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ABSTRACT: 
 
Rational Function Model (RFM) is a generic geometric model that has been widely used in geometric processing of high-resolution 
earth-observation satellite images, due to its generality and excellent capability of fitting complex rigorous sensor models. In this 
paper, the feasibility and precision of RFM for geometric modeling of China’s Chang’E-1 (CE-1) lunar orbiter images is presented. 
The RFM parameters of forward-, nadir- and backward-looking CE-1 images are generated though least squares solution using 
virtual control points derived from the rigorous sensor model. The precision of the RFM is evaluated by comparing with the rigorous 
sensor model in both image space and object space. Experimental results using nine images from three orbits show that RFM can 
precisely fit the rigorous sensor model of CE-1 CCD images with a RMS residual error of 1/100 pixel level in image space and less 
than 5 meters in object space. This indicates that it is feasible to use RFM to describe the imaging geometry of CE-1 CCD images 
and spacecraft position and orientation. RFM will enable planetary data centers to have an option to supply RFM parameters of 
orbital images while keeping the original orbit trajectory data confidential.  
 
 

1 INTRODUCTION 

Chang’E-1(CE-1) orbiter, the first lunar probe of China, was 
launched on October 24, 2007. It left lunar transfer orbit on 31 
October and entered a 200km altitude circular lunar orbit on 
November 5. CE-1 successfully completed its mission by 
crashing onto the Moon surface on March 1, 2009. During the 
exploration period, the CCD camera onboard CE-1 acquired 
more than 1000 imagery strips which provided complete 
coverage of the Moon (Ouyang et al., 2010; Li et al., 2010). A 
1:2.5 million scale global image mosaic of the Moon has been 
produced using the CCD images after radiometric and 
geometric processing, map projection, mosaicking and editing 
(Li et al., 2010).  
 
The CE-1 CCD camera is a three line pushbroom camera which 
has a ground resolution of 120m and a swath width of 60km. In 
order to perform 3D mapping from the stereo images, the 
geometric model of the images should be established firstly. We 
have developed a rigorous sensor model for CE-1 based on 
pushbroom imaging principle and the exterior orientation 
parameters derived from spacecraft trajectory (position and 
orientation) data (Peng et al., 2010).  Methods of automatic 
DEM and orthoimage generation, and co-registration of CE-1 
CCD images and laser altimeter (LAM) data, were also 
developed (Di et al., 2010). However, the spacecraft trajectory 
data of CE-1 is not open to public so far, though the CCD 
images and other scientific data have been released for public 
access. 
Rational Function Model (RFM) is one of the generic geometric 
 
 
 

models in photogrammetry and remote sensing to represent the  
transformation between image space and object space. Due to 
its generality and excellent capability of fitting complex 
rigorous sensor models, it has been widely used in geometric 
 
 processing of high-resolution earth-observation satellite images, 
especially when the rigorous sensor models are not supplied 
and internal geometric parameters are not disclosed (Di et al., 
2001). So far, to the best of our knowledge, no study  
on feasibility and application of FRM for extra-terrestrial 
mapping (such as lunar and Mars mapping) has been reported.  
 
In this paper, we investigate the feasibility and precision of 
fitting rigorous sensor model with RFM using CE-1 CCD 
images. At first, the rigorous sensor model is briefly introduced. 
Then the process of generating rational polynomial coefficients 
(RPCs) is described. In the process, vast amount of virtual 
control points are generated based on the rigorous sensor model, 
the RPCs are solved iteratively using a least squares estimation. 
Finally, the precision of the RFM is evaluated by comparing 
with the rigorous sensor model in both image space and object 
space. 
 
 

2 RIGOROUS GEOMETRIC MODEL OF CE-1 CCD 
IMAGERY 

Interior Orientation  

The CE-1 CCD camera is a three line pushbroom camera which  
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is implemented on an area array CCD sensor (1024×1024 
pixels). The actual imaging area is 1024 rows by 512 columns. 
The focal length of the CCD camera is 23.33 mm. While 
imaging, it uses only the 11th, 512th and 1013th rows to 
generate the forward-, nadir- and backward-looking images 
simultaneously in the flight direction (Li et al., 2010). The 
structure of the focal plane of the CE-1 CCD camera is shown 
in Figure 1. 
 
Interior orientation refers to the transformation from the image 
coordinates (columns and rows) to their focal plane coordinates 
centered at the principal point of the image according to the 
calibrated camera interior orientation parameters. The focal 
plane coordinates can be calculated from image coordinates by 
Equation (1) (Peng et al., 2010): 
 
 

 
 

Figure 1. Focal plane frame of the CE-1 CCD camera 
 
 

 

0

0

0

0

( 11)*

( 512)*

( 1013)*

( )*

forward p

nadir p

back p

forward nadir back p

x x pixsize x

x x pixsize x

x x pixsize x

y y y y col pixsize y

= − −

= − −

= − −

= = = − −

       (1) 

 
 
where pixsize stands for the pixel size of the CCD array, which 
is 0.014 mm; col is the pixel position in column direction; (xp, 
yp) are the center position (511.5, 255.5) of the actual imaging 
area; (x0, y0) represent principal point position in the focal plane 
frame; (xforward, yforward), (xnadir, ynadir) and (xback, yback) are focal 
plane coordinates of forward-, nadir-, backward-looking images 
respectively. 

 
2.1 Exterior Orientation  

Exterior orientation refers to the transformation between the 
focal plane frame and lunar body-fixed frame (LBF). It requires 
the exterior orientations parameters (EOPs). Combining interior 
orientation and exterior orientation, the rigorous sensor model 
of CE-1 CCD imagery can be represented as the following 
collinearity equations: 
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where (x, y) are focal plane coordinates of an image point; (X, Y, 
Z) are the corresponding 3D coordinates in LBF; mij (i,j = 1,2,3) 
are the elements of the rotation matrix determined by three 
Euler angles κφω ,, ; are the camera center 

position in LBF. 
),,( OOO ZYX
),,,,,( κφωOOO ZYX  are called EOPs. For 

pushbroom sensors, each image line has a specific set of EOPs. 
 
The original telemetry EOPs of CE-1 were collected at 1 Hz 
frequency, which is much lower than the frequency of the CCD 
camera scanning. Therefore, interpolation of telemetry EOPs is 
necessary to obtain the EOPs of every scan line. In this study, 
Lagrange interpolating polynomial is used. 
 
Given a set of 1k + data points, for example, 0 0( , )x y ,...,  

( , )j jx y ,..., ( , )k kx y ,where no two jx  are the same, the 

interpolation polynomial in the Lagrange form is a linear 
combination as 
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Apparently, all basis polynomials are zero at ix x= exc-

ept ( ) 1i x =� , because it lacks the ix x−  term. It follows 

that ( )i i i iy x y=� , so at each point ix , , showing 

that  interpolates the function exactly (Wikipedia, 2011).  

( )iL x y= i

2.2 

L
 
In our experiment, Lagrange polynomial can fit a curve exactly 
through the known original telemetry data. Through the 
interpolation, the EOPs of each image lines of forward-, nadir-, 
backward-looking images are obtained. Consequently, the 
rigorous sensor models are established for the images. 
 

Space Intersection and Back-projection 

Based on the rigorous sensor model and the known interior and 
exterior orientation parameters of the image scan lines, space 
intersection and back-projection can be implemented easily. 
Given a 3D ground point, the corresponding image point can be 
directly calculated by back-projection using the collinearity 
equations. Given the conjugate points in forward-, nadir-, 
backward-looking images, the corresponding 3D ground points 
can be calculated by space intersection, i.e., least squares 
solution of ground points using linearized collinearity equations. 
 
Image matching is a key technique to find conjugate image 
points from stereo images. We have developed a multi-level 
image matching method in this study. After image 
preprocessing, such as Gaussian filtering and histogram 
normalization, a SIFT algorithm (Lowe, 2004) is applied for 
feature point extraction and matching. Then, a RANSAC 
procedure (Fischler and Boolles, 1981) is performed to 
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eliminate matching outliers (gross errors). Next, a triangulated 
irregular network (TIN)-controlled dense image matching 
method is adopted for dense grid matching (Peng et al., 2010) 
and hundreds of thousands of conjugate points are generated. 
Based on these dense points, 3D ground point can be calculated 
through space interception. Consequently, DEM can be gen-
erated by spatial interpolation using these dense points.  
 
 

3 RATIONAL FUNCTION MODEL OF CE-1 CCD 
IMAGERY 

3.1  Rational Function Model 

In the RFM, image coordinates (x, y) are expressed as a ratio of 
two polynomials which contain ground coordinates (X, Y, Z) as 
shown in Equation 5. 
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Polynomials  have the general form as ( 1, 2,3, 4)iP i and=
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where  and the sum of them are limited by [0, 3], so 
as to describe P(X, Y, Z) as a three-order, 20-term polynomial. 
Plugging Equation (6) into Equation (5) with them, we can get 
the final expression of RFM as follows (Di, 2001): 
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It should be noted that image coordinates (x, y) and ground 
coordinates (X, Y, Z) should be normalized to the range from -
1.0 to 1.0 by their image size and geometric extent, respectively, 
for computational stability and minimizing computational 
errors (Di et al., 2001). 
 
3.2 Rational Polynomial Coefficients (RPCs) Generation 

Generation of RFM parameters, i.e., RPCs, of the CE-1 CCD 
imagery is basically a process of fitting the rigorous sensor 
model with RFM. It is realized by solving RPCs in Equation 7 
using vast number of virtual control points generated from the 
rigorous sensor model. First, grid points are generated in image 
space with a certain interval in x and y directions. Then we 
slice the Z direction into several layers in object space and use 
the rigorous sensor model (Equation 2) to generate 
corresponding virtual ground points. 
 
With known corresponding image and ground coordinates of 

the virtual control points, we can solve the RPCs in Equation 7 
by least squares principle. Since RFM equations are nonlinear, 
they are firstly linearized using Taylor’s theorem. The 
linearized observation equation can be represented as 
 
 

LACV −=                                                                  (8) 
 
 
The corresponding least squares solution is 
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Note that C is the unknown vector that includes all RPCs. 
Equation 8 could be ill-posed because of the high order (i.e., 3rd 
order) polynomials. To avoid possible ill condition, Tikhonov 
regularization is incorporated in the solution. The solution 
equation becomes 
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where h is the regularization parameter and I is the identity 
matrix. 
 
3.3 Space Intersection and Back-projection with RFM  

In a similar way of the rigorous sensor model, RFM can be used 
for space intersection to calculate 3D ground positions from 
conjugate images points in stereo images. Given the RPCs of 
the stereo images, image coordinates of conjugate points, and 
the initial approximations of the ground position, the least-
squares solution of the ground position is obtained iteratively 
using linearized FRM equations (Di et al., 2001). For CE-1 
CCD images, any two of the forward-, nadir-, backward-
looking images can form a stereo pair for space intersection. 
Using 3 images together in space intersection gives best 
accuracy because of redundant observations. Back-projection is 
straightforward. Given the RPCs of an image and the 3D 
coordinates of a ground point, the corresponding image point 
can be directly calculated using Equation 7. 
 
 

4 EXPERIMENTAL RESULTS 

Rainbow bay area is one of the pre-selected landing sites for the 
upcoming CE-3 lunar rover. CE-1 CCD images covering this 
area (centered at 46°N, 30°W) from three orbits (0561, 0562 
and 0563) are used in our experiment. The images of the three 
orbits were acquired on December 25-26, 2007 and each image 
of the whole orbit was taken in about fifty minutes. Each orbit 
includes forward-, nadir-, backward-looking CCD images 
covering from the South Pole to the North Pole. Figure 2 shows 
the forward-, nadir-, backward-looking images acquired from 
orbit 0562 (partial, 2000 lines).  
 

In the experiment, we use 10,000 rows of the forward-, nadir-, 
backward-looking images of the three orbits to check the fitting 
precision of FRM. More than 15,000 virtual control points are 
generated with seven layers in Z direction, and then RPCs for 
each image is generated through least squares solution. The root 
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mean square (RMS) residuals of the fitting are listed Table 1. 
The results show that the FRM can fit the rigorous model very 
well with a precision of 1/100 pixel level in image space 
 
 

     
 
(a) Forward-looking (b) Nadir-looking   (c) Backward-looking 
Figure 2. Partial forward-, nadir-, and backward-looking lunar 
images taken by CE-1 from orbit 0562 
 
 

Orbit 
Number Image RMS x 

(pixel) 
RMS y
(pixel)

Forward-looking 0.02 0.02 
Nadir-looking 0.01 0.02 0561 

Backward-looking 0.02 0.04 
Forward-looking 0.02 0.02 

Nadir-looking 0.01 0.02 0562 
Backward-looking 0.02 0.04 
Forward-looking 0.02 0.02 

Nadir-looking 0.00 0.02 0563 
Backward-looking 0.02 0.04 

 
Table 1.  FRM fitting precision in image space 

 
 

Orbit 
Number 

X-RMS 
(m) 

Y-RMS 
(m) 

Z-RMS 
(m) 

0561 2.80 1.74 4.08 
0562 2.73 1.65 4.10 
0563 2.77 1.69 4.28 

 
Table 2.  RFM precision in object space 

 
In order to evaluate the RFM precision in object space, more 
than 150,000 coordinates of ground points are generated from 
matched conjugate points in forward-, nadir-, backward-looking 
images by space intersection with RPCs and then are compared 
with those generated with the rigorous sensor model. As shown  

in Table 2, RMS differences are less than 5 meters.  
 
Considering the relatively low space resolution of 120 m, the 
RFM fitting precision is satisfactory in both image and object 
spaces. From the above two tables, we can draw a conclusion 
that the attitude of CE-1 lunar probe is stable enough and FRM 
can be used to describe the imaging geometry of CE-1 CCD 
imagery with an accuracy comparable to the rigorous sensor 
model..  
 
 

5 SUMMARY AND DISCUSSION 

Comparing with rigorous sensor model, RFM provides a 
generic and simpler model for geometric processing of orbital 
imagery and will enable planetary data centers to have an 
option to supply RPCs of orbital images while keeping the 
original orbit trajectory data confidential. In this paper, we 
investigated the feasibility and precision of fitting rigorous 
sensor model with RFM using CE-1 CCD images. 
Experimental results indicate that RFM can precisely fit the 
rigorous sensor model of CE-1 CCD images with a RMS 
residual error of 1/100 pixel level in image space and less than 
5 meters in object space.  More comprehensive tests will be 
performed using more lunar and Mars orbital images to confirm 
the feasibility of FRM for geometric processing of planetary 
images.  
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