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ABSTRACT: 
 
Multitemporal LiDAR data provide means for mapping structural changes in forest canopies. We demonstrate the use of area-based 
estimation method for snow damage assessment. Change features of bi-temporal LiDAR point height distributions were used as 
predictors in combination with in situ training data. In the winter 2009−2010, snow damages occurred in Hyytiälä (62°N, 24°E), 
southern Finland. Snow load resulted in broken, bent and fallen trees changing the canopy structure. The damages were documented 
at the tree level at permanent field plots and dense LiDAR data from 2007 and 2010 were used in the analyses. A 5 × 5-m grid was 
established in one pine−spruce stand and change metrics from the LiDAR point height distribution were extracted for the cells. Cells 
were classified as damaged (n = 43) or undamaged (n = 42) based on the field data. Stepwise logistic regression detected the 
damaged cells with an overall accuracy of 78.6% (Kappa = 0.57). The best predictors were differences in h-distribution percentage 
points 5, 35, 40, 50 and 70 of first-or-single return data. The tentative results from the single stand suggest that dense bi-temporal 
LiDAR data and an area-based approach could be feasible in mapping canopy changes. The accuracy of the point h-distribution is 
dependent on the pulse density per grid cell. Depending on the time span between LiDAR acquisitions, the natural changes of the h-
distributions due to tree growth need to be accounted for as well as differences in the scanning geometry, which can substantially 
affect the LiDAR h-metrics.      
 
 

1. INTRODUCTION 

Snow is a natural element in the boreal forests of Finland that 
extend from 60° to 68°−70°N. During snow voluminous 
winters, loads can reach over 1000 kg/crown (Jalkanen and 
Konopka 1998). The load on the trees consists of snow, rime 
and frozen sub cooled rain (Solantie 1980). The critical loads 
on the crown are achieved in special weather conditions 
common in regions which are higher than surrounding areas. 
The risk for low and moderate snow damage occurs, if the snow 
load on the crown exceeds 20−40 kg/m2 or the wind is heavy on 
the same (Peltola et al. 1999). This limit is achieved every fifth 
year in Southern Finland and every third year in northern 
Finland (Solantie 1994).  
 
Airborne LiDAR can be used for monitoring of the forest 
canopy structure. LiDAR-based forest inventory methods have 
been developed intensively in the last 6−12 years, and they are 
currently gaining popularity (e.g. Naesset et al. 2004). The high 
geometric accuracy of the LiDAR observations lends support to 
assume that it is well suited for monitoring of forest dynamics. 
The same targets (stands, cells, trees) are observed with high 
reliability over time.  
 
The general potential of LiDAR in forest monitoring 
applications is still largely unexplored (empirically), because 
LiDAR time-series that span more than a few years are but few. 
Bi-temporal LiDAR were used to monitor forest growth and 
intermediate fellings (Yu et al. 2004; St-Onge and Vepakomma 
2004; Naesset and Gobakken 2005; Hopkinson et al. 2008; Yu 
et al. 2008). However, the short growth periods used (and slow 
growth of boreal trees) have resulted in low growth estimation 
accuracy. Undisturbed forest growth of dense or closed cano-
pies means that the foliage is “shifted upwards” and the crown 
coverage increases slowly. In closed canopies the amount of 
foliage and the leaf-area-index remain rather constant, at 
species- and site-type specific levels. If LiDAR acquisition 

settings remain unchanged in multitemporal LiDAR data sets, 
the canopy changes should reduce pulse penetration to ground 
and increase the absolute values of upper height (h) distribution 
percentiles. Changes in the acquisition settings affect the 
LiDAR observations even if the canopy remains unchanged. For 
example, different h-distributions are obtained by changing the 
scan zenith angle from 0° to 20° with increasingly distorting 
effects at angles above 12°−15°. In area-based estimation of the 
growing stock, which is typically done for stands, sub-stands, or 
grid cells, the stem volume estimates are derived indirectly 
using LiDAR point h-distribution metrics. Depending on the 
training data, the properties of the forest and the size of the 
observation unit, a standard error of 10−20% is typical for total 
stem volume (Naesset et al. 2004). If for example the total stem 
volume is 250 m3/ha and the growth is 4−5 m3/ha/a, a long time 
period is required in order to have the standard error (SE) of the 
growth estimate below 10%. In this example, we assumed that 
the volume estimations of both time points are done indepen-
dently. An alternative is to derive the change estimates by 
simultaneous analysis of the multitemporal LiDAR data in a 
given observation unit. Naesset and Gobakken (2005) observed 
statistically significant changes in bi-temporal LiDAR h-
metrics. However, the volume growth estimates had poor 
accuracy due to the 2-yr time interval between the LiDAR 
acquisitions. In temperate forests, Hopkinson et al. (2008) used 
multitemporal LiDAR data and concluded that even the annual 
forest h-growth was detectable. Similar to Næsset and 
Gobakken (2005), the relative SE of the stand-level annual 
growth estimates were high (ca. 100%), but decreased rapidly 
when the time interval was extended (~10% after 3 years). Yu et 
al. (2004) studied the monitoring of intermediate fellings, which 
can be described as “sudden drastic canopy changes”, in which 
up to 30−50% of the crowns are removed. They detected 73% 
of the removed trees correctly, using high-density bi-temporal 
(4−5 pulses/m2) LiDAR data. Detection failed mostly for the 
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suppressed trees. Intermediate felling can vary from light to 
heavy, and the selection of trees to be removed differs as well.  
 
Our study concerns the detection of canopy changes due to 
snow damage using LiDAR h-distribution metrics. The changes 
occurred between two high-density LiDAR acquisitions. A 
snow-damage means that entire tree stems are broken from 
various heights, some trees lose branches, and some trees 
become slanted. Foliage is “lost or repositioned”. In some sense 
snow-damage bears resemblance to an intermediate felling, 
except for the partially broken stems and slanted trees. Also, the 
selection of trees subject to removal is entirely different (spatial 
pattern, relative height of trees). Snow damage differs also from 
wind-induced changes, which are also common in Finland. In a 
bi-temporal LiDAR data set the changes due growth and insect 
damages etc. are also observable. The overall growth shows in 
increase of crown volumes, as seen from the above. It is evident 
that changes in the dominant tree layer are visible in LiDAR 
data, while changes in the lower canopy layer are more difficult 
to discern.   
  
Our objective was to test the use of area-based change metrics 
in LiDAR point h-distributions in classifying snow-damage 
induced canopy changes of different severity.  
 
 

2. MATERIALS AND METHODS 

2.1 Study area and field measurements 

The study was conducted in Hyytiälä, southern Finland 
(61°50´N, 24°20´E). Hyytiälä hosts a multitude of permanent 
forest plots, and it has been scanned five times since 2004, 
using a small-footprint discrete-return LiDAR sensors. In 2009, 
a large number of the forest plots (16,000 trees) were measured 
to support ongoing remote sensing activities. Many of the forest 
plots were however subject to snow damage January−February 
2010. The snow load started to accumulate in December 2009 
continuing to February. General observations by the local fores-
ters were that the most intensive damage occurred in high areas, 
where elevation exceeded 160 m above sea level and that the 
damage was more common in Scots pine forests. The SMEAR 
II research station in Hyytiälä is in a pine stand, where the rime 
and snow accumulation could be observed also in surveillance 
camera data (Fig. 1). In February the trees began to bend down. 
The snow load was mainly dropped in the end of February, 
when the temperature raised to 0°C with wind. Many trees were 
broken also then (Fig. 2).  
 
In summer 2010, field work was carried out in pine-dominated 
plots that had been subject to different degree of snow damage 
in order to obtain reference data and to document the phenome-
non. We used only one plot for this study (Table 1). The plot 
was established in 2005 and the tree maps were generated using 
a total station. Trees damaged by the snow were identified in the 
field in 2010. In addition, stem diameter (dbh) measurements 
from 2009 were updated. There were broken, fallen and bent 
trees. Using existing data, it was possible to differentiate 
between an earlier damage and that from February 2010. The 
height of the broken stems was assessed visually. Tree heights 
were available for all trees from 2005 and 2009.   
 

 
Fig. 1. Treetops (180−185 m a.s.l.) of a 50-year-old pine stand 

in Hyytiälä, January 26, 2010 (Monitoring camera at the 
SMEAR II station). 

 

 
Fig. 2. Broken stems and treetops at the field plot PS_TEX. 

  
Table 1. Basic characteristics of plot PS_TEX (Autumn 2009). 

Size, m 100 × 40 
Age, years 65 
Elevation, m 182.3 
Mean height, Hg, m 21.0 
Mean dbh, Dg, cm 23.9 
Stem number, S, s/ha  840 
Basal area, G, m2/ha 31.0 
Stem volume, V, m3/ha 310 
Vert. canopy cover %  62.7 
Snow breaks, % 11.6 
Partial snow breaks % 5.0 
Bent % 0.5 

 
 
PS_TEX represents a forest in the late thinning phase. The site 
quality of the plot is intermediate (Myrtillus type). Expected age 
for regeneration is 80−90 years depending in the thinning 
regime. Plot was established by planting and is one of the oldest 
planted pine stands in the area 
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2.2 LiDAR data 

The LiDAR data sets were acquired in 2007 and 2010, using 
airplane-mounted, topographic small-footprint discrete-return 
sensors (Table 2). In both acquisitions, the flight lines were 
oriented SSE−NNW and had 50−60% side overlap. The 2010 
LiDAR sensor was equipped with waveform digitizer, but we 
used the discrete-return data. The ALS50-II and ALS-60 
sensors use very similar sensor technology. LiDAR data from 
PS_TEX included areas covered by 2 or 3 flight. The scan 
zenith angle distributions per location varied between 
acquisitions (Fig. 3)..Plot PS_TEX was 100 × 40 m in area and 
the wider, E−W-oriented side was perpendicular to the flight 
lines of LiDAR.  
 

Table 2. Sensor configurations in the LiDAR data sets. 
Data set 2007 2010 
Date  July 4 July 19 
Time, GMT 16−17:30 15−16 
Instrument, Leica ALS50-II ALS60 
Altitude, m, AGL 800 1000 
Pulse frequency, kHz 116 174 
Scanning frequency, Hz 52 68.4 
Scanning angle (instrument) ±15° ±15° 
Pulse density , m-2 7 11.9 
Beam divergence (1/e), mrad 0.15 0.15 
Automatic Gain Control, AGC yes yes 

 
We used a digital elevation model (DEM) that was estimated 
from leaf-on LiDAR data of 2004 (1−2  pulses/m2, 1.3 km 
height) It has been assessed to have an RMS-accuracy of 
0.20−0.27 m in seedlings stands and closed-canopy forests.  
 

 
Fig. 3. Scan zenith angle × X-coordinate scatterplots in plot 
PS_TEX. Data from 2007 is drawn in grey, while 2010 is in 
black. 
Raster format canopy height models (CHMs) were estimated 
from the 2007 and 2010 data for illustrations. The CHMs had 
0.5-m resolution and  Max(h) of first-of-many or single echoes 
was assigned to each CHM cell. No-data cells were filled with 
the mean h in 3 x 3-neighborhood.  
 

 
2.3 Extraction of area-based change features  

In area-based analyses, the grid size defines the spatial sampling 
density. A small grid size is beneficial in the estimation of the 
spatial intrastand variation, but this comes at the expense of de-
creased accuracy, because fewer pulses are available per cell. 
We considered snow damage a “discrete tree-level event”. The 
number of trees that belong to a grid cell of certain size depends 
on the stand density. In small cells, the damage of one tree has 
high proportional weight. However, the use of small cells also 
increases the total length of cell borders and cases, in which the 
crown (event) is split between cells. The pulse count depends 
on the cell size and the pulse density, but in a large cell, a single 
damaged tree does not contribute a substantial change. This 
shows that the choice of the cell size is challenging and 
probably should be adapted to local h variation that correlates 
with stand density, at least in managed forests. Our dense 
LiDAR data enabled the use of the relatively small 25-m2 cell 
size. Given the density of 850 s/ha, there were on average two 
trees per cell. 
 
Using field data, grid cells were defined a binary division into 
damaged (n=42) and undamaged (n=43) classes (Fig. 4). 
Damaged cells included crown projection area of damaged tree. 
Plot PS_TEX was not rectangular, and the border cells were 
omitted. Height percentiles at 5% (h5−h95, m) intervals (20-
quantiles) were calculated from the first-or-single return data of 
2007 and 2010. Respective difference metrics in height 
percentiles (�h5−�h95, m) were calculated. 
 

 
Fig. 4. A 5-m grid in plot PS_TEX. Damaged cells were drawn 

in dark grey, while light grey depicts undamaged cells. 
The red crosses mark damaged trees and the black dots 
denote undamaged trees.  

 
Snow damage affected the change of LiDAR point h-
distributions from 2007 and 2010 (Fig. 5). The pictured 
distributions comprise data from a single damaged and 
undamaged cell. In the undamaged case, the upper percentiles 
increased and the ground penetration percentage decreased 
2007−2010. The three-year height growth of dominant trees is 
approximately 0.75 m, and this is the difference of the h-
distribution maxima in 2007 and 2010. The damaged cell 
shows significantly different change pattern compared with 
the undamaged. The severe snow damage (one tree out of a 
few only), increases the pulse penetration to ground, and, 
depending on the relative height of the damaged tree(s), the 
shape of the cumulative curve changes.   
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Fig 5. LiDAR h-percentiles in two 25-m2 m cells in 2007 and 

2010.  
 
2.4 Binary classification 

Logistic regression (LR) can be used in binary classification 
problems. LR is commonly used in modelling the probability of 
an event’s occurrence. Here, we modelled the probability of the 
cell being snow damaged, using changes in the height per-
centiles as predictors. In logistic regression, logit transformation 
is used to make the relationship between the response pro-
bability and the predictor variables linear. The multiple logistic 
regression model is: 
 
logit(p) = ln[p/(1-p)] = �0 + �1x1 + �2x2 +….+ �nxn (1), 
 
where p is the probability that an event will occur and x1…xn 
are the variables explaining the probability. The predicted 
probabilities are calculated by transforming back to the original 
scale:  
 
p = exp(logit(p))/[1 + exp(logit(p))]   (2) 
 
For selecting the final predictors in the model, stepwise LR was 
applied with both forward and backward selections. The 
maximum number of steps to be considered was 1000 and the 
used multiple of the number of degrees of freedom for the 
penalty was log (n).  R statistical package (R Development Core 
Team, 2007) was used in the analyses. 

3. RESULTS 

 
Fig. 6 shows how snow damage changes the point clouds in a 
vertical slice of LiDAR data. Fig. 7 illustrates the patterns in 
difference of canopy height surfaces and the effects to LiDAR 
point height distributions were seen in Fig. 5.   
 

 
 
Fig 6. Slice of LiDAR data showing vertical profiles. Black and 

grey points denote the LiDAR data of 2010 and 2007, 
respectively. The 18-m-high co-dominant tree was 
broken at the h of 8 m. 

 

 
 
Fig 7. Difference of CHMS, CHM2007−CHM2010 [m]. Dama-

ged crowns are superimposed as circles. Positive differ-
ence indicates decrease in h between 2007 and 2010. 

 
Stepwise logistic regression detected the snow damaged cells 
with an overall leave-one-out cross-validation accuracy of 
78.6% (Simple Kappa = 0.57). The selected predictors were 
�h5, �h35, �h40, �h50, and �h70.   
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4. DISCUSSION 

We report a test about the use of change metrics calculated from 
dense bi-temporal LiDAR point h-distributions for area-based 
detection of snow damages. Classification accuracy was 78.6% 
in a binary classification of damaged and undamaged cells. 
Based on our tentative results we can state that snow damages 
result in such structural canopy changes that can be observed in 
LiDAR data using an area-based approach. However, we did 
not do an elaborate analysis of the possible LiDAR predictors. 
Our data comprises of a single stand, and the density of the grid 
was also omitted in the analyses.  
 
We had three growing seasons between the LiDAR acquisitions. 
Changes due to tree growth were also observable (Fig. 5), but 
not examined further here, because the proportional annual stem 
volume growth is only 2-3% in the studied forest. If the time 
period between LiDAR acquisitions is long, there can be 
more effects due to (height) growth, intermediate fellings 
and other factors. Separation of those from a non-recurrent 
damage will of course be impossible using our approach. 
We used a small, 5-m grid. With large grid cells, the ratio 
between the damaged and undamaged trees changes and for 
example the damage (low severity in a cell) of a single tree is 
easily obscured by the growth of other trees and other factors 
changing the LiDAR h-distributions. Another important factor 
that is related to the used grid size is the applied pulse density. 
We had a dense, small-footprint LiDAR data, 7 to 12 pulses per 
m2. With a more sparse LiDAR data, larger grid size has to be 
used for stable and accurate measurements on the h-
distributions. Sensitivity of the area-based damage detection to 
cell size, and forest structure (and LiDAR acquisition settings) 
constitutes a future research topic.  
 
In bi-temporal LiDAR data, there is always noise 
(imprecision of the h-distributions) caused by sampling er-
rors and scan geometry changes (Fig. 3), tree/branch move-
ment, and geometric inaccuracy. Still, the relative high geo-
metric reliability of airborne LiDAR data is very promising for 
monitoring applications in forestry. 
  
Bi-temporal LiDAR data are not widely available and the acqui-
sition costs for damage inventory only can become substantial if 
the spatial occurrence of the damage is sporadic and local (cf. 
snow damage). Our area-based method requires in situ data. For 
practical applications, more suitable method (with high-density 
LiDAR data) for canopy disturbance mapping could be based 
on difference imaging of the CHMs (Fig. 7). Snow damage is a 
local phenomenon that is related to topography, while severe 
storm damages occur at a larger scale. Large continuous areas 
are needed for cost-efficient LiDAR campaigns.  
 
Changes in LiDAR h-metrics have been previously used to 
monitor forest growth (Naesset and Gobakken 2005, Hopkinson 
et al. 2008, Yu et al. 2008). In this study bi-temporal LiDAR 
was tried in the detection of natural forest disturbancies. 
Although the tentative results were rather promising, damage 
classification (or canopy change detection) with area-based 
methods is far from practice. Data acquisition and field work 
costs need to be considered. The multitemporal LiDAR data 
must be used for several tasks to justify the high acquiring 
costs.    
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