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ABSTRACT: 

 

Mobile laser scanning systems are becoming an increasingly popular means to obtain 3D coverage on a large scale. To perform the 

mapping, the exact position of the vehicle must be known throughout the trajectory. Exact position is achieved via integration of 

Global Positioning Systems (GPS) and Inertial Navigation Systems (INS). Yet, in urban environments, cases of complete or even 

partial GPS outages may occur leaving the navigation solution to rely only on the INS. The INS navigation solution degrades with 

time as the Inertial Measurement Unit (IMU) measurements contains noise, which permeates into the navigation equations. 

Degradation of the position determination leads to loss of data in such segments. To circumvent such drift and its effects, we 

propose fusing INS with lidar data by using building edges. This detection of edges is then translated into position data, which is 

used as an aiding to the INS. It thereby enables the determination of the vehicle position with a satisfactory level accuracy, 

sufficient to perform the laser-scanning based mapping in those outage periods. 

 

 

1 INTRODUCTION 

Mobile laser-scanning mapping systems are becoming an 

increasingly employed means for gaining accurate and detailed 

3D data on a large scale. Obtaining this data, the vehicle 

position must be known accurately throughout the trajectory, 

making it necessary to obtain continuous and accurate 

navigation solution. Typically, to meet this requirement, 

continuous and accurate navigation Global Positioning 

Systems (GPS) and Inertial Navigation Systems (INS) are 

employed (Titterton and Weston 2004). GPS outages may 

occur however in urban environments along urban canyons, or 

in other cases of signal blockage, e.g., tunnels or covered 

areas, leaving the navigation solution to rely on the INS 

standalone solution. The INS solution degrades however, with 

time as its sensors measurements contain noise, which 

permeates into the navigation equations. 

 

Means to reduce or bound the INS drift have been addressed in 

the past. They can be divided into three categories. The first is 

based on incorporation of external sensors into the system, 

e.g., odometers or magnetic sensors (Stephen and Lachapelle, 

2001; Godha et al., 2005), and fusion of the observations into 

the navigation solution. The second category is based on 

utilizing vehicle constraints, which are based on translating a 

priori system knowledge into measurements, followed by their 

incorporation into the estimator. Brandt et al. (1998) and 

Dissanayake et al. (2001) utilize as a constraint the 

observation that vehicles, normally, do not slip or jump off the 

ground. Using this observation, they derive a constraint on the 

vehicle’s velocity. Klein et al. (2010) introduce constraints 

that feature ground vehicle dynamics, e.g., forward vehicles 

acceleration, and angular variation only in the yaw angle. 

Finally, the third approach proposes use of estimation 

approaches other than the Kalman filter. Among them use of a 

second order extended Kalman filter sampling based filters 

such as Unscented Kalman Filter and particle filters (Shin 

2005), and artificial intelligence based methods such as 

adaptive neural fuzzy information systems (El-Sheimy et al. 

2004), have been proposed.  

For external sensor fusion, laser (aka as light detection and 

ranging - lidar) scanners can be regarded as an option. Range 

measurements are usually based on time-of-flight 

measurement principle, and when integrated with a scanning 

mechanism, they facilitate measurements of objects in a 

certain angular field. Some of these objects may have known 

positional data. Examples INS/lidar fusion methods are found 

in navigation of autonomous ground or airborne platforms or 

for data collection systems for mapping applications. For 

robotic localization, laser scanners are regularly used to 

perform and improve current simultaneous localization and 

mapping (SLAM) methods, e.g. Pfister er al. (2003). For 

unmanned air vehicle, Soloviev and de Haag (2010) use a laser 

scanner on-board to monitor slowly moving features to aid the 

INS. Additionally, Soloviev et al. (2007) presented a tight 

coupling approach between lidar and INS for indoor and 

outdoor urban environments. 

  

In this study, we propose mitigating the INS drift in periods of 

GPS outages by using the acquired laser scanning data and 

ground plans. We focus on detection of the crossing between 

objects (namely on their edges), which have positional 

information that can be derived from the ground plans. We 

explore the case of navigation in an urban environment. The 

scenario that is considered consists of a vehicle equipped with 

a navigation grade INS/GPS unit and experiences complete 

GPS outages for short time periods. The aim is to find means 

to mitigate INS drift by employing laser scanner data. Use of 

the crossings between buildings as obtained by the laser 

scanner is translated it into position information, and is used 
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as information to aid the INS. Testing this approach shows that 

the aided INS solution provides vehicle position with a 

satisfactory level of accuracy, sufficient to perform mobile 

laser mapping scanning projects when no GPS information is 

available.  

2 INS AND LIDAR FUSION 

2.1 INS 

The navigation frame is defined as the one where the x-axis 

points towards the geodetic north, the z-axis is on the local 

vertical pointing down, and the y-axis completes a right-

handed orthogonal frame. Position in the navigation frame is 

expressed by curvilinear coordinates  
Tnr h   where, 

  is the latitude,   is the longitude and h  is the height 

above the Earth surface. Motion equations in the n-frame are 

given by (Titterton and Weston 2004):  
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where  n

N E Dv v v v  is the vehicle velocity; b nT   

and n bT   are the transformation matrices from the body frame 

(The x-axis is parallel to the vehicle longitudinal axis of 

symmetry, pointing forward, the z-axis points down and the y-

axis completes a right-handed orthogonal frame) to the n-

frame and vice-versa, respectively;
bf is the measured specific 

force; n

ie  is the Earth turn rate expressed in the n-frame; n

en  

is the turn rate of the n-frame with respect to the Earth; 1

ng  is 

the local gravity vector, M and N are the radii of curvature in 

the meridian and prime vertical respectively; and b

nb  is the 

skew-symmetric form of the body rate with respect to the n-

frame given by: 

 

 b b n b n n

nb ib ie enT         (3)  

 

The INS mechanization equations provide no information 

about errors in the system states as they process raw data from 

the Inertial Measurement Unit (IMU) to estimate navigation 

parameters. The IMU outputs contain additional errors that 

cannot be compensated for. To improve the INS performance, 

it is necessary to develop an error model, which describes how 

the IMU sensor errors propagate into navigation errors through 

the motion equation. These navigation errors are then 

corrected for in order to obtain an improved navigation 

solution. Several models (e.g. Titterton and Weston 2004; 

Jekeli 2000) were developed to describe the time-dependent 

behaviour of these errors. The classic approach is perturbation 

analysis, in which navigation parameters are perturbed with 

respect to the true navigation frame. Perturbation is 

implemented via a first-order Taylor series expansion of the 

states. A complete derivation of this model can be found in 

Britting (1971) and Shin (2001). The error state vector model 

is defined as 
T

n n n

a gx r v b b         , 15x   and 

consists of position error, velocity error, attitude errors, and 

accelerometer and gyro bias/drift. The state-space model is 

given by: 

 

x F x G       (4) 
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A detailed description of the parameters in Eq. (4) is given in 

Appendix A.  

2.2 Fusion 

For the fusion of the INS and lidar data, a Kalman filter is 

implemented. The Kalman filter algorithm involves: i) 

prediction of the state based on the system model, and ii) 

update of the state based on the measurements. A short 

description of the Kalman Filter is given in Appendix B. 

Several approaches for fusing INS with lidar have been 

considered. Here, we propose a fusion methodology, which is 

based on detection of building corners from the lidar data for 

buildings with a known position (e.g., ground plan 

information). With such information at hand, an approximation 

of the unknown actual vehicle position may be obtained and 

utilized as a position aiding to the INS. 

 

We consider an urban navigation scenario. There, usually the 

elevation of the trajectory is constant, and so, the assumption 

is that the vehicle is traveling at a constant height. Figure 1 

illustrates such a typical scenario. There, actual position of the 

vehicle is marked by a blue rectangle, INS vehicle position is 

marked by red circle, and the building corner that has been 

crossed is marked by a green triangle. 
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Figure 1: A corner detection scenario 

 

It is assumed that the angle between the lidar measurement 

and the calculated INS range is small. Thus, employing the 

law of cosines, the distance between the INS and the true 

position,  may be given by: 

 
2 2 2 2lidar INS lidar INS            (6) 

where the calculated INS range defined from the INS position 

to the known detected corner is: 

   
2 2

INS INS GIS INS GISx x y y    
     (7) 

 

Next, we find, the unknown position of the vehicle  t tx y by 

solving the following two algebraic equations for the lidar 

measured range  

 

   
2 2

lidar t GIS t GISx x y y          (8) 

 

and the distance between the INS and the true position 

 

   
2 2

t INS t INS
x x y y          (9) 

 

Then, the computed position  t t tp x y is used as a 

position aiding to the INS. That is, the difference between the 

estimated INS position, INSp , and the above-mentioned 

calculated position is used as the residual measurement, 

INS tz p p  ,  in the Kalman Filter.  

This relatively simple strategy enables turning the laser 

scanning related information into a reference/control 

information that is added into the navigation solution. 

3 ANALYSIS AND DISCUSSION 

To evaluate the proposed approach a simulated test of a 

vehicle’s trajectory traveling in a constant velocity of 50 km/h 

for 60 seconds is studied. The elevation is set to a constant 

value throughout the trajectory. Laser ranging noise is 

considered having a std. of 0.05[ ]L m  . The INS contains an 

Inertial Measurement Unit (IMU) with a classical 

implementation of a triad of accelerometers and gyros. It is 

assumed that the accelerometer and gyro measurements 

contain only of white noise with a std. of 

5[ ]Acc g  and 0.02[deg ]Gyro hr  .  

To evaluate the contribution of the proposed approach, 

position and velocity error measures are examined. To that 

end, the following error measure is utilized: 

( ) ( ) ( )
q aiding nominal

t q t q t        (10)  

where ( )q t is the error for state q , ( )aidingq t is the state 

history obtained from the aiding of vehicle constraints and 

( )nominalq t
 

is the nominal state history. The position and 

velocity errors are obtained from 

 

     
22 2

pos lat long h     
      (11) 

2 2 2( ) ( ) ( ) ( )vel vn ve vdt t t t     
      (12) 

 

where  h t ,  lat t  and  long t  are the height, latitude and 

the longitude errors respectively and  vn t ,  ve t  and 

 vd t  are the north, east and down velocity errors, 

respectively. 

Performance of the fusion depends on the time difference 

between two successive crossing detections. These detections 

are translated into two successive measurements. We consider 

the time between two successive measurements to be 5 

seconds. The filter functions then in a prediction mode for the 

next 5 seconds until the following measurement is provided. 

For simplicity, the time between two consecutive 

measurements remains constant throughout the trajectory. The 

results of such aiding are presented in Figure 2 for position 

error and in Figure 3 for velocity errors. In both cases the 

results are compared to the drift when using the standalone 

INS solution. 
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Figure 2: Position error for lidar aiding versus standalone INS 
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Figure 3: Velocity error for lidar aiding versus standalone INS. 

As Figure 2 shows, the standalone INS position solution drifts, 

and after 60 seconds has an error of about 80 meters. When 

applying laser scanning data as an aiding, at a 5 seconds 

interval, the INS drift drops dramatically and the combined 

solution is bounded by a maximal error which is lower than 

0.4 meter, and even lower on average. Notice that this 

performance was obtained with only twelve measurements (at 

a 5 seconds interval). The same behavior occurs with the 

velocity error, where the standalone INS drifts and has an error 

of 3.3 m/s after 60 seconds, while the lidar aiding solution has 

a bounded error of 0.4 m/s and an average error of 0.15 m/s 

after 60 seconds. It follows that such aiding greatly improves 

the standalone INS solution and reaches a bounded solution for 

both position and velocity vectors.  

 

To examine the proposed approach further, we use the same 

trajectory but with different time intervals between two 

measurements. The intervals vary from 0.05 seconds (equaling 

the INS sampling rate), to 40 seconds. The number of 

measurements throughout the trajectory varies accordingly 

from 1 (40 seconds) to 1200 (0.05 seconds). For each period, 

the aiding position and velocity errors along the trajectory 

were obtained. For presentation purposes, we average of the 

position and velocity errors, leading to two values that 

describe the aiding performance. Graphs of these two mean 

values as a function of the time interval are shown in Figures 

4-5. As can be seen, the higher the number of measurements 

(small time between two detections) the better fusion 

performance is. A comparison that is made for the performance 

of the aided INS to the fusion between GPS/INS while 

assuming GPS is continuously available is also shown in both 

figures. It is shown that when the time interval is of 5 seconds, 

the performance is almost equivalent to the one achieved by 

the GPS/INS integration. Thus, availability on ground plans as 

landmarks and the derivation of equivalent information (e.g., 

building corners, but other objects as well) from the laser 

scanning data can contribute to securing the accuracy-level of 

the mapping data in such zones. 

4 CONCLUSIONS 

This paper explored the possibility of using lidar 

measurements as aiding by using detected crossing between 

buildings. Employing the proposed methodology, crossing data 

are translated into positional information, which are then used 

as aiding to the INS. Simulation results of such fusion showed 

improvements relative to the standalone INS performance in 

estimating the position and velocity components. Other than 

applying the proposed methodology on actual data, future 

research, will also address cases of partial GPS availability 

and utilize this information into the proposed methodology. 
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Figure 4: Mean position error for lidar aiding versus 

standalone INS  
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Figure 5: Mean velocity error for lidar aiding versus 

standalone INS 
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6 APPENDIX – A 

The following matrixes are associated with the INS state space 

error model Eq. (4)  
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where 
Tn

N E Dv v v v  is the velocity vector in the 

n-frame and the rest of the parameters were defined in the 

text. 

7 APPENDIX B 

For the fusion of the INS and lidar data, a Kalman filter is 

proposed. The Kalman filter algorithm involves: i) prediction 

of the state based on the system model, and ii) update of the 

state based on the measurements. The covariance associated 

with the prediction step is given by (Zarchan and Musoff 

2005): 

 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-5/W12, 2011
ISPRS Calgary 2011 Workshop, 29-31 August 2011, Calgary, Canada

235



 

 

( )

1
ˆ ˆ , F t t

k kx x e  

   
 (B.1)  

1

T

k k kP P Q 

   
   (B.2) 

 

where the superscripts – and + represent the predicted and 

updated quantities (before and after the measurement update, 

respectively); x and P are the system state and the associated 

error covariance matrices respectively;   is the state 

transition matrix from time k to time k+1; ( )F t  is the system 

dynamics matrix; and kQ  is the process-noise covariance-

matrix (Maybeck 1994) given by: 
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where, ( )G t is the shaping matrix, and t  is the time step.  

 

The update is implemented by: 
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where kK is the Kalman gain; kH is the measurement matrix; 

kR is the measurement noise covariance matrix; and kz is the 

measurement.  

 

 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-5/W12, 2011
ISPRS Calgary 2011 Workshop, 29-31 August 2011, Calgary, Canada

236


