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1 INTRODUCTION

Roof materials are important sources of pollutants within cities.
To monitor and quantify polluted roof runoff, a precise classifica-
tion approach of various roof material classes is needed. Within
urban environments, different geometries of roofs exist, e.g.
sloped roofs and flat roofs, which can be distinguished by using
ALS data. To precisely classify different roof material classes,
e.g. brick, slate, gravel, hyperspectral datasets can be utilized.
Thus, exploitation of both hyperspectral and ALS data is helpful.
In order to exploit these data sources, data fusion needs to be
performed. A novel approach for data fusion is possible with
kernel composition methods. Support vector machines (SVMs)
have proven to be capable classifiers for hyperspectral and ALS
data separately, but also for combined datasets [Camps-Valls et
al., 2006]. Kernel functions are used to find the solutions of SVM
classifiers. The kernel composition [Camps-Valls et al., 2006]
takes account of the fact, that kernel functions can be combined
(e.g. by addition) to form new kernels. This combination offers
a novel option for data fusion. An application for the fusion and
classification of hyperspectral and ALS data is given in [Braun et
al., 2011].

SVMs are binary classifiers. To classify n classes (with
n > 2), strategies have to be employed which break down the
n class case to various two class cases. The one-against-one
strategy considers only two of the n classes at each step.
This feature is exploited herein to selectively use the ALS
data when needed. Thus, incorporating model knowledge on
the roof geometry into the classification process is made possible.

The remainder of the paper is organized as follows. Sec-
tion 2 presents a mathematical introduction into the methods
used. The v-SVM by [Schoelkopf et al., 2001] is introduced.
Afterwards, two data fusion approaches —concatenation and ker-
nel composition— are introduced. Finally, the One-Against-One
cascade is explained with special emphasis on its usage for class
dependent data fusion. Section 3 outlines the data preprocessing
employed herein. In section 4 classification results based on
both data fusion approaches are presented and compared. Some
considerations and evaluations on the approach followed are
given. Finally, section 5 concludes the work presented and gives
an outline on further investigations.

2 MATHEMATICAL FOUNDATIONS

This section presents brief mathematical foundations on the
methods employed. Kernel composition makes use of the fact
that kernels can be combined by arithmetical operations like ad-
dition or multiplication. By accepting a small amount of falsely
classifed training data, SVMs ensure appropriate generalization.
The strategy most frequently used for error handling is the Cost-
SVM [Cortes and Vapnik, 1995]. In this paper, emphasis is put
on a different error handling strategy called v-SVM [Schoelkopf
et al., 2000]. Due to the fact that one of its parameters can be ad-
justed to decribe the amount of noise within the training datasets,
it has advantages over Cost-SVM.
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2.1 v-SVM with linear kernel

v-SVM is used to separate different classes from one another.
For a training data set X set with [ samples x;, each sample has a
class label y; € {—1, +1} which assigns it to one of two classes.
v-SVM now finds a subset SV C X of samples x;, which are
closest to the samples of the respective other class. The samples
of this subset are called support vectors. They are used to con-
struct a separating plane which sections the members of class +1
from class -1. The method chooses the samples which allow best
for a trade-off between correctly separating the two classes and
leaving a maximum margin between the classes for generaliza-
tion. To simplify finding this trade-off, small errors (samples that
are on the wrong side of the plane) are allowed by slack variables

&i
min gl vt 36 M)
subjectto  y;((w - ;) +b) > p—¢& (2)

§& =20, p=0

Note that Eq.1 is very similar to Cost-SVM (cf. [Burges, 1998]),
however, the regularization constant v is not unbounded, but
v € (0,1]. The parameter v describes to which extent the train-
ing data are affected by noise. Note that in Eq.1&2, the original
data x; are used to find a separating plane — the original linear for-
mulation of the SVM is used [Cortes and Vapnik, 1995], [Burges,
1998]. However, it may not always be possible to find a linear so-
lution in the original data space. Hence, usually data are mapped
into a higher-dimensional space by non-linear feature functions
®(x;). In this case, the constraint given by Eq.2 would change
to:

subject to  y;((w - P(z4)) +0) > p—&

& =20, p=0

All types of SVMs obviate calculating ®(z;) by introducing ker-
nels (cf. Eq.4) to avoid computational cost. Thus, the kernel
function induces a high dimensional reproducing kernel Hilbert
space (RKHS), making the problem linearly solvable within this
high dimensional space. The radial basis function is the kernel
function most frequently used when linearity of the separation
problem can not be assumed in the original data space [Keerthi
and Lin, 2003], [Melgani and Bruzzone, 2004], [Huang et al.,
2002]. Within this paper, the linear kernel is used though. It rep-
resents a dot product of the features (cf. Eq.4) and thus, does not
induce a high dimensional RKHS. The reason for using the linear
kernel is that over one hundred hyperspectral channels and fur-
thermore multiple features derived from the ALS data are avail-
able. Furthermore, as the one-against-one strategy considers only
two classes in one step, leading to an inherently sparse feature
space. Hence, utilizing a linear kernel seems sufficient. As the
classification problem is simplified, it can be considered as lin-
early solvable in the first place.

3

2.2 Approaches for Data Fusion

As both hyperspectral and ALS data are used, two information
domains are available that had to be fused. The spectral domain
consists of the 126 channels measured by HyMap [Cocks et al.,
1998]. The geometric domain consists of the first and last pulse
of the ALS data and further information derived from it. For data
fusion, two different approaches are compared. Simple concate-
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nation and kernel composition — a data fusion approach available
for kernel based classifiers like SVMs.

Concatenation When fusing information from two different
sensors, like hyperspectral data and ALS data in this case, the
most simple approach is to concatenate the two data matrices to
a single matrix. However, given over one hundred spectral chan-
nels of HyMap and only a few information channels derived from
the ALS data one can not be sure whether the geometric informa-
tion is utilized adequately by the classifier or whether the multi-
tude of spectral channels and their noise outweigh the informa-
tion of the ALS data.

Kernel Composition Kernel matrices computed through ker-
nel functions are the representation of the input data used to iden-
tify the support vectors. The kernel function originally proposed
in [Cortes and Vapnik, 1995] is the linear kernel, a dot product
between two points from the training data set. Given [ training
points, all possible I? dot products of two points ; and x; are
computed, resulting in an [ x [ kernel matrix K; ; (cf. Eq.4).
According to Mercers theorem [Mercer, 1909], kernel matrices
can be combined by certain arithmetical operations like addition,
multiplication etc. Hence, data fusion can be performed by com-
puting one kernel on the spectral domain and another kernel on
the geometric domain. Afterwards, they are added to perform
data fusion (cf. Eq.6).

linear kernel

“

K(xi,a:j) =TTy

W) RBF kernel ~ (5)

Kcomposite = )\lepectT‘al + AQngometric
)\16(0,1], Ao =1-—X\

Note that through tuning A; and A2, the user can define to which

extent the information in each domain is considered as significant

for the classification problem. An option not available for simple
concatenation of the data when using SVM.

I

Q)

2.3 Exploitation of One-Against-One Cascade

SVMs are binary classifiers, they solve classification problems
given two classes. Here, 14 subclasses need to be distinguished
(cf. Tab.1). Hence, the 14-class problem needs to be broken
down into several two class problems. The one-against-one
stategy considers each (124) permutation of the classes separately
— which leads to 91 training and classification steps. At each
step, a model is trained to distinguish two classes, considering
e.g. the training pixels of class 6 from the training pixels from
class 9. Within the classification step, this SVM would assign
either 6 or 9 as a label to each pixel, although the majority of
pixels should belong to classes different to six or nine. Thus,
a considerable part of pixels will be falsely classified by this
particular SVM. However, during classification, each pixel is
labeled by all 91 models. Hence, each pixels receives 91 labels
dwithd € [1,...,14]. A1 x 91 label vector v; for each pixels
is produced. The class membership for the ith pixel is decided
by mod(v;) the label most frequently assigned to the pixel (Max
Wins strategy). The Max Wins strategy allows for a robust
classification although each pixel is assigned falsely by some of
the 91 SVMs.

As mentioned above, two different types of roof geome-
tries are of interrest in the ALS dataset — sloped roofs and flat
roofs. While information of the ALS data can be helpful to
distinguish between sloped brick roofs and flat gravel roofs, it
should not faciliate the separation of e.g. sloped brick roofs
and sloped slate roofs. As the one-against-one strategy does not
consider all 14 classes in one step, the cascade can be exploited
to recognize whether the user considers geometry as significant
for each classification step. When separating two roof material
classes with different geometries (sloped vs. flat) the spectral
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domain is fused with the geometric domain by concatenation or
kernel composition. In contrast, when separating similar roof
geometries (sloped vs. sloped or flat vs. flat), the geometric
domain is left out and the spectral domain is used exclusively.
By this, data known for not containing any new information can
be ommitted and training the classifier is better focused in a easy
and straightforward manner. Hence, the model knowledge about
the roof geometry can be brought into classification in a quick
and straightforward manner.

3 DATA PREPARATION AND CLASSES

An image from the city of Karlsruhe, taken by the HyMap sensor
in 2003 with a spatial resolution of 4x4 m provides the hyper-
spectral information. A laserscan with 1x1 m resolution from
2002 delivers geometrical information. A building mask is de-
rived from the first pulse information to indicate buildings and
mask out other objects which do not relate to roofs. The mask
is required as all classification approaches implemented here are
relative SVM approaches. Thus, they have the disadvantage of
also assigning non-building areas —like vegetation or roads— to
roof material classes if there classes are not assigned as training
classes, [Braun, 2010], [Braun et al., 2011]. After classification,
the mask will be used to assign these areas to the rejection class.

3.1 Data Preprocessing

The data of HyMap is resampled to the spatial resolution of the
laser scan, using nearest neighborhood. To reduce computational
cost, and to allow for a later comparison with [Lemp and Wei-
dner, 2004] and [Braun et al., 2011], a 605x987 pixel subset is
chosen which shows the campus of KIT (cf. Fig.1, & Fig.2).

A z-transformation (i.e. normalization by mean and standard
deviation) on each layer is performed to ensure comparability.
A mean-shift segmentation on the first pulse information is per-
formed as entire roof segments have to be classified. Apart from
the first pulse and last pulse information, the gradient and curva-
ture of the first pulse and are computed. This information is used
to distinguish sloped roofs from flat roofs. Hence, six informa-
tion channels are derived from the ALS data. In addition, 126
hyperspectral channels are available, resulting in a feature space
with 132 features.

3.2 Classes of roof materials

Training areas for different roof material classes are assigned.
To ensure comparability with the results already obtained at IPF,
the same classes as in [Lemp and Weidner, 2004] and [Braun et
al., 2011] are defined and training areas for them are assigned.
In [Braun et al., 2011] for each roof material class, only one
training class is assigned. However, this could lead to unnecessar-
ily complicated separation problems as incorporating e.g. bright,
newly tiled brick roofs and dark, weathered brick roofs into the
same class spreads out this class significantly within the feature
space. This may cause overlap with other classes. Hence, un-

Figure 1: Visualization of HyMap subset (R: 17, G: 9, B: 1)
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like in [Braun et al., 2011], each roof material class is divided
into several subclasses. After classification, these subclasses are
agglomerated into the final roof material classes. In Tab.1 the
roof material classes and their colors in the classification results
are indicated. n.SC indicates the number of subclasses for the
respective roof material class.

Table 1: Roof Material Classes

Roof Class | Abbr. | Geometry | nSC | Color | Pollutant
Brick Cl1 sloped 3 PAC
Copper Cc2 sloped 2 Cu/PAC
Gravel C3 flat 2 PAC
Slate C4 sloped 2 —
Zinc G5 flat 3 Zn/PAC
Stone-like Cc6 flat 2 PAC

3.3 Data Fusion and Training

For each training class the spectral and geometric information in
the two domains is derived. Several preliminary and final classi-
fication approaches are carried through. The first one to be em-
phasized here is fusing the information by concatenation. For the
second, one kernel for each of the two domains is calculated and
used for kernel composition to obtain a new kernel as explained
in subsection 2.2. The parameter v is for error handling as it re-
lates to the amount of noise in the training data. As only a small
amount of noise is expected, v = 0.05 is chosen. Both training
and classification are accomplished, using LibSVM 2.91 [Chang
and Lin, 2001] for Matlab.

4 RESULTS AND DISCUSSION

At first, a thourough comparison between the classification meth-
ods used and alternatives are given. Thus, the main assumptions
are evaluated and a final classification strategy is developed. Af-
terwards, a comparison between two data fusion approaches, fol-
lowed by classification using ¥-SVM is presented. At first, data
fusion is performed by simple concatenation. Secondly, kernel
composition is performed for data fusion. Both approaches ex-
ploit the one-against-one cascade to use the information of the
ALS data only for separation between roof material classes with
different geometry (i.e. sloped vs. flat).

4.1 Validity of the Approach

The approach constitutes some major assumptions. The first
one is that ALS data is needed to distinguish the roof material
classes. To prove this, a test on the counter hypotheses is per-
formed by classifying the dataset using only the hyperspectral
information [Lemp and Weidner, 2004]. As Tab.4 reveals, the
accuracies yielded using only the spectral information are lower

Figure 2: Visualization of First Pulse
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than for using both hyperspectral and information of the ALS
data. Hence, the assumption that ALS data should be exploited
can be confirmed although the loss of accuracy when using the
spectral domain exclusively is only moderate. An approach ex-
plicitly based on hyperspectral data could also be followed with
only a slight loss in accuracy. Secondly, the classification prob-
lem is considered to be linear in the original feature space. An-
other important assumption is that a linear kernel (cf. Eq.4) in-
stead of an RBF kernel (cf. Eq.5) can be used. To validate this
assumption, different classifications are carried through using an
RBF kernel. The RBF kernels parameter o is optimized jointly
with v using 5-fold grid search. As Tab.6 reveals, both kernels
produce comparable results. Thus, it is confirmed that the linear
kernel can be used. Therefore, the second assumption of linearity
in the original feature space due to its high dimensionality can
be confirmed as well. Another assumption is, that performing
a z-transformation on the data contributes to higher classifica-
tion accuracies. For each of the three classification approaches
(using only the spectral domain, data fusion by concatenation
and data fusion by kernel composition) classification is carried
through both with and without prior z-transformation. A com-
parison is given in Tab.4. As one can see, classification accu-
racy for all approaches could by raised slightly through prior z-
transformation. Hence, it can be confirmed that z-transforming
the data raises classification accuracy for the given dataset. Fur-
thermore, it is assumed that v-SVM [Schoelkopf et al., 2001]
yields higher classification accuracies than Cost-SVM by [Cortes
and Vapnik, 1995]. Again, a comparison for all approaches is car-
ried through. As Tab.7 shows, v-SVM indeed yields higher ac-
curacies for all approaches. This finding is especially interesting,
as for Cost-SVM, the parameter C' — which can not be estimated
directly — is optimized by 5-fold cross validation search. In con-
trast, the parameter v for the v-SVM approach is simply set to
0.05. From there, the v-SVM approach is recommendable for the
classification of the combined dataset (cf. Tab.4). The most im-
portant assumption, however, is that the one-against-one cascade
should be exploited to use the geometric information selectively
— i.e. when roof material classes with different geometry are to
be separated— instead of using geometric information at each step.
Again, a comparison between both usages is performed. The con-
fusion matrices (cf. Tab. 5) reveal that selective usage yields
higher accuracies, with a certain advantage for the data fusion
approach based on kernel composition. Hence, it can be con-
cluded that information of the ALS data should only be used for
separation of roof material classes with different roof shapes, not
for the separation of roof material classes with equal roof shapes.
and that the one-against-one classification cascade of SVM is a
suitable way of using this information selectively. An alterna-
tive to the one-against-one cascade could be the directed acyclic
graph SVM [Platt et al., 2000]. It uses the same SVM models
as one-against-one but implements a graph based decision strat-
egy. These result lead to the final classification strategy, decribed
below: v-SVM classification with a linear kernel on datasets pre-
processed by z-transformation and information fused by concate-
nation (see Sec.4.2) and kernel composition (see Sec.4.3). The
latter promises the highest classification accuracy.

4.2 Result using Concatenation

Fig.3 shows the classification result, using concatenation for data
fusion and v-SVM as classifier. After classification, non-building
areas —which are also assigned to roof material classes— are
masked out in the result. The final result looks convincing in the
major part of the image. Misclassified segment frequently related
to roof segments with small roof structures like chimneys that
consisted of different materials than the rest of the roof. Some
roof segments are indeed misclassified. A confusion matrix, cal-
culated on the basis of control areas assigned during a field cam-
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Figure 3: Classification Result using Concatenation

paign is given in Tab.2*. The overall accuracy is 83.9% and the k
coefficient is 0.79. Class C2:Copper is the class that yielded the
lowest completeness (CP) and correctness (CR) values. The rea-
son for these low values is confusion with class C1:Brick. Train-
ing took 1.5 minutes and classification took 72 minutes. Hence,
the classification phase being 48 times longer is much more im-
portant under computational considerations, even when classity-
ing only a small subset of the entire image.

4.3 Result using Kernel Composition

Fig.4 shows the classification result after kernel composition. Af-
ter classifiacation, non-building areas are masked out again. The
result is convincing in the major part of the image. As for the
result of concatenation, some misclassifications occur due to roof
structures e.g. made of metal within an area of slate or brick tiles.
Again, a confusion matrix, calculated on the basis of control ar-
eas assigned during a field campaign is given in Tab.3'. The
overall accuracy is 86.4% and the x coefficient is 0.82. Hence,
the accuracy values yielded are higher for the kernel compo-
sition approach. Especially, for the class C2:Copper consider-
ably higher values of completeness and correctness are yielded.
There is much less confusion with the class CI:Brick. Also for
the other classes, equal or even higher completeness and correct-
ness values are achieved. At this point, however, these results
should not be over interpreted but confirmed by further research
efforts. As one can see, the visual results yielded by both data
fusion approaches are quite similar. In Fig.5, green segments re-
fer to buildings where both approaches assigned the same class,
while red segments mark buildings for which the approaches dis-
agree. Considering computational time, the kernel composition
approach has advantages. Training took 0.7 minutes and classi-
fication took 59 minutes. Hence, training is twice as fast than
for data fusion by concatenation. As the time for training is very

*OAA: overall accuracy, r: kappa coefficient, CP: completeness, CR: correct-
ness

Table 2: Confusion Matrix for v-SVM after Concatenation

Figure 4: Classification Result using Kernel Composition

short for both approaches, this advantage in computational ef-
ficiency is neglectable. However, the classification procedure is
around 13 minutes (~18% less computation time) shorter for ker-
nel composition. Keeping in mind, that the subset used here is
only a small subset of the entire scene and that classification time
scales linearly with the number of point to be classified, an as-
sessment of the entire scene would be significantly shorter using
kernel composition. The approach constitutes an improvement
to [Braun et al., 2011] as the overall accuracy could be risen from
70.5% in [Braun et al., 2011] to 86.4% within this report. As
the influence of the kernel function does not explain a significant
increase in accuracy (cf. Tab.6) it has to be concluded that the
increase of accuracy is explained by the splitting into subclasses.
In contrast to [Braun et al., 2011], the roof material classes are
split into subclasses. By doing so, the spreading of the classes
within the feature space is reduced thus faciliating the separation
process. It has to be assumed that splitting the classes explains
the most for the higher classification accuracies.

5 CONCLUSIONS AND FUTURE WORK

Hyperspectral and ALS data are used jointly to classify an urban
dataset into six roof material classes. A comparison for different
data fusion approaches is presented. The classifier mainly used
is the v-SVM proposed by [Schoelkopf et al., 2001]. In the first
place, no data fusion is performed, but the hyperspectral data is
classified exclusively. The classification accuracies yielded are
lower than for the approaches using both hyperspectral and in-
formation of the ALS data — as could be expected. However,
the loss of accuracy which results from using only hyperspectral
data is only a few percent points. This indicates that approaches
exploiting the precise spectral information of the hyperspectral
dataset without ALS data are also feasible. A more significant
loss of classification accuracy has to be expected when using mul-
tispectral data, which — unlike hyperspectral data — is not able

Table 3: Confusion Matrix for v-SVM after Kernel Composition

Control Control
Cl C2 C3 C4 C5 Co6 CR Cl1 C2 C3 C4 C5 C6 CR
Cl 18040 712 | O 0 55 0 95.9 Cl 18040 0 0 0 55 0 99.6
5 C2 0 2591( 0 1804| 0 0 58.9 g C2 0 3303| 0 888 | 0 0 78.8
"§ C3 371 | 98 6216 2705| 121 | O 65.3 "§ C3 371 | 98 6825] 2705 121 | O 67.4
3= C4 1322 0 0 22439 24281 0 85.6 =) C4 13221 0 0 23215 2428| 0 86.0
§ C5 0 0 0 441 | 18007 O 97.6 % C5 0 0 0 441 | 18007 O 97.6
@) C6 0 39 939 | 1613| 324 | 3569| 55.0 @) C6 0 39 330 | 1753] 324 | 3569| 59.3
CP 914 | 753 | 86.8 | 77.3 | 86.0 | 100 CP 91.4 | 96.0 | 953 | 80.0 | 86.0 | 100
OAA| 839 OAA| 86.4
K 0.79 K 0.82
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to compensate the lack of geometric information by high spec-
tral precision. For instance, one would not expect slate roofs
and gravel roofs to be distinguished in a multispectral dataset
without using further information. Before classification, data are
standardized by z-transformation. The overall accuracy yielded
on z-transformed data is higher than the one yielded on non-
standardized data. Due to the high dimensionality of the origi-
nal feature space (126 hyperspectral channels plus 6 information
layers derived from laserscanning) the classification problem is
assumed to be linearly solvable in the first place. Hence, a linear
kernel instead of an RBF kernel is used. A comparison reveals
that this assumption is justified as the accuracies yielded are com-
parable for both kernels. The »-SVM proposed by [Schoelkopf
et al., 2001] instead of the Cost-SVM by [Cortes and Vapnik,
1995] is used. A comparsion attests higher classification accura-
cies to the v-SVM. Two data fusion approaches —concatenation
and kernel composition— are compared. The latter constitutes an
approach specialized on SVMs. It yields higher classification ac-
curacies than concatenation, especially for the class C2:Copper.
To clarify the reasons of the advantage on this class, more re-
search efforts need to be made on different datasets. The differ-
ence in overall accuracy is 2.5 percent points. As an approach us-
ing only hyperspectral information is feasible as well, ALS data is
not indispensable for the given dataset. It has to be assumed that
the differences between the two data fusion approaches should be
more pronounced for datasets and classification problems which
strictly require both information domains. However, the approach
using kernel composition is significantly faster in classification
and equal or better in precision than the result based on concate-
nation. The information on roof geometry is not significant for
all classification steps. The one-against-one cascade allows to
use the geometric domain only for the steps where it is strictly
needed. For the separation of roof material classes with sim-
ilar geometry, this information can be omitted. A comparison
between using ALS data at each step and using ALS data se-
lectively yields higher accuracies for the latter. The information
on geometry can therefore be used selectively. This allows the

Table 4: Influence of z-transformation

Dataset OAA K-Coef.
z-T. no z-T. | z-T. | no 2-T.
Spectral Dom. only | 80.1% | 80.0% | 0.75 0.76
Fusion by Concat. 83.9% | 81.7% | 0.79 0.80
Fusion by Ker.Comp. | 86.4% | 86.1% | 0.82 0.75

Table 5: Influence of selective usage

Data fusion Selective Usage | Usage at each step
OAA | k-Coef. | OAA k-Coef.
Concatenation | 83.9% 0.79 81.5% 0.8
Kernel Comp. | 86.4% 0.82 78.4% 0.72
Table 6: Influence of kernel function
Data fusion Linear Kernel RBF Kernel
OAA | k-Coef. | OAA | k-Coef.
Concatenation | 83.9% 0.79 82.9% 0.79
Kernel Comp. | 86.4% 0.82 85.6% 0.82
Table 7: Influence of SVM type
Data fusion v-SVM Cost-SVM
OAA | k-Coef. | OAA | k-Coef.
One Domain 80.1% 0.75 79.2% 0.78
Concatenation | 83.9% 0.79 81.3% 0.78
Kernel Comp. | 86.4% 0.82 84.2% 0.79
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Figure 5: Agreement of datafusion approaches. Green: same
class label assigned, Red: different class labels assigned

user to bring in model knowledge into the pattern recognition ap-
proach. Although the model knowledge is simply structured in
this approach — it consists only in the decision whether a roof is
sloped or flat — more complex knowledge is also usable with is
approach. In the future, this approach will be extended to graph-
based SVMs [Platt et al., 2000] and use the methodology on dif-
ferent datasets. Furthermore, the advantages of different types of
kernel composition (e.g. multiplication instead of addition) will
be explored and compared.
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