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ABSTRACT: 

 

The detection of different road furniture such as curb, street floor and sidewalk from point clouds is important in many applications 

such as road maintenance and city planning.  In this paper a pipeline for point cloud processing to detect the road curb from 

unorganized point clouds captured from a mobile terrestrial laser scanner is proposed. The proposed pipeline utilizes a covariance-

based procedure to perform a 3D segmentation of point clouds. Features such as the road curb can be extracted by analyzing the 

local neighborhood of every point. This is done by computing the surface normal direction and the normalized eigenvalues. These 

parameters can be used to extract the ground objects, such as curb, street floor and sidewalk. The curb can be isolated from the rest 

of the ground objects based on the previous parameters in addition to elevation gradient within the local neighborhood. A 2D image 

processing scheme is also presented to find the curbs as edges in a generated 2D height image. The results show successful detection 

rates of 78% and 94% using 3D and 2D approaches respectively. 
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1. INTRODUCTION 

The market is seeing a rapid growth in utilizing the mobile laser 

scanning (MLS) systems in many road corridors applications. 

There are many systems all around the world such as, TITAN, 

StreetMapper, and RIEGL VMX-250. These systems are fast 

and more accurate; which allow a very high dens point clouds 

to be acquired. But their use is still limited due to their cost and 

the huge amount of data they capture. It is important to 

automate the detection of road features such as road curb from 

the point cloud captured by these systems. 

 

Road curb represents a very important part of the road. It 

separates the street floor and side walk and is used to direct 

rainwater into the drainage system. The aim of this research is 

to automatically identify the road curb from an unorganized 3D 

point cloud of a road scene; the data have been captured by a 

vehicle-based laser scanning system named TITAN.  

 

 

2. LITERATURE REVIEW 

Research has been aimed at reducing the cost of the point cloud 

processing by automating part of the processing, namely the 

extraction of road curb and isolating surrounding geometric 

features like poles. Belton and Bae (2010) proposed a method 

to extract the 2D cross section of the curb, where the curb 

profile can be analyzed to segment curb features, such as poles 

and signs. First, they stored the point cloud in a 2D grid, and 

extracted the road surface by selecting the lowest points in 

height in each grid cell. Then they extracted the different 

objects close to the road surface, such as road curb. The curb 

line is extracted by fitting a curb profile and joining adjacent 

profiles to form a line representation of the curb.  

There are two main limitations for the proposed method by 

Belton and Bae. First, they assumed that the ground points are 

located on the lowest, smooth, horizontal surface; this 

assumption is not always true especially in roads which have 

under passes. Second, identifying the road surface based on the 

lowest points in height in each grid cell and fitting a curb 

profile will not always work with MLS data, where MLS data 

have a different nature compared to data captured by stationary 

scanning. MLS point cloud suffers many problems such as, data 

artefacts, combination of multiple data sources, and mis-

registering of multiples drivelines. There is a need for new 

techniques for curb extraction from MLS data. 

 

A recent approach applied with point clouds captured by a 

mobile TLS from moving platforms analyzes the cross section 

profile by the laser range points (Chen et al., 2007). The road 

boundary can be detected by analyzing the cross sections 

profiled by laser range points. Because the road surface appears 

as a straight line in the scan, the longest straight line in one 

scan line can be chosen in order to extract the road boundary.  

New methods are needed because the available data in this 

study are unorganized 3D point clouds that do not have profile 

information. 

 

Jaakkola et al. (2008) developed a method for identifying the 

road curb from MLS point clouds. This method applies 2D 

image processing techniques on intensity and height images. 

These images are used to detect the curb stones. They applied 

this method on a short road sample with a straight curb in one 

extension, where the street direction is known. The available 

data in this paper have varieties of road curbs, with different 

shapes (straight and curved) and extensions (North-South and 

East-West).   
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3. STUDY AREA AND DATA 

The used data in this study was captured by TITAN. TITAN is 

a mobile laser scanning system for highway corridor surveys; it 

can be deployed on a passenger vehicle or small watercraft, 

(Figure 1). Light detection and ranging (LiDAR) digital 

imagery and video data are collected from the survey platform 

while it is moving at traffic speeds. The system is georeferenced 

with a high accuracy Global Positioning System (GPS) – 

Inertial Measurement Unit (IMU), (Glennie, 2008). The data 

represent part of Elgin Street in the downtown of Ottawa city 

(Figure 2, left). The number of points is ~ 5 million and the 

point cloud density is ~ 400 pt/m2 on the street floor. The size 

of the point cloud (∆x, ∆y, ∆z) is approximately (106.0m, 

98.0m, 34.0m). 

 

 

  
Figure 1. TITAN mobile laser scanning system.  

Left: Close view. Right: Mounted on a truck. 

www.ambercore.com 

 

This part of Elgin Street has been chosen because it has an 

intersection, straight and curved curbs, and many pedestrian 

sidewalks, which makes the extraction of the curbs more 

complicated. Figure 2, right, represents the input point clouds 

before performing the curb segmentation. 

 

 

  
Figure 2. Part of Elgin Street, Ottawa.  

Left: Google maps (street view). Right: 3D point clouds. 

         

 

4. PROPOSED METHODOLOGY 

The pipeline of the curb extraction consists of 5 phases. In the 

first phase the input 3D point cloud of the road scene is 

organized and then the principal components analysis (PCA) is 

performed. The second phase aims at segmenting the point 

cloud into two main segments; the first one is the ground while 

the second is non-ground. Furthermore, the ground segment is 

refined in the third phase in order to get rid of some non-ground 

objects such as parts of trees, poles and buildings. The fourth 

phase extracts just the curb boundaries, street floor and the side 

walk from the refined ground segment. Finally, the fifth phase 

isolates the curb from the street floor and sidewalks by using 

3D and 2D techniques. In order to implement the different 

processing steps within the different phases, a C++ program has 

been built using Visual Studio 2008. 

4.1 First Phase 

Because the input is an unorganized 3D point cloud, the 

pipeline of this research starts with organizing the point cloud 

by utilizing a data structure technique such as the well known 

K-D tree, the K-D Library for Approximate Nearest Neighbor 

searching (ANN) (Mount and Arya, 2006) has been used 

because it is well documented library and it has been tested 

before. Then after applying the K-D tree, all points have been 

chosen as query points for the neighborhood search, that is 

because the main target is to perform the PCA for a spherical 

neighborhood of every point in the data. By performing the 

neighborhood search step, every point will form a cluster with 

its spherical neighbor points, from which we can compute the 

covariance matrix (C) for each cluster by using Equation 1.  
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where k is the number of k-nearest neighbors at a query point, 

ir
r

 is the position vector of point i and r
r

 is the mean position 

(centroid) for the cluster. The covariance matrix is a 3x3, real, 

positive, semi-definite matrix, the eigenvalues of which are 

always greater than or equal to zero. The eigenvalues (λs) can 

be examined to detect points with a certain structure, such as 

planar features in the neighborhood, (Kukko et al., 2009; Briese 

and Pfeifer, 2008). The relative sizes of the eigenvalues and the 

eigenvector directions can indicate the type of primitive feature, 

(Gross and Thoennessen, 2006); where the point cloud can be 

classified into main groups such as linear and planar features, 

(Belton and Lichti, 2006). For a planar feature there are two 

almost equal and one small normalized eigenvalues. The three 

eigenvalues obtained from PCA can be reordered to adopt the 

convention λ3 ≤ λ2 ≤ λ1. Then each one is normalized by using 

Equation 2 in order to remove the effect of different object 

structure dimensions. 
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4.2 Second Phase  

The input point cloud is segmented into two main segments, the 

first one is the ground while the second is non-ground. Figure 3 

demonstrates the different processing steps for both the first and 

second phases. The segmentation is done based on the relative 

sizes of the normalized eigenvalues and the surface normal 

direction. The surface normal is defined as the eigenvector of 

the smallest eigenvalue, which can be obtained from the 

eigenvalue decomposition (Equation 3), where
1e
r

, 
2e

r
and 

3e
r

 are the three eigenvectors of the eigenvalues respectively.  
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Figure 3.  Pipeline of the first and second phases. 

 

Figure 4 shows the surface normal directions for different 

objects in a road cross section. The surface normal makes an 

angle of  90o with the horizontal plane for objects such as street 

floor, side walk, building rooftops. On the other hand, objects 

like poles, building facades, tree foliage and curb have different 

surface normal direction inclinations with the horizontal plane. 

The ground can be segmented by labelling all points which 

have an approximately vertical surface normal direction and 

planar neighborhoods.  

 

 

 
Figure 4.  Surface normal direction for a road cross section.                  

 

The extracted ground segment will include all planar objects 

such as, street floor, sidewalk, curb boundaries, side gardens 

and building roof tops. Table 1 lists the different parameters 

which have been used for segmenting the ground from the input 

point cloud as well as their thresholds. These thresholds have 

been defined based on the properties of the objects of interest; 

For example, the neighborhood size (k) and the search radius 

are defined based on the density of the point cloud. 

 

 

Table 1. Thresholds of different parameters-second phase. 

 

The thresholds for surface normal (θ) is between 81 o and 90o 

and for the three normalized eigenvalues are set to find all 

surfaces in the point cloud like street floor and side walk. 

 

4.3 Third Phase 

The segmented ground still has some parts of trees, poles and 

building facades which are missegmented as part of ground 

segment. The aim of the third phase is to refine out the 

extracted ground by removing those objects. This is done by 

segmenting the ground based on recalculating the parameters 

and using the thresholds of Table 1.  

 

4.4 Fourth Phase 

By fitting a plane to the refined ground segment, objects like 

building roof tops and some areas which lie under the street 

level (underpass) can be removed from the ground segment. 

The equation of the principal plane can be formed based on the 

coordinates of the centroid (x0, y0, z0) and the normal to the 

plane (eigenvector of the smallest eigenvalue), Equation 4.   

 

 

                                                                                                (4) 

 

                    
where a, b, c are the direction numbers for the normal to the 

plane (i.e. the eigenvector). The idea is to fit a plane to the 

ground segment and then compute the normal distance (d) for 

all points to that plan, (Equation 5), where x, y, z are the 

coordinates of the point. A threshold can be set to d in order to 

end up with just the street floor and the sidewalk. This is based 

on the assumption that the plane will fit most of the street floor 

points because this part of the data has the higher density.  

 

 

                                                                                                (5) 

      

                                                      

                                

 

Figure 5. Histogram of point to plane normal distance. 

 

The histogram of d for all points above and below the fitted 

plane is presented in Figure 5. The point which has minimum d 

(normal distance to the plane) can be picked (point on plane), 

the elevation (Z coordinate) of this point will be used to define 

the elevation of the fitted plane (Zo). Then an elevation 

threshold can be set based on Zo. All points which have an 

elevation above or below Zo by specific thresholds will be 

removed from the ground segments. This leads to a filtered 

ground segment with only curb boundaries, street floor and 

sidewalk.   
 

4.5 Fifth Phase 

Finally, the boundary of the road curb can be extracted from the 

ground segment. Two different approaches have been tested; 

the first one is based on 3D analysis of the point cloud. The 

second approach is utilizing the 2D image processing 

techniques. 

 

4.5.1 3D Approach 

In this approach the curb is isolated based on the following 

parameters: the elevation gradient in the local neighborhood, 

Parameter Threshold 

No. points K=50 

Search radius r = 0.1 m 

Surface normal 90o > θ > 81o 

First normalized largest eigenvalue 0.63 >= Nλ1 > 0.4 

Second normalized largest eigenvalue 0.6 >= Nλ2 > 0.3 

Third normalized largest eigenvalue 0.1 >= Nλ3 > 0.0 
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surface normal direction and the three normalized eigenvalues. 

A neighborhood for every point must have enough number of 

points in order to include point from different surfaces, where 

points lie on curb boundary are identified as those points which 

have difference in elevation greater than a specific threshold in 

their neighborhood.  Table 2 gives the different thresholds 

which have been utilized to segment the curb boundaries from 

the street floor and sidewalk.  

 

The thresholds for neighborhood size, search radius, surface 

normal direction, three normalized eigenvalues and the 

elevation gradient are defined based on the point cloud density 

as well as properties of the curb. Where a large values of K and 

r are chosen, to insure that the neighborhood will include points 

from the upper and lower boundaries of the curb. Because the 

curb boundary includes points from street floor and sidewalk, 

the surface normal direction will be shifted slightly from 90o, 

also the height of the curb is between 10 and 20 cm. The 

threshold for Nλ1 is set to detect edge features such as the curb 

boundaries. 

 

 

Table 2. Thresholds of different parameters-fifth phase. 

 

4.5.2 2D Approach  

In this approach, the 2D height image which represents the 

point cloud is processed to detect the curbs instead of dealing 

with an irregular 3D point cloud. Two-dimensional processing 

enables the utilization of a wide variety of well established 

methodologies for 2D edge detection, and also decreases the 

computational effort due to the regular representation of data 

into a standard grid. The proposed 2D approach starts with 

gridding the point cloud into a regular lattice, then a standard 

edge detection technique is applied to find the curb candidates, 

finally the detected edges are filtered to remove the non curb 

edges.  

 

As a first step, the 3D point cloud are projected onto the x-y 

plane and assigned to a lattice of adjacent squares covering the 

whole span of the data coordinates. The square size should be 

carefully chosen to be as small as possible while maintaining 

enough points to avoid getting too many empty squares. Based 

on the density of data points, the square size has been chosen to 

be 10 cm by 10 cm. The count and average height of the 

assigned points to each square represents the density and the 

height of this square respectively. The grid has been 

interpolated based on nearest neighbor to fill the empty entries. 

As curbs typically exhibit a sudden change in height, they can 

be detected using edge detection methodologies applied on the 

2D height grid. In the proposed approach, Canny edge detection 

methodology has been chosen to extract the edges in the 

interpolated height profile. The Canny edge detection includes 

noise reduction using Gaussian filtering, computing the 

intensity gradient and finding the maximum localized edges, 

and finally tracing the detected edges to include the weaker 

gradients if they exhibit natural extension to the strong edges 

(Canny, 1986).  The former property of the Canny method helps 

to detect the weaker curbs typically found at the pedestrian 

crosswalks. The former step finds a lot of edges over the whole 

scanned scene besides the curb edges. These curb edges exist 

on the sides of the street floor which exhibits the highest point 

density across the whole scene. This high density is used in the 

proposed approach to filter out the non curb edges. The idea is 

to construct a mask to be used for rejection of non curb edges 

based on density. 

 

  

5. RESULTS AND DISCUSSION 

The 3D segmentation results for the second phase (Figure 6) are 

ground and non-ground segments. Figure 6.a shows the 

segmented non-ground objects, where most of the objects like 

poles, trees and buildings are successfully segmented as non-

ground. On the other hand the ground segment (Figure 6.b) 

contains most of the objects which lie on the ground level, such 

as the street floor, sidewalk and curb boundaries. Due to data 

noise and non uniform distribution of the point cloud, the 

ground segment still contains some non-ground objects such as 

parts of poles and trees.  

 

 

 
a.Non-ground segment. 

 
b. Ground segment. 

Figure 6.  Segmentation result of the second phase. 

 

The results obtained from the second phase can lead to different 

pipelines. For example, the ground segment is used in this study 

to extract the road curb; in addition, the street floor and 

sidewalk can be extracted from this segment too. On the other 

hand, the non-ground segment can be used as a preliminary step 

for the extraction of different objects like poles and trees, where 

extracting these objects becomes easier after removing the 

ground points. For example, the base of the poles can be fully 

extracted and will not be misidentified as planar features 

instead of linear ones as reported by El-Halawany and Lichti, 

2011. This is due to removing the ground points surrounding 

the pole’s base (Figure 7). This will improve the result of any 

segmentation techniques, especially those relying on the 

neighborhood analysis of every point such as, the principal 

component analysis PCA.    

Parameter Threshold 

No. points K=500 

Search radius r = 0.5 m 

Elevation gradient  0.2 >= ∆z > 0.11 m 

Surface normal  87
o
 >= θ > 83

o
 

First normalized largest eigenvalue 0.8 >= Nλ1 > 0.57 

Second normalized largest eigenvalue 0.5 >= Nλ2 > 0.2 

Third normalized largest eigenvalue 0.05 >= Nλ3 > 0.0 
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Figure 7.  No ground points surrounding the poles’ bases. 

 

Figures 8 left and right, show the extracted ground segment and 

the refined one from the second and third phases, it is clear that 

the segmentation parameters which have been used in phase 

three successfully refined the ground segment. The thresholds 

listed in Table 1 are close to the optimum ones, because they 

completely removed most of poles, trees, and building facades 

from the ground segment. 

 

 

  
Figure 8. Segmentation results of third phase. Left: Unrefined 

ground segment. Right: Refined ground segment. 

 

After the refinement, some non-ground objects are left over 

such as building rooftops and underpass, these objected are 

resulted from the segmentation of the second phase. These 

objects have the same values for the segmentation parameters as 

the ground objects have. For example, they have the same 

surface normal direction and normalized eigenvalues.  Figures 9 

and 10 compare the ground segment obtained from phase three 

(left images) and the one resulted from phase four (right 

images). It is clear that the point to plane normal distance-based 

filter successfully removed the non-ground objects such as the 

rooftops and underneath pass from the ground segments 

(regions surrounded by red circles). The used threshold for 

point to plane normal distance is 0.5 m. This threshold can be 

estimated based on the extension of the road and the elevation 

of the surrounding objects. 

 

 

 
Figure 9. Segmentation results (top down view). Left: Ground 

segment-phase three. Right: Ground segment-phase four. 

  
Figure 10. Segmentation results (side view). Left: Ground 

segment-phase three. Right: Ground segment-phase four. 
 

Figure 11, left, illustrates the interpolated height profile, while 

Figure 11, right depicts the density of the data points in the 

same scanned area, where the density is computed as the 

number of points per grid. 

 

 

  
Figure 11. Left: Height image. Right: Density image.  

 

Figure 12 shows the detected edges of the interpolated height 

profile using the Canny method. The density profile depicted in 

Figure 12 cannot be used directly as it is in a discrete non-

continuous form, therefore a median filtering of this density 

profile is first conducted to fill in gaps as illustrated in Figure 

13, left. 

 

 

 
Figure 12.The detected edges using Canny method. 

 

The filtered density is then converted into a binary form to 

construct the required mask based on a density threshold as 

shown in Figure 13, right. Finally this mask is used to filter out 

the non curb edges as illustrated in Figure 14 right. 

 

 
Figure 13. Left: The median filtered image. Right: The 

generated density mask. 
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Figure 14. The extracted road curb. Left: From 3D approach. 

Right: From 2D approach. 

 

Figure 14 left shows the extracted road curb using 3D 

segmentation with the thresholds listed in Table 2, some parts 

are missing from the curb due to the presence of pedestrian 

cross walks. The results show some objects on the sidewalk like 

part of parked vehicles (surrounded by a red circles). It is hard 

to eliminate those objects because they are very close to the 

curb and have the same properties as the curb. Figure 14.b 

depicts the extracted road curb using 2D edge detection and 

filtration. The Canny edge detection helped to detect smooth 

linear curbs and to extend it along weaker regions of the 

pedestrian crosswalks. The non curb edges have been 

successfully removed using the density-based mask. The 

accuracy of the proposed curb detection methodologies were 

assessed with a reference data. This is done using a pixel-based 

comparison of the registered reference image and the detected 

curb image. The precision of the 3D approach achieved 83 %, 

while the recall was 78 %. On the other hand, the 2D approach 

achieved 97 % of precision, while the recall was 94 %.  

 

 

6. CONCLUSION AND OUTLOOK 

 

In this research a pipeline for curb segmentation from 3D 

unorganized point cloud has been proposed. The pipeline is 

split down into 5 main phases. First the point cloud is organized 

and the segmentation parameters are computed. Then, the point 

cloud is segmented into ground and non-ground based on the 

surface normal direction and the relative sizes of three 

normalized eigenvalues. After that, the segmented ground is 

refined out from unwanted objects such as parts of poles and 

trees. Furthermore, the building rooftops and underpass have 

been removed from the ground segment based on the normal 

distance to the plane threshold. Finally, the curb has been 

extracted using two different approaches based on 3D 

segmentation and 2D image processing methodologies 

respectively. 

 

In the future, other data sets will be tested in order to evaluate 

the applicability of the proposed pipeline in detecting road 

curbs in different road scenes. Adding more information to the 

point cloud will be tested too. For example, the intensity 

information can be used to distinguish between the street 

surface and sidewalk. This can lead to better isolation of street 

floor from the obtained results of phase four. Future work will 

be focusing on how to automatically get the optimum 

thresholds for the different parameters, such as: neighborhood 

size, neighborhood search radius, three normalized eigenvalues, 

edge detection parameters, and the elevation gradient.  
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