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ABSTRACT:  
 
The paper deals with a new sequential procedure to perform unsupervised LIDAR points classification by iteratively studying 
skewness and kurtosis for elevation and intensity point distribution values. After a preliminary local shape analysis of elevation and 
intensity point distributions, carried out from the original discrete frequencies by a non parametric estimation of the density 
functions, the procedure starts by choosing the category of data (elevation or intensity) to analyse at first: the choice falls on the 
category better showing by a testing procedure a bi or a multi clustering distribution. The first point cluster is identified by studying 
the distribution skewness and kurtosis variations, after removing at each step the largest data values. The selected cluster is 
furthermore analysed by studying higher order moments behaviour of the complementary data category. This makes possible to find 
out potential sub clusters of the original selected one, permitting, in this way, a more effective point classification. Successive 
clusters are identified by applying the same iterative procedure to the still unclassified LIDAR points. For complex point distribution 
shapes or for the classification of large areas, a progressive analysis method, based on the partition of the entire data set into regular 
subsets, is proposed. Some real numerical experiments confirm the capability of the method proposed. The classification total errors 
in the experiments range from a minimum value of 1,2% to a maximum value of 8,9%. 
 
 
 

1. BACKGROUND 

Up to now, a limited number of algorithms has been proposed 
to perform unsupervised point classification by studying the 
behaviour of some statistical parameters of the LIDAR point 
cloud distribution values. Bartels et al. (2006, 2010) have 
introduced a “skewness balancing” algorithm able to separate 
by elevation ground and non ground points, where the first ones 
can belong to both flat or sloped terrains. In another paper Bao 
et al. (2007) considered the kurtosis point distribution values 
analysis, allowing a separation among ground, buildings and 
vegetation. Antonarikis et al. (2008) subdivided the whole area 
into cells of small dimension and for each cell the computation 
of skewness and kurtosis of the points first and last pulses have 
been computed. Final classification results from the 
combination of several parameters. A further improvement of 
the classification process was recently obtained by a combined 
analysis of skewness and kurtosis distribution functions for 
elevation and intensity LIDAR point distribution values (Bao et 
al, 2008; Yunfei et al, 2009; Liu et al, 2009).  
 

As well known from statistics, skewness (sk) is the third 
moment about the mean. Its distribution value represents the 
degree of asymmetry around the mean and is defined as 
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where N is the number of the points of the cloud, xi the 
elevation or the intensity value of the i-th point, µ is the mean 
value of elevation or intensity computable from  
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σ is the standard deviation of all points obtainable from 
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A skewness value of zero indicates a symmetric distribution. 
For elevation data, negative values indicate dominance of 
valleys while positive values show dominance of peaks. 
Kurtosis (ku) is instead the fourth moment about the mean. Its 
value measures the relative flatness or peakedness of the 
distribution about its mean. It can be computed from  
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The normal distribution has a kurtosis equal to 3. Larger values 
indicate a peak distribution, while smaller values than 3 
characterize a valley distribution.  In the mentioned literature, 
skewness and kurtosis are computed every time that the most 
elevated point and the point with the largest intensity values  are 
sequentially removed from the data set. For instance, by 
performing the skewness and kurtosis analysis of the intensity 
sampled data, there is a good probability to well approximate 
the skewness and kurtosis values of a normal distribution in 
case of a homogeneous cluster of data. The same holds for a flat 
terrain in case its elevation values are considered.  
 

For a bi or a multi modal intensity distribution, Gaussian 
parameters values for kurtosis are satisfied at the last part of the 
procedure, when the original multi modal distribution is reduced 
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to a single modal behaviour. For this reason the analysis is 
sequentially carried out for all the sampled LIDAR points in 
order to identify all the potential clusters.  Let’s consider the 
example reported in the Fig. 1a (red square). It can be noted the 
presence of  ground points with homogeneous intensity and 
some darker vegetation points. The diagrams of the skewness 
and kurtosis values are reported in Fig. 1b. 
 

 
Figure 1a. Example of an area with homogeneous  

ground points intensity and darker vegetation points. 
 

 
Figure 1b. Skewness and kurtosis values  after removing at each 
step of the procedure the higher intensity values (see Fig. 1a). 

 
It is possible to note how during the running steps (cycles), 
when the ground intensity values are successively removed, 
skewness and kurtosis values continuously change. When 
skewness is zero and kurtosis presents the minimum value, the 
distribution is symmetric and the same number of points is 
expected for the two different clusters. At this point skewness 
and kurtosis start raising and kurtosis reaches a local maximum 
(equal to 3) when vegetation points are only present. This fact is 
also verified by a local maximum of skewness, confirming the 
only presence of vegetation points belonging to a unique cluster. 
As suggested by Liu et al (2009) this point separates ground and 
vegetation. Vegetation points are on the right side (see Fig. 1b) 
while ground points are on the left side. This behaviour is 
mainly true for intensity data, not at all for elevation data. In 
this last case the object geometry deeply conditions the 
skewness and kurtosis values. As said before, negative 
skewness values indicate dominance of valleys while positive 
values show dominance of peaks. Anyway, also in this case it is 
possible to identify clusters of homogeneous points. This can be 
easily verified from the example reported in Fig. 2a where two 
different clusters of LIDAR data are shown. They represent 
ground points and vegetation (white points). 
 

 
Figure 2a. Example of two geometrical clusters 
(ground and vegetation) differently coloured. 

 
Analyzing the skewness and the kurtosis of the sequential 

procedure, when all the vegetation points are removed, the two 
curves become and remain stable till the end of the process (Fig. 
2b). Similar results have been also provided by Liu et al (2009). 
 

 
Figure 2b. Skewness and kurtosis values  after removing at each 
step of the procedure the higher elevation values (see Fig. 2a). 

 
 

2. THE PROPOSED PROCEDURE 

The sequential procedure allows to alternatively use the most 
effective values between intensity and elevation for classifying 
an homogeneous cluster of points. If the graph of the 
distribution is such to prefer the intensity values (pronounced bi 
or multi modal distribution), from skewness and kurtosis 
behaviour analysis, the last part of the distribution values will 
be classified as in Fig 1b. Points located at the right side of the 
kurtosis local maximum are homogeneously classified, while 
points located at its left part remain unclassified. A similar 
approach is still valid if the point classification is carried out for 
the elevation. Points satisfying for the last part of skewness and 
kurtosis function values a local flat condition are 
homogeneously classified, while the others remain  unclassified. 
The same procedure can be applied again to the points just 
classified, or not yet classified, using the complementary data 
category; i.e. the intensity analysis is applied to the data already 
classified by elevation and vice versa. The mixed procedure 
allows to identify further sub classes, within the already 
classified ones, or allows to perform a reliable classification of 
the points still unclassified. 
 

A shape analysis of the point elevation and intensity continuous 
distributions is carried out at first. A non parametric estimation 
of the probability density functions can be obtained by a 
convolution process of a chosen kernel applied to each sampled 
value (e.g. Epanechnikov, 1969). Given a data set (x1, x2, …, xn) 
sampled from a distribution having an unknown density 
function f, the problem is to estimate the shape of this function f 
from the following relationships: 
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where "�� #⁄ �  is the kernel, a non negative density function 
with integral equal to 1; h > 0 is a real positive parameter 
defining the size of the sampling class (the default value is 100). 
Symmetrical density functions, with respect to the origin, are 
usually applied (a normal function was applied in this case). 
The procedure chooses the category of data (elevation or 
intensity) to analyse at first: the choice falls on the category 
better showing a bi or a multi modal distribution. If the clusters 
are totally disjoined, the problem does not exist. If this is not the 
case, further analyses are be carried out.  
 

Hartigan J.A. and Hartigan P.M. (1985) proposed to apply the 
dip test to measure multimodality in a sample by the maximum 
difference, over all sample points, between the empirical 
distribution function and the unimodal distribution function that 
minimizes that maximum difference. More recently, profile 
analysis was carried out by applying different strategies like the 
Bayesian Information Criterion (BIC) score (e.g. Yeoung et al, 
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2001) and the variational Bayesian approach (e.g. Teschendorff 
et al, 2005). Teschendorff et al (2006) proposed to integrate to 
the previous models the analysis of the kurtosis. They showed 
that in case of a bimodal distribution, a mixture of two 
approximately equal mass Gaussians must have a kurtosis value 
less than 3, whereas, in case of highly unequal masses, the 
kurtosis must be greater than 3. They also found out a 
relationship among kurtosis, the standardized separation 
between the two clusters and the minor cluster mass (in 
percentage of total). Practically, comparing two distribution 
functions, the best seems to be the one with the kurtosis value 
much more less than 3. 
 

According to what explained above, the iterative procedure can 
be summarized by the following five sequential main steps: 
1. Non parametric estimation of the probability distribution for 

elevation and intensity point values. 
2. Choice of the data category to start by testing multimodality 

of the respective probability distributions. 
3. Skewness and kurtosis variation analysis following the point 

removal and identification of a significant point cluster. 
4. Analysis of the selected cluster by the complementary data 

category. Identification of potential sub clusters. 
5. Go to point 2. and repeat the process for the rest of the data. 
 

The performance of this sequential procedure has been verified 
by some experiments, for different classification conditions, 
onto an aerial LIDAR survey of a municipality near Udine. 
 
 

3. SOME EXPERIMENTS 

In the following, the results of two experiments are reported, 
evaluating at first the category of data to start, i.e. non calibrated 
intensity or elevation. Thanks to the mixed sequential method, 
the classes obtained from the first classification run have been 
furthermore subdivided. Data are relative to a strip of the aerial 
laser scanning survey of the municipality of Tavagnacco, North 
of Udine (Italy), carried out in 2007 with a Leica ALS50 sensor. 
Forty strips have been acquired at a flight height of 1000 m with 
a point density around 12 pts/sm. A manual point classification 
has been previously carried out by the program MARS Explorer 
6.1; four target classes have been manually identified: ground, 
street, building, vegetation and other objects (i.e cars). 
 
3.1. First experiment. The experiment is related to one of the 
main applications of the laser points analysis, that is road 
extraction. A small area of the municipality of Tavagnacco 
(UD), crossed by the highway, is taken into account (Fig. 3). 
 

 
Figure 3. Intensity image of the area of the first experiment. 

 

 
Figure 4. (a) Intensity distribution function and (b) Elevation 

distribution function for the points of the first experiment. 

By analyzing the distribution functions both for intensity (Fig. 
4a) and for elevation (Fig. 4b), it is possible to see how it is 
really hard to clearly distinguish some elevation point clusters, 
while there exists a clear distinction for what concerns the 
intensity. This is confirmed by the values of the dip test that 
furnishes 0,0166 for elevation and 0,0543 for intensity. Thus the 
choice falls on the computation of skewness and kurtosis for the 
intensity values obtaining the graph reported in fig 5. 
 

 
Figure 5. Skewness and kurtosis behaviour for the intensity 

values of the first experiment. 
 
The decision is to classify the points in correspondence of the 
maximum value of kurtosis, where a peak value of skewness is 
also present (cycle 206), obtaining the classification of Fig. 6a. 
 

  
Figure 6. (a) Point intensity classification. (b) Distribution 

function for the elevation values of the points classified in red. 
 
How it was logical to expect, the largest part of the points 
belonging to the asphalted area are correctly classified, more 
some points belonging to vegetation (upper right part of Fig. 6a) 
and some sparse ground points. To all these points a provisory 
classification label was assigned, while the points not yet 
classified (gray in Fig. 6a) were considered unclassified. 
The elevation analysis was then applied to the red points in Fig. 
6a, obtaining the graph in Fig. 6b. 
It seems evident that is possible to separate the points belonging 
to the small cluster at height 187 m, from those contained in the 
range 188 m – 191 m. Computing again the skewness and 
kurtosis coefficients for such points, considering the elevation 
values, the following behaviour is obtained (Fig. 7). 
 

 
Figure 7. Skewness and kurtosis values for elevation of the 

points classified in red in Fig. 6. 
 

It was decided to classify the points according to the elevation 
following the cycle 2845, in correspondence of a local flatness 
of the kurtosis. The result makes possible to extract from the  
red points of Fig. 6a those belonging to the terrain (Fig. 8). 
 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-5/W12, 2011
ISPRS Calgary 2011 Workshop, 29-31 August 2011, Calgary, Canada

3



 
Figure 8. Height classification of the red 

 
4.2 Second experiment. This experiment represents a very 
significant synthesis of real situations (see 
the presence of ground, vegetation, road and of part of the roof 
of a building, besides some disturbing elements such as cars and 
the parking place (with intensity value similar to the asphalt).
 

Figure 9. Particular by intensity of the area interested by the 
second experiment. 

 
Analysing the point distribution by intensity and by elevat
(Fig. 10a, Fig. 10b), it is possible to see in the graph of the 
elevations the  presence of  more than two cl
graph of intensities there are two classes partially overlapped.
 

Figure 10. (a) Intensity distribution function and (b) 
distribution function for the points of the second

 
According to these results, it was deci
classification process according to the elevation values 
 

Figure 11. Skewness and kurtosis behaviour for the point
elevation values  of the second experiment

 
From the kurtosis behaviour it is possible to clearly distinguish 
a slip in correspondence of the cycle number 
removing of the points belonging to the roof, and the successive 
drop around the cycle 2450 due to a series of disturbing points 
(vegetation, cars). It is evident  that the first significant drop 
may be seen in Fig. 10 could be avoided as the roo
totally isolated. The analysis could be carried out only for 
vegetation, cars and ground points. The authors reported a 
complete analysis to show the readers the skewness and k
behaviour for all the data set. According to these considerations, 
the authors decided to classify the points starting from the cycle 
2856 (flat area of the kurtosis), recognizing
ground points (red) from all the others located over it (Fig
 

 

red points in Fig. 6a. 

This experiment represents a very 
of real situations (see Fig. 9); we can see 

, vegetation, road and of part of the roof 
disturbing elements such as cars and 

the parking place (with intensity value similar to the asphalt). 

 
the area interested by the 

Analysing the point distribution by intensity and by elevation 
), it is possible to see in the graph of the 

elevations the  presence of  more than two classes, while in the 
partially overlapped. 

 
tion and (b) elevation 

second experiment. 

According to these results, it was decided to start the 
classification process according to the elevation values (Fig.11). 

 
Skewness and kurtosis behaviour for the point 

experiment. 

sible to clearly distinguish 
slip in correspondence of the cycle number 1739 due to the 

removing of the points belonging to the roof, and the successive 
due to a series of disturbing points 

at the first significant drop that 
could be avoided as the roof points are 

The analysis could be carried out only for 
vegetation, cars and ground points. The authors reported a 

the skewness and kurtosis 
According to these considerations, 

the authors decided to classify the points starting from the cycle 
recognizing the majority of the 

points (red) from all the others located over it (Fig. 12). 

Figure 12. Point classification by elevation for the second
experiment.

 
Then, it was decided to classify again the ground
proceeding with the intensity values, with the aim
points belonging to the road. Fig. 1
the ground points distribution analysed by
 

Figure 13. Distribution function of the intensity values for the 
ground points of the second experiment.

 
After performing the computation of skewnes
indexes, the behaviour reported in 
 

Figure 14. Behaviour of skewness 
values of the ground points

 
The points are classified according to the cycle 15
correspondence of a local maximum of kurtosis. In this
was possible to separate the points belonging to the road and to 
the near parking area (see Fig. 15).
 

Figure 15. Classification by intensity of the 
 

Points not yet classified are now 
distribution is evaluated. Fig. 16a
two partially overlapping families can be distinguished. Fig
16b instead reports, the point elevation distribution that
evidence two distinct main clusters, one around 201 m, another 
one around 211 m. 
 

 
tion by elevation for the second 

experiment. 

cided to classify again the ground points 
nsity values, with the aim to identify the 

s belonging to the road. Fig. 13 reports the behaviour of 
analysed by intensity. 

 
Distribution function of the intensity values for the 

of the second experiment. 

the computation of skewness and kurtosis 
the behaviour reported in Fig. 14 was obtained. 

 
skewness and kurtosis for the intensity 

values of the ground points. 

The points are classified according to the cycle 153, in 
cal maximum of kurtosis. In this way it 

possible to separate the points belonging to the road and to 
. 

 
. Classification by intensity of the ground points. 

 taken into account and their 
a shows the intensity values: 

families can be distinguished. Fig. 
instead reports, the point elevation distribution that put in 

main clusters, one around 201 m, another 
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Figure 16. (a) Intensity distribution function and (b) elevation 

distribution function for the unclassified points of Fig. 12. 
 
Of course, the cluster relative to a mean elevation of 211 m 
corresponds to the roof points while the other cluster considers a 
small residual number of ground points and disturbing points 
close to the ground, like vegetation, cars and a ramp. 
According to these results, it was decided to compute the 
skewness and kurtosis to the elevation values of the unclassified 
point cluster, neglecting the roof points (Fig 17). 
 

 
Figure 17. Behaviour of skewness and kurtosis for the 

elevations of the unclassified points, neglecting the roof points. 
 
According to the behaviour (Fig. 17), it was decided to classify 
the point in correspondence of the cycle 778, obtaining the 
result reported in Fig. 18. 
 

 
Figure 18. Classification according to the skewness and kurtosis 

values as in Fig. 17. 
 
In this figure it is possible to immediately see the roof coloured 
in pink, corresponding to the point cluster with a mean elevation 
of 211 m, and some small red areas representing residual 
ground points, not completely identified at the previous iteration 
(see Fig. 12), and the points of the ramp. In this way, it was 
possible to separate the roof of the building from the residual 
ground points, the ramp and a series of disturbing points relative 
to the cars and low vegetation. 
 
 

4. EXTENSION TO COMPLEX SITUATIONS 

The classification method here proposed works well for small 
areas, where the presence of only a few modal distribution 
values can be expected for intensity and elevation. The method 
becomes prohibitive when applied to large, not homogeneous 
and complex areas, where a wide multi modal behaviour could 
be present for intensity and elevation values.  
This is the reason for which the classification procedure was 
thought as a progressive multi analysis method, where the 
whole area is subdivided into regular sub areas and for each of 

these the interactive classification is carried out. Some first 
experimental results confirm the extendibility of the interactive 
classification method to complex situations. 
 

 
Figure 19. Example of a point classification for a complex area. 
 
The experiment was carried out for the complex area reported in 
Fig. 19. The area is characterized by two flat parts, located at 
different height, connected by a sloped terrain covered by trees 
and other kind of vegetation. 
 

 
Figure 20. First subdivision of the entire area in four parts. 

 
The whole area was subdivided into four zones (Fig. 20) and for 
each zone the intensity and the elevation distribution values 
were computed (see Fig. 21). According to the distribution 
results of the zones 1 and 3, it was decided to furthermore 
divide these zones  in four parts. 
 

 
Figure 21. Distribution functions for intensity and elevation for 

each of the four main areas. 
 
Proceeding in this way, that is after having analysed the shape 
of the distribution functions for intensity and elevation,  the 
whole area was finally subdivided according to the scheme 
reported in Fig. 22. 
 

 
Figure 22. Final subdivision of the entire area. 

 
Performing the skewness and kurtosis analysis for elevation and 
intensity of each of the unitary zones, the result of progressive 
and interactive classification is finally reported in Fig. 23. 
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Figure 23. Final classification result. 

 
The performance of the algorithm is measured by comparing the 
classifications against the same referenced data obtained by a 
manual classification with the program MARS Explorer 6.1. 
The total error (i.e. number of misclassified points as a 
percentage of all the points) results equal to 8,9 %. Type I error 
(i.e. number of misclassified ground points as a percentage of 
all the ground points) corresponds to 4,8%, while type II error 
(i.e. number of misclassified vegetation points as a percentage 
of all the vegetation points) is equal to 22,0%. According to 
these preliminary results it seems that the algorithm works very 
well for filtering ground points, also for heavily vegetated 
slopes, that, according to some results reported in Sithole and 
Vosselman (2005) are not usually correctly classified with 
standard packages. In any case, the II type error value would be 
significantly reduced in case of buildings and other kind of 
man-made objects. The error values obtained in the three 
experiments are summarized in Table 24. 
 

 First exp. Second exp. Complex area 
Total error 5,6% 1,2% 8,9% 
Type I error 6% 0,4% 4,8% 
Type II error 20% 0,7% 22% 

Table 24. Error values in the three experiments. 
 
 

5. CONCLUSIONS 

The paper proposes a new LIDAR point classification method 
based on the sequential skewness and kurtosis analysis of 
elevation and intensity point distribution values, after removing 
at each step of the process the largest data values as suggested 
by Liu et al. (2009). After a preliminary shape analysis of 
elevation and intensity point distribution, the new procedure 
starts by choosing the category of data showing a significant bi 
or multi clustering distribution. The method extracts the first 
data cluster that is furthermore analysed by studying skewness 
and kurtosis behaviour of the same points belonging to the 
complementary data category. This makes possible to iteratively 
find out potential sub clusters of the original selected one. 
Successive clusters are identified applying the same mixed 
procedure to the unclassified LIDAR points, sequentially 
avoiding those points classified at the last iteration. 
A progressive multi analysis extension of the proposed method 
was also proposed for performing point classification in 
complex or large areas. Some real numerical experiments 
confirm the good applicability of the method also for ground 
point filtering in case of  vegetated slopes. 
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