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ABSTRACT:

The detection of different road furniture such as curb, street floor and sidewalk from point clouds is important in many applications

such as road maintenance and city planning.

In this paper a pipeline for point cloud processing to detect the road curb from

unorganized point clouds captured from a mobile terrestrial laser scanner is proposed. The proposed pipeline utilizes a covariance-
based procedure to perform a 3D segmentation of point clouds. Features such as the road curb can be extracted by analyzing the
local neighborhood of every point. This is done by computing the surface normal direction and the normalized eigenvalues. These
parameters can be used to extract the ground objects, such as curb, street floor and sidewalk. The curb can be isolated from the rest
of the ground objects based on the previous parameters in addition to elevation gradient within the local neighborhood. A 2D image
processing scheme is also presented to find the curbs as edges in a generated 2D height image. The results show successful detection

rates of 78% and 94% using 3D and 2D approaches respectively.

1. INTRODUCTION

The market is seeing a rapid growth in utilizing the mobile laser
scanning (MLS) systems in many road corridors applications.
There are many systems all around the world such as, TITAN,
StreetMapper, and RIEGL VMX-250. These systems are fast
and more accurate; which allow a very high dens point clouds
to be acquired. But their use is still limited due to their cost and
the huge amount of data they capture. It is important to
automate the detection of road features such as road curb from
the point cloud captured by these systems.

Road curb represents a very important part of the road. It
separates the street floor and side walk and is used to direct
rainwater into the drainage system. The aim of this research is
to automatically identify the road curb from an unorganized 3D
point cloud of a road scene; the data have been captured by a
vehicle-based laser scanning system named TITAN.

2. LITERATURE REVIEW

Research has been aimed at reducing the cost of the point cloud
processing by automating part of the processing, namely the
extraction of road curb and isolating surrounding geometric
features like poles. Belton and Bae (2010) proposed a method
to extract the 2D cross section of the curb, where the curb
profile can be analyzed to segment curb features, such as poles
and signs. First, they stored the point cloud in a 2D grid, and
extracted the road surface by selecting the lowest points in
height in each grid cell. Then they extracted the different
objects close to the road surface, such as road curb. The curb
line is extracted by fitting a curb profile and joining adjacent
profiles to form a line representation of the curb.
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There are two main limitations for the proposed method by
Belton and Bae. First, they assumed that the ground points are
located on the lowest, smooth, horizontal surface; this
assumption is not always true especially in roads which have
under passes. Second, identifying the road surface based on the
lowest points in height in each grid cell and fitting a curb
profile will not always work with MLS data, where MLS data
have a different nature compared to data captured by stationary
scanning. MLS point cloud suffers many problems such as, data
artefacts, combination of multiple data sources, and mis-
registering of multiples drivelines. There is a need for new
techniques for curb extraction from MLS data.

A recent approach applied with point clouds captured by a
mobile TLS from moving platforms analyzes the cross section
profile by the laser range points (Chen et al., 2007). The road
boundary can be detected by analyzing the cross sections
profiled by laser range points. Because the road surface appears
as a straight line in the scan, the longest straight line in one
scan line can be chosen in order to extract the road boundary.
New methods are needed because the available data in this
study are unorganized 3D point clouds that do not have profile
information.

Jaakkola et al. (2008) developed a method for identifying the
road curb from MLS point clouds. This method applies 2D
image processing techniques on intensity and height images.
These images are used to detect the curb stones. They applied
this method on a short road sample with a straight curb in one
extension, where the street direction is known. The available
data in this paper have varieties of road curbs, with different
shapes (straight and curved) and extensions (North-South and
East-West).
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3. STUDY AREA AND DATA

The used data in this study was captured by TITAN. TITAN is
a mobile laser scanning system for highway corridor surveys; it
can be deployed on a passenger vehicle or small watercraft,
(Figure 1). Light detection and ranging (LiDAR) digital
imagery and video data are collected from the survey platform
while it is moving at traffic speeds. The system is georeferenced
with a high accuracy Global Positioning System (GPS) —
Inertial Measurement Unit (IMU), (Glennie, 2008). The data
represent part of Elgin Street in the downtown of Ottawa city
(Figure 2, left). The number of points is ~ 5 million and the
point cloud density is ~ 400 pt/m® on the street floor. The size
of the point cloud (Ax, Ay, Az) is approximately (106.0m,
98.0m, 34.0m).

Figure 1. TITAN mobile laser scanning system.
Left: Close view. Right: Mounted on a truck.
www.ambercore.com

This part of Elgin Street has been chosen because it has an
intersection, straight and curved curbs, and many pedestrian
sidewalks, which makes the extraction of the curbs more
complicated. Figure 2, right, represents the input point clouds
before performing the curb segmentation.

Figure 2. Part of Elgin Street, Ottawa.
Left: Google maps (street view). Right: 3D point clouds.

4. PROPOSED METHODOLOGY

The pipeline of the curb extraction consists of 5 phases. In the
first phase the input 3D point cloud of the road scene is
organized and then the principal components analysis (PCA) is
performed. The second phase aims at segmenting the point
cloud into two main segments; the first one is the ground while
the second is non-ground. Furthermore, the ground segment is
refined in the third phase in order to get rid of some non-ground
objects such as parts of trees, poles and buildings. The fourth
phase extracts just the curb boundaries, street floor and the side
walk from the refined ground segment. Finally, the fifth phase
isolates the curb from the street floor and sidewalks by using
3D and 2D techniques. In order to implement the different
processing steps within the different phases, a C++ program has
been built using Visual Studio 2008.
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4.1 First Phase

Because the input is an unorganized 3D point cloud, the
pipeline of this research starts with organizing the point cloud
by utilizing a data structure technique such as the well known
K-D tree, the K-D Library for Approximate Nearest Neighbor
searching (ANN) (Mount and Arya, 2006) has been used
because it is well documented library and it has been tested
before. Then after applying the K-D tree, all points have been
chosen as query points for the neighborhood search, that is
because the main target is to perform the PCA for a spherical
neighborhood of every point in the data. By performing the
neighborhood search step, every point will form a cluster with
its spherical neighbor points, from which we can compute the
covariance matrix (C) for each cluster by using Equation 1.
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where k is the number of k-nearest neighbors at a query point,
7, is the position vector of point i and 7 is the mean position

(centroid) for the cluster. The covariance matrix is a 3x3, real,
positive, semi-definite matrix, the eigenvalues of which are
always greater than or equal to zero. The eigenvalues (As) can
be examined to detect points with a certain structure, such as
planar features in the neighborhood, (Kukko et al., 2009; Briese
and Pfeifer, 2008). The relative sizes of the eigenvalues and the
eigenvector directions can indicate the type of primitive feature,
(Gross and Thoennessen, 2006); where the point cloud can be
classified into main groups such as linear and planar features,
(Belton and Lichti, 2006). For a planar feature there are two
almost equal and one small normalized eigenvalues. The three
eigenvalues obtained from PCA can be reordered to adopt the
convention A3 < A, < A;. Then each one is normalized by using
Equation 2 in order to remove the effect of different object
structure dimensions.
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4.2 Second Phase

The input point cloud is segmented into two main segments, the
first one is the ground while the second is non-ground. Figure 3
demonstrates the different processing steps for both the first and
second phases. The segmentation is done based on the relative
sizes of the normalized eigenvalues and the surface normal
direction. The surface normal is defined as the eigenvector of
the smallest eigenvalue, which can be obtained from the
eigenvalue decomposition (Equation 3), wheree, , ¢, and

¢ , are the three eigenvectors of the eigenvalues respectively.
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K-D tree

Set query points, neighborhood size

First phase

Calculate covariance matrix

Calculate eigenvalues (As) and surface
normal (N) for every point

Segmentation based on NAs and N

Non-ground (poles, trees,
curb and building facades)

Ground (curb boundaries
street floor, side walk )

Second phase

Figure 3. Pipeline of the first and second phases.

Figure 4 shows the surface normal directions for different
objects in a road cross section. The surface normal makes an
angle of 90° with the horizontal plane for objects such as street
floor, side walk, building rooftops. On the other hand, objects
like poles, building facades, tree foliage and curb have different
surface normal direction inclinations with the horizontal plane.
The ground can be segmented by labelling all points which
have an approximately vertical surface normal direction and
planar neighborhoods.

| P

Figure 4. Surface normal direction for a road cross section.

The extracted ground segment will include all planar objects
such as, street floor, sidewalk, curb boundaries, side gardens
and building roof tops. Table 1 lists the different parameters
which have been used for segmenting the ground from the input
point cloud as well as their thresholds. These thresholds have
been defined based on the properties of the objects of interest;
For example, the neighborhood size (k) and the search radius
are defined based on the density of the point cloud.

Parameter Threshold
No. points K=50
Search radius r=0.1m
Surface normal 90° >0 >81°
First normalized largest eigenvalue 0.63 >=NA > 0.4
Second normalized largest eigenvalue 0.6 >=NA2>0.3
Third normalized largest eigenvalue 0.1 >=NA3>0.0

Table 1. Thresholds of different parameters-second phase.

The thresholds for surface normal () is between 81 © and 90°
and for the three normalized eigenvalues are set to find all
surfaces in the point cloud like street floor and side walk.

4.3 Third Phase

The segmented ground still has some parts of trees, poles and
building facades which are missegmented as part of ground
segment. The aim of the third phase is to refine out the
extracted ground by removing those objects. This is done by
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segmenting the ground based on recalculating the parameters
and using the thresholds of Table 1.

4.4 Fourth Phase

By fitting a plane to the refined ground segment, objects like
building roof tops and some areas which lie under the street
level (underpass) can be removed from the ground segment.
The equation of the principal plane can be formed based on the
coordinates of the centroid (Xq, Yo, Zo) and the normal to the
plane (eigenvector of the smallest eigenvalue), Equation 4.

ax -x )+bly -y, )+c(z-z,)=0 @)

where a, b, ¢ are the direction numbers for the normal to the
plane (i.e. the eigenvector). The idea is to fit a plane to the
ground segment and then compute the normal distance (d) for
all points to that plan, (Equation 5), where x, y, z are the
coordinates of the point. A threshold can be set to d in order to
end up with just the street floor and the sidewalk. This is based
on the assumption that the plane will fit most of the street floor
points because this part of the data has the higher density.

5
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Figure 5. Histogram of point to plane normal distance.

The histogram of d for all points above and below the fitted
plane is presented in Figure 5. The point which has minimum d
(normal distance to the plane) can be picked (point on plane),
the elevation (Z coordinate) of this point will be used to define
the elevation of the fitted plane (Z,). Then an elevation
threshold can be set based on Z,. All points which have an
elevation above or below Z, by specific thresholds will be
removed from the ground segments. This leads to a filtered
ground segment with only curb boundaries, street floor and
sidewalk.

4.5 Fifth Phase

Finally, the boundary of the road curb can be extracted from the
ground segment. Two different approaches have been tested;
the first one is based on 3D analysis of the point cloud. The
second approach is utilizing the 2D image processing
techniques.

4.5.1 3D Approach

In this approach the curb is isolated based on the following
parameters: the elevation gradient in the local neighborhood,
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surface normal direction and the three normalized eigenvalues.
A neighborhood for every point must have enough number of
points in order to include point from different surfaces, where
points lie on curb boundary are identified as those points which
have difference in elevation greater than a specific threshold in
their neighborhood. Table 2 gives the different thresholds
which have been utilized to segment the curb boundaries from
the street floor and sidewalk.

The thresholds for neighborhood size, search radius, surface
normal direction, three normalized eigenvalues and the
elevation gradient are defined based on the point cloud density
as well as properties of the curb. Where a large values of K and
r are chosen, to insure that the neighborhood will include points
from the upper and lower boundaries of the curb. Because the
curb boundary includes points from street floor and sidewalk,
the surface normal direction will be shifted slightly from 90°,
also the height of the curb is between 10 and 20 cm. The
threshold for NAI is set to detect edge features such as the curb

boundaries.

Parameter Threshold
No. points K=500
Search radius r=05m
Elevation gradient 02>=Az>0.11m
Surface normal 87°>=60>83°
First normalized largest eigenvalue 0.8 >= NA1 >0.57
Second normalized largest eigenvalue 0.5>=NA2>0.2
Third normalized largest eigenvalue 0.05 >=NA3> 0.0

Table 2. Thresholds of different parameters-fifth phase.

4.5.2 2D Approach

In this approach, the 2D height image which represents the
point cloud is processed to detect the curbs instead of dealing
with an irregular 3D point cloud. Two-dimensional processing
enables the utilization of a wide variety of well established
methodologies for 2D edge detection, and also decreases the
computational effort due to the regular representation of data
into a standard grid. The proposed 2D approach starts with
gridding the point cloud into a regular lattice, then a standard
edge detection technique is applied to find the curb candidates,
finally the detected edges are filtered to remove the non curb
edges.

As a first step, the 3D point cloud are projected onto the x-y
plane and assigned to a lattice of adjacent squares covering the
whole span of the data coordinates. The square size should be
carefully chosen to be as small as possible while maintaining
enough points to avoid getting too many empty squares. Based
on the density of data points, the square size has been chosen to
be 10 cm by 10 cm. The count and average height of the
assigned points to each square represents the density and the
height of this square respectively. The grid has been
interpolated based on nearest neighbor to fill the empty entries.
As curbs typically exhibit a sudden change in height, they can
be detected using edge detection methodologies applied on the
2D height grid. In the proposed approach, Canny edge detection
methodology has been chosen to extract the edges in the
interpolated height profile. The Canny edge detection includes
noise reduction using Gaussian filtering, computing the
intensity gradient and finding the maximum localized edges,
and finally tracing the detected edges to include the weaker
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gradients if they exhibit natural extension to the strong edges
(Canny, 1986). The former property of the Canny method helps
to detect the weaker curbs typically found at the pedestrian
crosswalks. The former step finds a lot of edges over the whole
scanned scene besides the curb edges. These curb edges exist
on the sides of the street floor which exhibits the highest point
density across the whole scene. This high density is used in the
proposed approach to filter out the non curb edges. The idea is
to construct a mask to be used for rejection of non curb edges
based on density.

5.  RESULTS AND DISCUSSION

The 3D segmentation results for the second phase (Figure 6) are
ground and non-ground segments. Figure 6.a shows the
segmented non-ground objects, where most of the objects like
poles, trees and buildings are successfully segmented as non-
ground. On the other hand the ground segment (Figure 6.b)
contains most of the objects which lie on the ground level, such
as the street floor, sidewalk and curb boundaries. Due to data
noise and non uniform distribution of the point cloud, the
ground segment still contains some non-ground objects such as
parts of poles and trees.

b. Ground segment.
Figure 6. Segmentation result of the second phase.

The results obtained from the second phase can lead to different
pipelines. For example, the ground segment is used in this study
to extract the road curb; in addition, the street floor and
sidewalk can be extracted from this segment too. On the other
hand, the non-ground segment can be used as a preliminary step
for the extraction of different objects like poles and trees, where
extracting these objects becomes easier after removing the
ground points. For example, the base of the poles can be fully
extracted and will not be misidentified as planar features
instead of linear ones as reported by El-Halawany and Lichti,
2011. This is due to removing the ground points surrounding
the pole’s base (Figure 7). This will improve the result of any
segmentation techniques, especially those relying on the
neighborhood analysis of every point such as, the principal
component analysis PCA.
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Figure 7. No ground points surrounding th'é‘!poles’ bases.

Figures 8 left and right, show the extracted ground segment and
the refined one from the second and third phases, it is clear that
the segmentation parameters which have been used in phase
three successfully refined the ground segment. The thresholds
listed in Table 1 are close to the optimum ones, because they
completely removed most of poles, trees, and building facades
from the ground segment.

Figure 8. Segmentation results of third phase. Left: Unrefined
ground segment. Right: Refined ground segment.

After the refinement, some non-ground objects are left over
such as building rooftops and underpass, these objected are
resulted from the segmentation of the second phase. These
objects have the same values for the segmentation parameters as
the ground objects have. For example, they have the same
surface normal direction and normalized eigenvalues. Figures 9
and 10 compare the ground segment obtained from phase three
(left images) and the one resulted from phase four (right
images). It is clear that the point to plane normal distance-based
filter successfully removed the non-ground objects such as the
rooftops and underneath pass from the ground segments
(regions surrounded by red circles). The used threshold for
point to plane normal distance is 0.5 m. This threshold can be
estimated based on the extension of the road and the elevation
of the surrounding objects.

= X

Figure 9 Segmentation results (top down view). Left: Ground
segment-phase three. Right: Ground segment-phase four.
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Figure 10. Segmentation results (side view). Left: Ground
segment-phase three. Right: Ground segment-phase four.

Figure 11, left, illustrates the interpolated height profile, while
Figure 11, right depicts the density of the data points in the
same scanned area, where the density is computed as the
number of points per grid.

Fgure 11. Left: Height image. Right: Density image.

Figure 12 shows the detected edges of the interpolated height
profile using the Canny method. The density profile depicted in
Figure 12 cannot be used directly as it is in a discrete non-
continuous form, therefore a median filtering of this density
profile is first conducted to fill in gaps as illustrated in Figure
13, left.

Figure 12.The detected edges using Canny method.

The filtered density is then converted into a binary form to
construct the required mask based on a density threshold as
shown in Figure 13, right. Finally this mask is used to filter out
the non curb edges as illustrated in Figure 14 right.

Figure 13. Left: The median filtered image. Right: The
generated density mask.
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Figure 14. The extracted road curb. Left: From 3D approach.
Right: From 2D approach.

Figure 14 left shows the extracted road curb using 3D
segmentation with the thresholds listed in Table 2, some parts
are missing from the curb due to the presence of pedestrian
cross walks. The results show some objects on the sidewalk like
part of parked vehicles (surrounded by a red circles). It is hard
to eliminate those objects because they are very close to the
curb and have the same properties as the curb. Figure 14.b
depicts the extracted road curb using 2D edge detection and
filtration. The Canny edge detection helped to detect smooth
linear curbs and to extend it along weaker regions of the
pedestrian crosswalks. The non curb edges have been
successfully removed using the density-based mask. The
accuracy of the proposed curb detection methodologies were
assessed with a reference data. This is done using a pixel-based
comparison of the registered reference image and the detected
curb image. The precision of the 3D approach achieved 83 %,
while the recall was 78 %. On the other hand, the 2D approach
achieved 97 % of precision, while the recall was 94 %.

6. CONCLUSION AND OUTLOOK

In this research a pipeline for curb segmentation from 3D
unorganized point cloud has been proposed. The pipeline is
split down into 5 main phases. First the point cloud is organized
and the segmentation parameters are computed. Then, the point
cloud is segmented into ground and non-ground based on the
surface normal direction and the relative sizes of three
normalized eigenvalues. After that, the segmented ground is
refined out from unwanted objects such as parts of poles and
trees. Furthermore, the building rooftops and underpass have
been removed from the ground segment based on the normal
distance to the plane threshold. Finally, the curb has been
extracted using two different approaches based on 3D
segmentation and 2D image processing methodologies
respectively.

In the future, other data sets will be tested in order to evaluate
the applicability of the proposed pipeline in detecting road
curbs in different road scenes. Adding more information to the
point cloud will be tested too. For example, the intensity
information can be used to distinguish between the street
surface and sidewalk. This can lead to better isolation of street
floor from the obtained results of phase four. Future work will
be focusing on how to automatically get the optimum
thresholds for the different parameters, such as: neighborhood
size, neighborhood search radius, three normalized eigenvalues,
edge detection parameters, and the elevation gradient.
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