Table 2 and Figure 9 show the residual of each 
CP using the 4 models, for test C.

Test 1st order PF 2nd order PF DLT RPF
dRg dAz dRg dAz dRg dAz dRg dAz

A 4.7 4.5 4.9 4.7 4.1 4.7 4.4 3.9
B 4.2 3.9 5.3 4.7 5.7 4.2 5.0 5.2
C 4.1 3.6 4.8 3.7 4.2 3.7 4.4 3.8

Table 1.  CPs RMSE (pixels), in Range and Azimuth.

Figure 9. Test C: CPs residuals in Range and Azimuth.
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CP 1st order PF 2nd order PF DLT RPFs
dRg dAz dRg dAz dRg dAz dRg dAz

1 5.9 5.6 7.4 6.0 5.1 5.2 3.7 5.5
2 3.6 3.5 2.9 2.6 1.7 3.8 -0.1 2.9
3 -3.5 5.1 -4.6 4.5 -3.0 5.6 -2.6 4.9
4 -7.0 5.5 -7.7 4.0 -6.8 5.5 -7.2 4.5
5 -0.5 -2.4 -1.3 -3.5 -0.9 -2.8 -1.8 -3.0
6 1.8 -1.0 0.8 -1.9 1.4 -1.5 0.4 -1.4
7 1.7 4.6 0.9 3.5 1.5 4.3 0.7 4.1
8 0.8 3.3 -0.5 2.8 0.1 2.7 -1.2 3.2
9 -5.0 4.2 -8.8 6.0 -6.7 4.1 -7.8 6.9
10 4.2 -1.9 4.9 -2.0 4.1 -2.1 4.5 -1.8
11 -3.8 -4.8 -3.6 -4.5 -2.9 -5.1 -1.9 -4.6
12 -0.1 -2.9 1.2 -4.0 0.8 -2.6 1.5 -4.7
13 -4.5 3.1 -2.2 4.2 -5.0 3.1 -4.0 3.8
14 3.9 -0.2 1.4 -1.7 2.6 0.2 1.1 -1.2
15 5.7 2.2 5.7 1.1 7.5 2.7 8.7 0.4
16 -4.5 -1.9 -8.4 -0.8 -5.9 -2.2 -7.5 0.0
RMSE 4.1 3.6 4.8 3.7 4.2 3.7 4.4 3.8

Table 2. Test C: Residuals and RMSE (pixels) of CPs.

3.5 Evaluation of the Results

The  RMSE  is  almost  the  same  regardless  the  projective 
transformation used (Figure 9, Tables 1 & 2). The differences 
(1.5 pixel at most), are statistically insignificant as they are less 
than  the  accuracy  of  the  map  (approximately  3  pixels). 
Furthermore, the uncertainty of the point location on the SAR 
image is larger than 1 pixel. In the first test (A) the GCLFs are 
only 4, but they cover adequately the scene. In the second test 
(B)  the  GCLFs  contain  gross  error  in  various  sections  with 
temporal  changes,  but  the  great  number  of  GCLFs  (14)  in 
conjunction  with  the  method  cancel  it  out.  The  last  test  (C) 
contains  many  GCLFs  without  the  sections  with  temporal 
changes,  and tends to  give the best  RMSE.  The RMSE with 
respect  to  the  projection  model  used  is  ambiguous,  because 
higher order does not imply higher accuracy if the underlying 
problem does not have this accuracy (Press et al, 1992) as it is 
in the present case.
The  tests  show  that  the  method  is  insensitive  to  temporal 
changes, given the abundance of GCLFs found in all types of 
data.  The  method  manages  to  match  robustly  and  efficiently 
data  which  contain  sections  with  gross  temporal  changes, 
producing low RMSE. The method can also be used to identify 
these segments and exclude them from the matching.
The results are of superior quality to those computed by salient 
point  based approaches.  In  (Vassilaki  and  Ioannidis,  2010)  a 
terrain dependent approach was used in order to georeference a 
High Resolution SpotLight TerraSAR-X image, using the DLT 
(11  parameters)  and  the 1st  order  RPF (14  parameters).  The 
RMSE of independent CPs were about 4-7 pixels in range and 
about 3.5-5 in  azimuth direction.  About the same results were 
later  computed  by  (Crespi  et  al,  2010),  who  used  a  terrain 
independent  approach  to  georeference  a  SpotLight 
CosmoSkyMed image, using 3rd order RPFs (78 parameters, 20 
of which proved to be statisticallly significant). In (Nonaka  et  
al, 2008) a digital map at a scale of 1:2500 was used in order to 
evaluate the  accuracy  of  the  orthorectified  EEC  SpotLight 
TerraSAR-X products. The accuracy revealed to be better than 
5  m in  a  flat  area  while  it  degraded  to  more  than  10  m in  
mountainous areas.

4. CONCLUSIONS

In this paper a new method for the georeference of TerraSAR-X 
images  was  presented.  The  method  computes  the  projective 
transformation model between the 3D object space and its 2D 
projection  in  the  image,  using  GCLFs  instead  of  the 
traditionally used GCPs.  The performance of the method was 
tested by the georeference of the whole scene of a Single Look 
Slant Range Complex (SSC) TerraSAR-X image, captured with 
the  High  Resolution  SpotLight  (HS)  acquisition  mode.  The 
accuracy of the proposed method was tested with independent 
CPs.  The  RMSE  of  the  CPs  was  about  4  pixels  in  the 
mountainous study area.
Comparing the proposed  GCLFs based method to  the salient 
point  based  method,  it  is  proved  that  the  proposed  method 
provides  better  accuracy.  It  is  also notable  that  the proposed 
method  using  first  order  PFs  (8  parameters)  computes  better 
results  than  the  salient  point  method  with  projective 
transformations  of  more  parameters.  Furthermore,  the  use  of 
GCLFs leaves little doubt about the reliability of ground control 
information  (GCI),  as  compared  to  the  often  ambiguous  and 
fuzzy identification of salient points.
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