HIGH-RESOLUTION SAR IMAGES FOR FIRE SUSCEPTIBILITY ESTIMATION IN URBAN FORESTRY
Keywords: X-SAR images of Urban Forestry, Fire Susceptibility Map, X-SAR Images segmentation, classification
Abstract. We present an adaptive system for the automatic assessment of both physical and anthropic fire impact factors on periurban forestries. The aim is to provide an integrated methodology exploiting a complex data structure built upon a multi resolution grid gathering historical land exploitation and meteorological data, records of human habits together with suitably segmented and interpreted high resolution X-SAR images, and several other information sources. The contribution of the model and its novelty rely mainly on the definition of a learning schema lifting different factors and aspects of fire causes, including physical, social and behavioural ones, to the design of a fire susceptibility map, of a specific urban forestry. The outcome is an integrated geospatial database providing an infrastructure that merges cartography, heterogeneous data and complex analysis, in so establishing a digital environment where users and tools are interactively connected in an efficient and flexible way.