
 

 

3-D OBJECT RECOGNITION FROM POINT CLOUD DATA 
 

W. Smith, A.S. Walker, B. Zhang 

 

BAE Systems, San Diego, CA 92127, USA 

(william.smith4, stewart.walker2, bingcai.zhang)@baesystems.com 

 

 

 

KEY WORDS:  Automation, Extraction, Building, Feature, DEM/DTM, Point Cloud, LIDAR 

 

ABSTRACT: 

 

The market for real-time 3-D mapping includes not only traditional geospatial applications but also navigation of unmanned 

autonomous vehicles (UAVs). Massively parallel processes such as graphics processing unit (GPU) computing make real-time 3-D 

object recognition and mapping achievable. Geospatial technologies such as digital photogrammetry and GIS offer advanced 

capabilities to produce 2-D and 3-D static maps using UAV data. The goal is to develop real-time UAV navigation through increased 

automation. It is challenging for a computer to identify a 3-D object such as a car, a tree or a house, yet automatic 3-D object 

recognition is essential to increasing the productivity of geospatial data such as 3-D city site models. In the past three decades, 

researchers have used radiometric properties to identify objects in digital imagery with limited success, because these properties vary 

considerably from image to image. Consequently, our team has developed software that recognizes certain types of 3-D objects 

within 3-D point clouds. Although our software is developed for modeling, simulation and visualization, it has the potential to be 

valuable in robotics and UAV applications. 

 

The locations and shapes of 3-D objects such as buildings and trees are easily recognizable by a human from a brief glance at a 

representation of a point cloud such as terrain-shaded relief. The algorithms to extract these objects have been developed and require 

only the point cloud and minimal human inputs such as a set of limits on building size and a request to turn on a squaring option. The 

algorithms use both digital surface model (DSM) and digital elevation model (DEM), so software has also been developed to derive 

the latter from the former. The process continues through the following steps: identify and group 3-D object points into regions; 

separate buildings and houses from trees; trace region boundaries; regularize and simplify boundary polygons; construct complex 

roofs. Several case studies have been conducted using a variety of point densities, terrain types and building densities. The results 

have been encouraging. More work is required for better processing of, for example, forested areas, buildings with sides that are not 

at right angles or are not straight, and single trees that impinge on buildings. Further work may also be required to ensure that the 

buildings extracted are of fully cartographic quality. A first version will be included in production software later in 2011. 

 

In addition to the standard geospatial applications and the UAV navigation, the results have a further advantage: since LiDAR data 

tends to be accurately georeferenced, the building models extracted can be used to refine image metadata whenever the same 

buildings appear in imagery for which the GPS/IMU values are poorer than those for the LiDAR. 

 

1. INTRODUCTION 

 

In the past few decades, attempts to develop a system that can 

automatically recognize and extract 3-D objects (buildings, 

houses, single trees, etc.) from imagery have not been 

successful. The radiometric properties of 3-D objects are very 

complex and variable. Because of the different colors and 

patterns, it is very difficult for any algorithm to extract multiple 

buildings and houses automatically from imagery alone (Figure 

1). Algorithms that work well with one set of images and 3-D 

objects may not work at all with a different set, because 

radiometric properties are often very different. 

 

LIDAR data has unique properties for automatic extraction of 

3-D objects. The most important and invariant property of a 3-

D object in LIDAR data is 3-D. In other words, the very 

availability of Z distinguishes objects better than the 2-D image 

view. We can use this property to identify, extract, and label 3-

D objects automatically. To identify an object in digital images, 

it is crucial to use an object property that does not change, i.e., 

is invariant. The 3-D properties of a 3-D object are ideal. As 

shown in Figure 2, the terrain shaded relief (TSR) makes 

manifest 3-D objects in a point cloud. In this case the point 

cloud was photogrammetrically derived from stereo imagery by 

means of NGATE software for extracting elevation 

automatically by matching multiple overlapping images (Zhang 

and Walter, 2009), but the algorithms in this paper are equally 

applicable to point clouds whether they come from LIDAR or 

photogrammetry. All of the 3-D objects have one common 

property — they are above the ground. Modern stereo image 

matching algorithms and LIDAR provide very dense, accurate 

point clouds, which can then be used for automatic extraction of 

3-D objects (Zhang and Smith, 2010). 

 

 

Figure 1.  Six different building colors and patterns from one 

image with a GSD 0.14′: a supervised building region growing 

classification would need six signatures. Two (upper-right and 

lower-middle) cannot be used because they are inhomogeneous. 

 

To identify an object in digital images, it is crucial to use an 

object property that does not change, i.e., is invariant. The 3-D 

properties of a 3-D object are ideal. As shown in Figure 2, the 

terrain shaded relief (TSR) makes manifest 3-D objects in a 

point cloud. Their locations and their approximate shapes are 

obvious. It is much easier to classify a TSR for 3-D objects than 

to classify digital images. The six buildings in Figure 1 are 
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shown in Figure 2. In this case the point cloud was 

photogrammetrically produced from stereo imagery by means 

of NGATE software for extracting elevation automatically by 

matching multiple overlapping images. It is available as an 

optional module for BAE Systems’ commercial-off-the-shelf 

SOCET GXP® and SOCET SET® products (Zhang and Walter, 

2009), but the algorithms in this paper are equally applicable to 

LIDAR or photogrammetrically derived point clouds. The 3-D 

objects have a common property — they are above the ground. 

Modern stereo image matching algorithms and LIDAR provide 

very dense, accurate point clouds, which can be used for 

automatic extraction of 3-D objects (Zhang and Smith, 2010). 

 

 

Figure 2.  TSR of a point cloud: 3-D objects are very apparent. 

 

We have developed a system for 3-D object extraction called 

Automatic Feature Extraction (AFE). Although originally 

designed for modeling, simulation and visualization, the system 

has potential for use in robotic and UAV applications. The same 

algorithms could be used to extract and identify other types of 

3-D objects such as vehicles, airplanes and people. 

 

 

2. TECHNICAL APPROACH 

 

2.1 Automatic transformation from a point cloud to a 

bare-earth model 

 

The first key algorithm automatically transforms a LIDAR or 

photogrammetrically derived point cloud into a bare-earth 

model. The differences between a point cloud and a bare-earth 

model are the approximate shapes and locations of 3-D objects. 

In the past few years, we have developed several algorithms to 

transform a point cloud into a bare-earth model for specific 

cases. These have been used extensively by our customers with 

positive feedback. There are, however, no general-purpose 

algorithms that work for all types of terrain. Automatic 

extraction of 3-D objects without human interaction requires a 

generic bare-earth algorithm that works for most cases. We 

combined several specific algorithms to transform a point cloud 

into a bare-earth model for 3-D object extraction: 

 Bare-Earth Profile: uses terrain profiles in different 

directions to identify non-ground points 

 Bare-Earth Morphology: uses morphological operators to 

identify non-ground points 

 Bare-Earth Histogram: uses elevation distribution or 

histograms to identify non-ground points 

 Bare-Earth Dense Tree Canopy: uses local minimum 

elevation points to identify non-ground points 

 

2.2 Automatic 3-D object extraction from point clouds 

using the bare-earth model 

 

We have developed several key algorithms to extract 3-D 

objects from point clouds and bare-earth models automatically.  

 

2.2.1 Identifying and grouping 3-D object points into 

regions: Based on the difference between the DSM and the 

DEM, we identify points with a height difference greater than 

the minimum 3-D object height, which is a parameter based on 

user input. We group these points such that points belonging to 

the same 3-D object have the same group ID and points 

belonging to different 3-D objects have different group IDs. 

This grouping algorithm is based on the height values and 

spatial relationships of these points. 

 

2.2.2 Separating buildings and houses from trees: Trees 

are generally found close to a house or a building. These trees 

may hang over or attach to a house or building. To extract the 

boundary of a house or building accurately, it is necessary to 

separate the trees. We assume that the roof tops of a house or 

building consist of a number of 3-D planes. Based on this 

assumption, we use dynamic programming and RANSAC 

(RANdom SAmple Consensus) algorithms to separate trees. In 

most cases, tree canopies do not form a 3-D plane. Points that 

do not belong to any 3-D plane are likely to be tree points. 

There are exceptions for points on air conditioners, TV 

antennae, etc. To overcome these exceptions, we have 

developed four region-growing algorithms to bring these points 

back based on their spatial relationships. 

 

2.2.3 Tracing region boundaries: We trace the outermost 

points of a region of points to form a polygon boundary. 

 

2.2.4 Differentiating single trees from buildings and 

houses: In most cases, LIDAR points on a single tree canopy 

will not form any accurate and sizable 3-D planes, nor will 

boundary segments of a single tree have a good dominant 

direction. We use these two criteria to differentiate single trees 

from buildings and houses. 

 

2.2.5 Regularizing and simplifying boundary polygons: 

Most houses and buildings have boundaries consisting of 

parallel and perpendicular segments. Based on this assumption, 

we have developed a RANSAC algorithm for 3-D lines to 

simplify boundary segments. We have developed another 

algorithm to estimate the dominant direction from the 

simplified boundary segments, which is used for regularizing. 

Once the dominant direction has been determined, we force the 

simplified 3-D line segments to be either parallel or 

perpendicular to the dominant direction. For 3-D objects with 

roofs consisting of multiple 3-D planes, we use the most 

reliable intersecting 3-D line from 3-D planes as the dominant 

direction. For 3-D objects with segments not parallel or 

perpendicular, such as curves, the estimation of dominant 

direction may fail. In this case, we extract 3-D line segments 

using a dynamic programming and least-squares fitting 

algorithm. We then link and intersect these 3-D line segments to 

form the boundary polygon of a 3-D object. 

 

2.2.6 Constructing complex roofs: A 3-D plane in a XYZ 

coordinate system has the equation z = ax + by + c. We cannot 

use a set of such equations to model a complex roof. We need 

to find the intersecting line between two 3-D planes. We need 

to intersect the boundary polygon with 3-D planes such that the 

boundary polygon has the corresponding segments and heights. 

We have developed an algorithm to deal with vertical façades 

on roof tops. The final complex roof is modelled by a 

regularized and simplified boundary polygon and a number of 

interior critical points as shown in Figure 3. With very dense 

and accurate LIDAR point clouds, AFE can extract 3-D side 

models accurately. 
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Figure 3.  A complex building with more than 50 sides, 

extracted from a LIDAR point cloud: stereo images are used 

only to verify the accuracy of the extracted building. 

 

3. CASE STUDIES 

 

3.1 High-resolution LIDAR 

 

In our first case study, we used a LIDAR data set with a post 

spacing of 0.2 meters or 25 points per square meter. The 

LIDAR data set was converted into a GRID format with a post 

spacing of 0.1 meters. We recommend using half of the original 

post spacing when converting from LIDAR LAS format into 

GRID format for our AFE software. AFE used the following set 

of parameters: minimum building height 2 meters; minimum 

building width 5 meters; maximum building width 200 meters; 

roof detail: 0.4 meters; enforce building squaring on. 

 

 

Figure 4.  AFE extracted 59 buildings and 13 trees from dense 

LIDAR. White lines are building boundaries. 

 

AFE transforms a GRID DSM into a GRID DEM using 

parameters 1, 2 and 3 as the first step. As an alternative, 

interactive terrain editing tools can be used to transform a 

GRID DSM into a GRID DEM first, and then both DSM and 

DEM are used as inputs to start AFE. Parameters 1, 2 and 3 

define the dimensions of 3-D objects that are of interest. Roof 

detail determines the number of triangles used to model a 

complex roof. With more triangles, we model a complex roof 

more accurately. On the other hand, more triangles take more 

processing power, memory and disk space. We recommend that 

the roof detail parameter should have a value close to twice the 

relative linear error of the DSM. We used a photogrammetric 

project covering the same area to verify and compare the 59 

buildings and 13 trees extracted by AFE, as shown in Figure 4. 

The root mean square error of building boundaries is about 0.2 

meters or one post spacing. 

 

3.2 Pennsylvania State LIDAR project 

 

This is a LIDAR project with an average post spacing of 1.2 

meters  for the state of Pennsylvania. The post spacing along 

the scan lines is quite different from the post spacing 

perpendicular to the scan lines. One is about 0.9 meters and the 

other, about 1.5 meters. We converted the original LIDAR LAS 

files into our internal grid format with a post spacing of 0.46 

meters (one half of the original smaller post spacing). There is a 

total of 266,933,400 (20,010 x 13,340) posts covering a 

mountainous area of 55.7 square kilometers in Allegheny 

County, Pennsylvania. AFE extracted 14,181 houses and 

buildings, and 79,067 individual trees in 9 hours and 27 minutes 

using 4 threads on 4 CPUs at 3 GHz each. Out of the 9 hours 

and 27 minutes, 2 hours and 20 minutes were for the 3-D 

buildings/houses and trees extraction, and 7 hours and 7 

minutes (60%), for the DSM to DEM transformation. Figures 5-

8 demonstrate the results.  

 

 

Figure 5.  TSR covers 55.7 square kilometers in a mountainous 

area.  

 

As shown in Figure 5, the steep terrain makes the DSM to DEM 

transformation challenging. One of the user-selected parameters 

that control the DSM to DEM transformation is the maximum 

building width. With a large value such as 300 to 500 meters, 

the transformation can detect and remove large buildings such 

as the one on the waterfront in Figure 5. This is only a problem 

in mountainous areas. This large value, however, can also chop 

off the top of a hill. As a result, we recommend using a smaller 

value in mountainous areas even if large buildings are not 

extracted. We used the following parameters for AFE: 

minimum building height 2.5 meters; maximum building width 

300 meters; minimum building width 4 meters; roof detail 0.6 

meters; enforce building squaring: on. It should be noted that 

LIDAR has blunders on water surfaces. As a result, the relief on 

the river (center) is not flat and false buildings have been 

extracted. 

 

With 0.9-1.5 meters post spacing, small houses cannot be 

extracted by AFE. Most houses that are large enough have been 

extracted by AFE (Figure 6). For small houses, AFE needs at 

least 4 points per square meter. Even for the houses extracted, 

there is not enough detail due to the post spacing limitation. At 

this post spacing, only large houses such as the two on the 

lower portion are accurate enough for GIS mapping 

applications. AFE cannot extract forests. Dense tree canopy 
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areas are still an unsolved problem for our DSM to DEM 

transformation. It is a challenge to distinguish a tree from a 

house. There are cases when a tree is classified as a house. 

 

 

Figure 6.  Buildings, houses, and trees at 1:1 resolution. 

 

AFE can extract buildings, especially flat buildings with 

parallel or perpendicular sides, very accurately (Figure 7). In 

urban areas with flat terrain, AFE can perform much better than 

in mountainous areas. We recommend that users separate flat 

urban areas from mountainous areas when running AFE such 

that different parameters and strategies can be used. 

 

 

Figure 7.  Extraction of buildings in flat areas 

 

 

Figure 8.  Complex buildings with irregular sides. 

 

Complex buildings with irregular sides that are not parallel or 

perpendicular to each other still a challenge for AFE. In the 

AFE GUI, there is an option ―Enforce Building Squaring.‖ 

When the vast majority of the buildings and houses have 

parallel and perpendicular sides, users should turn this option 

on. The consequence is that the non-parallel sides may not be 

extracted correctly as shown in Figure 8. 

 

3.3 Campus of the University of Southern California 

 

This is a LIDAR project provided by USC’s Integrated Media 

Systems Center (IMSC) with an average post spacing of 0.4 

meters for the USC campus (Figure 9). . There is no LIDAR 

data in the lower right corner area, which is either black or 

uniformly red. The LIDAR point clouds were converted into a 

SOCET GXP internal grid format with a post spacing of 0.18 

meters. There is a total of 138 million posts. The USC campus 

is rather flat, but there are many trees surrounding buildings. It 

is difficult when surrounding trees have similar heights to the 

building height. 

 

 

Figure 9.  TSR of USC campus covers 24.8 square kilometers 

 

AFE extracted 2464 buildings/houses and 5164 trees (Figure 

10) in 1 hour 12 minutes with 4 CPUs at 3 GHz each. The time 

does not include transforming the DSM into a DEM. We used 

the following parameters for AFE: minimum building height 2 

meters; maximum building width 300 meters; minimum 

building width 3 meters; roof detail: 0.4 meters; enforce 

building squaring on. 

 

The area is relatively flat and the transformation from DSM to 

DEM is easier than the Allegheny County area. There are many 

trees in the center that are difficult to separate from buildings 

because they overhang the buildings or have similar heights to 

the buildings and are attached to them. AFE separated these 

trees reasonably well from the buildings.  

 

AFE cannot extract buildings such as the football stadium and 

the track field (Figure 11), which are difficult for the DSM to 

DEM transformation. They do not have sides that are parallel or 

perpendicular to each other.  
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Figure 10.  Trees are difficult to separate from buildings 

 

 

Figure 11.  AFE cannot extract the football stadium and the 

track field 

 

Buildings and houses with parallel or perpendicular sides are 

straightforward for AFE (Figure 12), but it may have difficulty 

when they less than 3 meters in height. Low 3-D features are 

difficult for the DSM to DEM transformation. 

 

 

Figure 12.  Rectangular buildings and houses easily extracted. 

 

3.4 Luzern, Switzerland 

 

This is a LIDAR project of Luzern, Switzerland with an average 

post spacing of 0.3 meters (Figure 13). The LIDAR point 

clouds were converted into a SOCET GXP internal grid format 

with a post spacing of 0.16 meters. There is a total of 475 

million posts covering approximately 12 square kilometers.  

The LiDAR is very dense and high quality, but the buildings are 

very complex due to the time period of the architecture.  Many 

have interior holes in them which proved quite challenging. 

AFE extracted 2193 buildings/houses and 5225 trees. Figures 

13-14 show the results. We used the following parameters for 

AFE: minimum building height 2 meters; maximum building 

width: 200 meters; minimum building width: 3 meters; roof 

detail: 0.5 meters; enforce building squaring on. 

 

AFE allows user to define an area of interest (AOI) polygon 

such that only features within this AOI are extracted. This has 

proved especially useful for the Luzern project, where some 

building roofs are so complex that the elevation variations are 

very similar to trees. Since AFE uses elevation variation to 

differentiate buildings from trees, the threshold value which is 

determined by the roof detail parameter is difficult to set. With 

the AOI capability, users can divide the entire area into several 

regions and use the appropriate set of parameters within each 

region to run AFE most effectively. We expect that with this 

use of AOIs, the results could be much better.  

 

 

Figure 13.  TSR covers 12.2 square kilometers in Luzern, 

Switzerland (data courtesy of Leica Geosystems) 

Work is still needed to capture a complex building with interior 

open space accurately (Figure 14). AFE currently does not have 

logic to precisely extract buildings with holes. 

 

 

Figure 14.  Complex building with interior hole 

 

4. ONGOING WORK 

 

Estimating a figure of merit (FOM) for an automatically 

extracted feature is very important for production because AFE 
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is not and will not be perfect. In automatic terrain extraction, we 

use the cross-correlation coefficient as the FOM for each 

elevation post, which is a good indication of reliability. In AFE, 

we are investigating candidate FOMs. For each building/house, 

AFE computes 20 attributes, for example: maximum roof 

surface fitting error; average roof surface fitting error; 

maximum roof boundary fitting error; average roof boundary 

fitting error; percent of parallel or perpendicular sides; number 

of sides; maximum roof slope; average roof slope. We are 

hoping that a combination of these attributes can serve as a 

FOM for AFE. Once such a FOM is identified, it would provide 

a threshold, enabling a user to delete those features with 

questionable FOM values. This would result in a more reliable 

set of features that require little editing. Users could then 

manually extract the missing features. In production, editing a 

feature is more expensive than extracting a new feature. 

 

While the results to date are very promising, therefore, 

additional work is being undertaken in several areas. Our 

experience underlines the value of being able to apply the 

algorithms to an area of interest in order to accommodate 

regions that would benefit from different parameters, such as 

the mountainous versus flat sections in the second case study. 

Secondly, efforts are being invested in improved modeling of 

complex rooftops and more accurate extraction of complex 

buildings, such as those typical in the Luzern data set. Thirdly, 

we have explained that it would be beneficial to have a quality 

assurance tool to identify potentially incorrect buildings. While 

the algorithms currently concentrate on building and tree 

extraction, Finally,  other types of features could be extracted in 

the future such as power lines, dense tree canopies, and other 

volumetric objects: we are considering developments that 

would address these applications. 

 

 

5. SUMMARY 

 

Autonomous systems such as unmanned ground vehicles and 

unmanned airplanes are gaining traction for two reasons: they 

are in demand; and they are technically achievable. The 

geospatial community has been focusing on making ―static‖ 

maps or non-real-time maps for decades. We anticipate that 

real-time 3-D mapping may have much wider applications than 

static maps. With massive parallel processing power such as 

GPU computing (a Tesla GPU card can have 448 processing 

cores with a double precision floating point capability of 515 

Gflops) real-time 3-D mapping is technically achievable. Our 

study indicates that we can automatically recognize two types 

of 3-D features (buildings/houses and trees) from LIDAR point 

clouds. We expect AFE may recognize more types of 3-D 

objects or any 3-D objects that are above the ground and have 

certain sizes in the future. The core algorithms of AFE could be 

used to develop a real-time 3-D mapping system. Such a system 

could then be used to navigate unmanned ground vehicles. 

 

The biggest challenge is the real-time requirement. We are not 

even close to real-time. Some of the algorithms are 

computationally intensive. Therefore, massively parallel 

processing may be required. Fortunately, the computing 

industry is moving rapidly toward GPU computing and parallel 

computing. For example, Microsoft Internet Explorer 9 was 

developed using GPU and parallel computing. The CUDA 

language from nVIDIA is gaining popularity in the software 

industry. 
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