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ABSTRACT: 

 

Automatic processing and object extraction from 3D laser point cloud is one of the major research topics in the field of 

photogrammetry. Segmentation is an essential step in the processing of laser point cloud, and the quality of extracted objects from 

laser data is highly dependent on the validity of the segmentation results. This paper presents a new approach for reliable and 

efficient segmentation of planar patches from a 3D laser point cloud. In this method, the neighbourhood of each point is firstly 

established using an adaptive cylinder while considering the local point density and surface trend. This neighbourhood definition has 

a major effect on the computational accuracy of the segmentation attributes. In order to efficiently cluster planar surfaces and prevent 

introducing ambiguities, the coordinates of the origin’s projection on each point’s best fitted plane are used as the clustering 

attributes. Then, an octree space partitioning method is utilized to detect and extract peaks from the attribute space. Each detected 

peak represents a specific cluster of points which are located on a distinct planar surface in the object space. Experimental results 

show the potential and feasibility of applying this method for segmentation of both airborne and terrestrial laser data. 

 

1. INTRODUCTION 

Laser scanning is considered as a leading technology for the 

acquisition of high density three-dimensional spatial 

information. Due to the variety of 3D objects and massive 

amount of points, extraction of valuable spatial information 

from 3D laser scanning data is difficult and time consuming.  

Segmentation is the fundamental step in information extraction 

from 3D laser point clouds. The objective of the segmentation 

process is to cluster points with similar attributes into 

homogeneous regions and introduce some level of organization 

to the data before the extraction of useful information. Many 

methodologies have been suggested for the segmentation of 3D 

laser data in the past decade, which are generally categorized in 

three classes: region growing, model fitting methods, and 

clustering of attributes.  

The region growing method proposed by Besl and Jain (1988) 

includes two steps: identification of the seed points and growing 

them based on predefined criteria such as proximity of points 

and planarity of surfaces. Several research efforts proposed 

improvements to the functionality of the region growing 

segmentation. Tovari and Pfeifer (2005) introduced a region 

growing segmentation method for airborne laser data. They 

used the estimated normal vector for each point and its distance 

to the growing plane as the similarity criteria for growing the 

seed point. Rabbani et al. (2006) utilized the surface roughness 

to group points belonging to the same surface. Pu and 

Vosselman (2006) proposed a region growing method for 

terrestrial laser data based on proximity of points and global 

planarity criteria. These methods are highly dependent on 

selected seed points and errors in defining these points will 

affect the segmentation process (Besl and Jain, 1998).   

The model fitting methods, which are developed based on 

fitting geometric primitive shapes, can be applied for 

mathematical representation of planar surfaces. The points 

which are confirmed by the mathematical representation are 

grouped as one segment. A well-known algorithm based on the 

model fitting approach is the RANdom SAmple Consensus 

(RANSAC) proposed by Fischer and Bolles, (1981). This 

algorithm was applied for automatic processing of point cloud 

with the aim of 3D building modeling (Tarsh-Kurdi et al., 

2007). The main shortcoming of model fitting approaches is 

their inefficiency and spurious segmentation results when 

dealing with different point cloud sources (Filin, 2002). 

The segmentation method based on clustering of attributes is a 

robust approach for the identification of homogenous patterns 

in the data. This method mainly comprises two processes: 

attribute computation, and clustering the data based on the 

computed attributes. Since this method is highly dependent on 

the quality of derived attributes, they should be computed 

precisely to produce the best separation among different classes. 

These techniques generate a voting scheme in the attribute 

space which is constructed using an accumulator array. The 

dimension of this accumulator array is dependent on the number 

of the utilized attributes for clustering. Vosselman and Dijkman 

(2001) used the principal of the Hough transform (Hough, 

1962) for segmentation of planar surfaces in a 3D laser point 

cloud. In this method, each laser point defines a plane in the 3D 

attribute space. So, the laser points on the same planar surface 

will intersect at the position in the attribute space that 

corresponds to the slopes and distance of the planar surface. 

Filin and Pfeifer (2006) introduced a segmentation method 

based on the normal vectors derived using a slope adaptive 

neighbourhood. They used the slopes of the normal vector in 

the X and Y directions and height difference between the point 

and its neighbourhood as the clustering attributes. This height 

difference attribute was also used to guarantee the distinction 

between parallel planes, which share the same normal vector 

slopes. Biosca and Lerma (2008) suggested a fuzzy clustering 

approach in combination with a similarity-based cluster 

merging for segmentation of a terrestrial laser point cloud. Kim 

et al. (2007) proposed a method for segmentation of planar 
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patches in 3D laser data. They used the magnitudes of surface 

normals derived from two defined origins as the clustering 

attributes. The two origins should be located in a way that 

minimizes the risk of ambiguity. The segmentation methods 

based on clustering attributes are efficient and flexible for the 

identification of homogeneous regions in the data. The major 

drawbacks of these methods are lack of computational 

efficiency when dealing with multidimensional attributes for a 

massive amount of points and their dependency on the 

neighbourhood definition and the local point density. 

Extraction of man-made structures is of great importance in 3D 

laser data processing. These structures usually comprise 

multiple planar surfaces which should be segmented within data 

before feature extraction. So, this paper will outline an 

alternative approach for the segmentation of planar patches 

based on cluster analysis in attribute space. Figure 1 shows the 

main stages of the proposed methodology. 

 
Figure1. Proposed methodology 

This paper is organized as follows: Section 2 describes the 

organization of 3D laser data using kd-tree structure, the 

process of neighbourhood definition based on the local point 

density and physical shape of surfaces, and classification and 

grouping of laser data based on defined neighbourhood system. 

Section 3 presents the suggested approach for segmentation of 

3D laser point cloud which is essentially based on clustering the 

computed attributes. Section 4 provides the experimental results 

of the proposed method. Finally, section 5 summarizes the main 

achievements reached in this work. 

2. ADAPTIVE NEIGHBOURHOOD DEFINITION AND 

POINT CLASSIFICATION 

The original laser scanner point cloud does not provide explicit 

information about the distribution of points; therefore, it is 

necessary to structure the irregular laser point cloud, define the 

relationship between points and then search for the nearest 

neighbouring points before processing them. In this paper, a kd-

tree data structure is used for the organization of 3D laser data 

and computation of the local point density. The adaptive 

cylinder neighbourhood for each point is then established based 

on the local point density and physical properties of the object 

surface.   

Finally, 3D laser data are classified and grouped into rough and 

planar surfaces based on the adaptive neighbourhood definition. 

2.1 Structuring the laser point cloud based on kd-tree 

structure 

The performance of the clustering based segmentation methods 

highly depends on the computed attributes for individual laser 

points. These attributes are derived based on the defined 

neighbourhood for each point. In order to improve the 

efficiency of the neighbourhood definition process, some level 

of organization should be introduced for the 3D laser data 

before further processing.  

The kd-tree data structure, which was recommended by 

Freidman et al. (1977), is a strategy for sorting and organizing a 

set of points. This structure is constructed by recursive 

subdivision of the three-dimensional space. The splitting 

strategy used in this paper subdivides the space along the 

longest extent of the data in the X, Y, or Z direction. The 

splitting plane will be perpendicular to the chosen extent 

direction and pass through the point with median coordinate 

along the selected extent. The recursive splitting procedure in 

three dimensions proceeds until all the points are structured in 

the kd-tree. This kind of space-partitioning process makes the 

points being stored in a balanced tree (Moore, 1991). The main 

advantage of such a structure is faster and more efficient 

searching of the nearest neighbours. 

2.2 Neighbourhood definition  

Neighbourhood definition is the primary step of 3D laser data 

processing. This definition is a rule that determines the 

neighbours of each point, and as a result has a great impact on 

the computed attributes for laser data segmentation. 

Different neighbourhood definitions are being used for laser 

scanning data presently. Triangulated irregular network (TIN) is 

a neighbourhood system which is defined based on the 

proximity of points in 2D space (projection of the points on XY 

plane). The major shortcoming of this neighbourhood definition 

is that points belonging to different physical objects might be 

included in the same neighbourhood.  

The other type of neighbourhood definition is based on 

proximity of points in 3D space (Euclidian distance between 

points). This definition, which is called spherical 

neighbourhood, corresponds to a sphere with a certain radius 

whose centre coincides with the point in question (Lee and 

Schenk, 2001). All points within the sphere are considered as 

neighbouring points. While using the 3D distance among 

investigated points, this definition doesn’t consider the physical 

shape of objects; therefore, different physical surfaces may be 

included in the same neighbourhood. 

The shortcomings of aforementioned neighbourhood systems 

mandate the development of an alternative neighborhood 

definition which takes proximity of points in 3D space, physical 

shapes of associated surfaces (Filin and Pfeier, 2005) and local 

point density parameters into account. Most of the existing 

neighbourhood definitions do not consider the varying point 

densities in laser datasets within the segmentation process. The 

main objective of this research is the development a 

segmentation approach which is suitable for both airborne and 

terrestrial laser data with varying point densities. 

In order to compute the local point density (LPD) parameter for 

neighbourhood definition, a bounding sphere is defined which 

includes K nearest neighbours of the point in question. K is the 

number of points which are utilized for the local point density 

computation and assumed to be coplanar. This parameter is 

determined based on the source of the laser data. These 

neighbouring points are then sorted based on their distances to 

the query point. The radius of this bounding sphere, rk, is the 

distance between the point in question and its Kth nearest 
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neighbour. So, the local point density (number of points/m2) is 

calculated using this formula: 

                                    
2

Kr

K
LPD

π
=

                                (1) 

The adaptive cylinder neighbourhood of a point is then 

determined as follows: At first, a spherical neighbourhood is 

defined for the point of interest with radius: 

LPD

n
r

SN
×

=
π

                                 (2) 

In which, n is the reliable number of the points for definition of 

a plane while considering the existence of the outliers, and LPD 

is the local point density. 

Afterwards, the best fitted plane for the points in the spherical 

neighbourhood is computed using an iterative plane fitting 

process based on Least squares adjustment. The parameters of 

the best fitted plane are refined in the Least squares adjustment 

process by assigning the proper weight to the points based on 

their normal distances to the computed plane. Finally, the 

adaptive neighbourhood is defined by determination of the 

points whose normal distances to the best fitted plane are less 

than half of the cylinder height.  The cylinder height is an 

adaptive parameter which is defined proportional to the 

expected level of noise (σ) in different datasets.  

The schematic concept of the adaptive cylinder neighbourhood 

system is illustrated in Figure 2. 

 
Figure 2. 2D representation of Adaptive cylinder 

neighbourhood definition 

The defined neighbourhood system is implemented based on the 

local point density, 3D relationships between the points, the 

local surface trend and the expected level of noise in the data; 

so, it is suitable for both terrestrial and airborne laser datasets 

with varying point density and different surface slopes. 

2.3 Classification and grouping of points 

In order to speed up the process of the attributes computation, 

the dataset should be classified and grouped into rough and 

planar surfaces. This is carried out based on the defined 

adaptive cylindrical neighbourhood using a classification 

measure which is calculated as: 

N o. of  pnts in the cylindrical neighborhood 
Classification_Measure

N o. of  pnts in the spherical neighborhood 
=

                                                                                                        

                                                                                               (3) 

If this measure is more than a pre-defined threshold, the point is 

considered as a part of planar surface; otherwise it is classified 

as a part of rough surface. Afterwards, a region growing 

algorithm is employed to group the classified points; in which 

the seed points are chosen based on the order of points in the 

established kd-tree. The selected seed points are grown by 

checking the proximity of neighbouring points in the 3D space. 

The outcomes of this process are the groups of points which 

belong to planar surfaces. 

3. SEGMENTATION 

The segmentation is generally defined as the abstraction process 

of a laser point cloud into distinct subsets of spatially connected 

points with common attributes. The proposed techniques for 

segmentation of laser points mainly differ in the methods or 

criteria which are being used for measuring the similarity 

among a group of points. In this research, a set of attributes are 

computed to check the similarity of points in the parameter 

space. Consequently, the distinct segments can be obtained by 

clustering the points with similar attributes. The implemented 

methodology for planar patch segmentation of 3D laser 

scanning data will be explained in detail in the following 

section.  

3.1 Attribute computation 

The characteristic attributes for planar patch segmentation are 

computed based on the adaptive cylindrical neighbourhood 

defined for each point as shown in section 2.2. To compute the 

segmentation attributes, the best fitted plane for each point in 

each planar group should be determined using the iterative 

plane fitting process. Since, both airborne and terrestrial laser 

date are dealt with in this research and these datasets comprise 

planar surfaces with different slopes, a slope-intercept 

representation of 3D plane is used firstly to determine the 

suitable form of the plane for each point. The quality of fitting 

to slope-intercept representation forms can be used as a measure 

for selection of best representation. The representation form 

with the best fitting quality is selected as the most convenient 

plane for the neighbouring points. The parameters of the best 

fitted plane are then used for computation of segmentation 

attributes. 

In this research, the coordinates of the origin’s normal 

projection on the best fitted plane derived for each point (X0, Y0, 

Z0) are utilized as the segmentation attributes. These attributes 

are computed based on the parameters of the best fitted plane 

for each point in each group. A 3D accumulator array is then 

constructed based on the defined attributes for efficient 

clustering of the planar patches in the attribute space. 
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Figure 3. Computed attributes for the segmentation of planes 

with different slopes and parallel planes 

As shown in Figure 3, the major preference of the derived 

attributes is their uniqueness when clustering planes with 

different slopes and parallel planes in object space. 

3.2 Clustering of laser point cloud in attribute space 

Once the segmentation attributes are computed and the 

accumulator array is constructed in the attribute space, a 

discretization approach should be utilized for the detection and 

extraction of the accumulated peaks in the attribute space. 
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These peaks will represent distinct planar patches in the object 

space. 

Available discretization methods tessellate the attribute space 

into the cells whose size is determined based on the peaks’ 

extent in attribute space. The main disadvantage of these 

methods is their large storage and computational requirements 

when dealing with large accumulator arrays. In this paper, a 

new method is proposed for finding the peaks in the attribute 

space. This approach tries to improve the computational 

efficiency of this process by avoiding unnecessary tessellations 

of attribute space.  

This method, which is developed based on octree space 

partitioning, is a two-step searching procedure. This algorithm 

tries to find the approximate peak location firstly (coarse peak 

searching), and then detect and extract the precise peak location 

(fine peak searching). In the first step, the attribute space of all 

of the points in each group is defined and divided into eight 

equal sub-spaces using an octree space partitioning structure. 

The splitting process proceeds for sub-spaces including 

maximum number of attribute points in each stage until the 

defined sub-space is covered with the sphere whose radius, r, is 

a function of minimum angular separation between detectable 

planes and minimum distance between distinct parallel planes 

(Figure 4): 

       

∆
α

r

 
Figure 4. 2D Representation of peak area in attribute space 

Based on the derived value for r, the coarse peak searching 

process proceeds until: 

           

3

)(tan2
)max(

222
dd

sizespacesub
∆+∆

<−−
α             (5) 

Where d is the distance of the selected sub-space’s center 

(shown in green color in Figure 5) to the origin, ∆α is the 

minimum angular separation between detectable planes and ∆d 

is the minimum distance between distinct parallel planes. The 

selected sub-space which contains the maximum number of the 

attribute points is considered as the approximate peak location. 

Figure 5 shows the procedure of coarse peak searching.  

 
Figure 5. 2D representation of coarse peak searching procedure 

for finding the approximate peak location 

In order to precisely extract a peak, a spherical neighborhood is 

defined for all the attribute points which are included in the 

final selected sub-space whose radius equals r (Figure 6). The 

spherical neighborhood shown in red in Figure 6 is identified as 

the peak location.  

       
   Figure 6. 2D representation of fine peak searching procedure 

Once the first peak is detected, the points in the object space 

whose attributes belong to the peak area are recorded as one 

cluster and their attributes are removed from the accumulator 

array. Other peaks are detected using the same procedure until 

the number of remaining points in the accumulator array is less 

than a predetermined number of points. This threshold defines 

the size of minimum detectable cluster. A region growing 

algorithm is then applied to differentiate the coplanar planes 

which are disjoint in the object space. 

4. EXPERIMENTAL RESULTS 

The proposed segmentation approach can be applied for both 

airborne and terrestrial laser data; however, the defined 

thresholds in this algorithm should be adjusted for different 

laser datasets based on the scanning system characteristics and 

segmentation objectives. The test datasets which are selected to 

evaluate the performance of this method include airborne laser 

data collected in Switzerland with the Scan2Map mapping 

system and terrestrial laser data obtained from a complex 

building façade in University of Calgary campus using a 

Trimble GS200 3D laser scanner. These datasets include 

various object features such as walls, flat and gable roofs, 

terrain surface and vegetation. Table 1 lists the basic 

characteristics of provided datasets and the thresholds applied 

for the planar patch segmentation in the proposed method.  

 Airborne 

 laser dataset 

Terrestrial laser 

dataset 

Scan Area Switzerland A building 

facade  (U of C) 

Point cloud size 9 MB 53 MB 

σ (expected noise level) 80 cm 4cm 

K (number of neighboring 

points for the local point 

density calculation) 

15 50 

n (reliable number of the 

points for plane definition) 

12 15 

Distance threshold (∆d) 50 cm 10cm 

Angle threshold (∆α) π/16 rad π/16 rad 

Size of the minimum 

detectable cluster 

10 50 

Table1. Basic attributes and defined segmentation thresholds of 

provided datasets 

The reliability and robustness of the newly developed technique 

will be examined through the following experiments. 

4.1 Airborne laser dataset 

Figure 7.a shows a region of the provided airborne laser dataset 

which has been selected for detailed investigation. This dataset 

includes gable roof shapes, terrain surface and vegetation 
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(Figure7.b). Figure 7.c displays the results of grouping planar 

surfaces within the airborne laser data. The roof surfaces and 

the terrain surface are correctly grouped as planar surfaces. 

Figure 7.d represents the output of the developed segmentation 

algorithm for this region based on the thresholds defined in 

Table 1. Each color in this figure represents a single planar 

surface. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Airborne laser data, original point cloud (a), imagery 

(b), point classification result (c) and output of developed 

segmentation approach (d) 

Comparison of represented segmentation results with grouping 

results (Figure 7.c) and image data (Figure 7.b) shows the 

feasibility of this methodology for segmentation of gable roofs 

(a sample is shown in red circles in Figures 7.c and 7.d), planar 

roofs with different slopes and terrain surface (Figure 7.d). 

4.2 Terrestrial laser data 

Figure 8.a shows a terrestrial laser scan of a building façade. 

Since this dataset contains planes with different slopes and 

much more variations in point density, it is more challenging 

than the airborne laser data. 

Figure 8.c represents the results of grouping planar surfaces 

within the terrestrial laser data. The roof surfaces, walls and 

terrain surface are correctly grouped as planar surfaces. 

Figure 8.d represents the output of the proposed segmentation 

approach for this laser point cloud based on the thresholds 

defined in Table 1.  Each color in this figure represents a single 

planar surface. 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 8. Terrestrial laser data, original point cloud (a) imagery 

(b), point classification result (c) and output of developed 

segmentation approach (d) 

Comparison of derived segmentation results with grouping 

results (Figure 8.c) and image data (Figure 8.b) proves the 

robustness of this methodology for the segmentation of parallel 

planes and intersecting planes with different slopes such as 

roof’s planar surfaces with different slopes (Figure 8.d). 

 

5. CONCLUSIONS AND FUTURE WORK 

Extraction of spatial information from randomly distributed 

laser point cloud requires a reliable segmentation approach. 

Although many techniques have been developed for the 

segmentation of this kind of data, there are not many 

methodologies which can handle different laser point cloud 

datasets. This paper introduces a new technique for the 

segmentation of laser data based on clustering attributes which 

can be utilized for both airborne and terrestrial laser datasets 

with varying point densities and different noise levels.  

In order to provide efficient access to the points and speed up 

the neighborhood definition process for the computation of 

segmentation attributes, a kd-tree structure is employed for the 

organization of the 3D laser data in this research. The adaptive 

cylinder method is then applied for neighborhood definition. 

This neighborhood system considers the local point density, 

expected noise level in the data and the local surface trend to 

increase the flexibility of proposed methodology. So, it can be 

utilized for point cloud from different sources. Afterwards, the 

coordinates of origin’s normal projection on each point’s best 

fitting plane are computed as the segmentation attributes. 

Finally, an octree-based space partitioning procedure is used for 

detection and extraction of the clusters in the attribute space. 

The main advantage of this clustering approach is its 

computational efficiency while considering the full attributes of 

the involved points.  

Future research work will focus on quantitative evaluation of 

the proposed method segmentation results in comparison with 

the results derived from other well-known segmentation 

techniques. Later on, we will implement spatial analysis of the 

segmentation results for 3D feature extraction from both 

airborne and terrestrial laser data. 
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