MULTI-STAGE APPROACH TO TRAVEL-MODE SEGMENTATION AND CLASSIFICATION OF GPS TRACES
Keywords: Acquisition, Data mining, Pattern, Recognition, Classification, GPS/INS, Segmentation, Mapping
Abstract. This paper presents a multi-stage approach toward the robust classification of travel-modes from GPS traces. Due to the fact that GPS traces are often composed of more than one travel-mode, they are segmented to find sub-traces characterized as an individual travel-mode. This is conducted by finding individual movement segments by identifying stops. In the first stage of classification three main travel-mode classes are identified: pedestrian, bicycle, and motorized vehicles; this is achieved based on the identified segments using speed, acceleration and heading related parameters. Then, segments are linked up to form sub-traces of individual travel-mode. After the first stage is achieved, a breakdown classification of the motorized vehicles class is implemented based on sub-traces of individual travel-mode of cars, buses, trams and trains using Support Vector Machines (SVMs) method. This paper presents a qualitative classification of travel-modes, thus introducing new robust and precise capabilities for the problem at hand.