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ABSTRACT:

The increasing use of electrical energy has yielded more necessities of electric utilities including transmission lines and electric
pylons which require a real-time risk monitoring to prevent massive economical damages. Recently, Airborne Laser Scanning (ALS)
has become one of primary data acquisition tool for corridor mapping due to its ability of direct 3D measurements. In particular, for
power-line risk management, a rapid and accurate classification of power-line objects is an extremely important task. We propose a
3D classification method combining results obtained from multiple classifier trained with different features. As a base classifier, we
employ Random Forests (RF) which is a composite descriptors consisting of a number of decision trees populated through learning
with bootstrapping samples. Two different sets of features are investigated that are extracted in a point domain and a feature (i.e.,
line & polygon) domain. RANSAC and Minimum Description Length (MDL) are applied to create lines and a polygon in each
volumetric pixel (voxel) for the line & polygon features. Two RFs are trained from the two groups of features uncorrelated by
Principle Component Analysis (PCA), which results are combined for final classification. The experiment with two real datasets
demonstrates that the proposed classification method shows 10% improvements in classification accuracy compared to a single
classifier.

1. INTRODUCTION opportunity to analyze contextual properties between features
(e.g., a relation of line-line, line-polygon, polygon-polygon). In
Airborne Laser Scanning (ALS) data is a promising data source this research, we aims to investigate complementary role of
being able to cost-effectively cover a huge area and possessing object-based feature compared to point-based one and develop a
an advantage of direct 3D measurement with high density, high ~ Multiple Classifier System (MCS) to synergistically fuse the
accuracy, and multiple echoes compared to other remote sensed classification results obtained from each feature for power-line
data. ALS has been mainly utilized for Digital Terrain Model scene classification.
(DTM) data, urban management, costal line detection, etc.
Recently, many power-line industries are using ALS for the 2. PREVIOUS RESEARCH
purpose of the risk management of electric utilities such as
transmission lines and electric pylons. Currently, 340,000 km of =~ Many researches on classification are carried out in various
power networks have been installed across entire North ways according to data source and target object. Baillard &
America continent (NERC). The complicatedly connected Maitre (1999) represented elevation data as a node and an edge
power-line network requires a regular monitoring to ensure a potential function based on Markov Random Field (MRF) in
reliable supply of electric power. Otherwise, a considerable order to identify ground. For extracting bare-earth surface, Lu et
amount of economical loss and inconvenience might happen as al. (2009) introduced three types of features (i.e., point-features,
Northeast Blackout of 2003. To prevent such a disaster in segment-feature, and disc-feature) from ALS incorporated in
advance, most of utility firms are trying to build their own risk Conditional Random Field (CRF). Not many researches related
management system to deliver vegetation clearance report and to power utilities including classification and modelling have
mitigate possible risks within few days. However, current status been reported. Kim & Sohn (2010) proposed a point- and voxel-
of the state-of-the art technologies still involves labour-centric scaled feature extraction and 3D classification using Random
processing, in particular for scene classification. Thus, an Forests in power-line scene where a few structures such as wire,
automated classification method is urgently required to realize building, pylon, and vegetation would be vertically overlapped.
the rapid corridor mapping. Jwa et al. (2009) introduced an automatic algorithm to
reconstruct 3D transmission models from ALS point of clouds
In this study, we extend our previous research by investigating using non-linear least square regression method. McLaughlin
object-based features (i.e. features that are structured in line and (2006) performed transmission line identification by applying
polygon). In fact, key objects comprising power-line scene such Gaussian mixture model to eigenvalues computed from

as wire and pylon can be viewed as lines and their associations, ellipsoid neighbourhoods and transmission line modelling by
while building as polygon objects, and vegetation as non- iteratively estimating model parameters using the tangent to the
structured object. Compared to point-based feature, the object- span at each point. Melzer & Briese (2004) extracted power

based feature provides certain advantageous aspects for lines from LIDAR data using iterative Hough transform (HT)
classification purpose. For instance, the object-based feature is and modelled them by grouping close reference vectors
useful to analyze a group of points if they are a structured object quantized by Neural Gas Network.

or non-structured one. In addition, it also provides an
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Feature design and feature extraction are important steps in
pattern recognition and classification. Lipson & Shpitalni (1996)
defined 13 regularities between lines for 3D object
reconstruction from a single freehand line drawing. Certain
regularities or features may correspond to noise and thus do not
have any information due to correlation between them.
Therefore, regularity or feature selection is necessary for
effective 3D object reconstruction from a single line drawing
(Yuan et al., 2008). Elder & Goldberg (2002) suggested a
perceptual contour grouping from natural images by applying
the inferential power of three classical Gestalt cues: proximity,
good continuation, and luminance similarity. They represented
the quantitative description of three cues as likelihood
distribution by training samples in order to calculate posterior
probability distribution under Bayesian framework. Rutzinger et
al. (2008) used surface roughness, point density ratio of 2D to
3D domain, and echo information as well as FW features for
urban vegetation classification. In this research, RANSAC and
Minimum Description Length (MDL) were employed to
produce line and polygon objects for additional feature
extraction (Yang & Forstner, 2010).

Another classification approach is to adopt the machine learning
technique, which can yield a decision boundary or a decision
classifier. Lodha et al. (2006, 2007) applied SVM and
AdaBoost to ALS data using class- and sample-weighted feature
values. Random Forests is one of the state-of-the-art
classification methods (Chehata et al., 2009). Narayanan et al.
(2009) applied ensemble classifiers to generate under-water
habitat maps using FW data collected by SHOALS 3000. The
Multiple Classifier System (MCS) makes a final decision by
combining a set of classifiers. Suutala & Roning (2005)
presented a MCS consisting of two combination stages:
classifier fusion from features and classifier fusion from
samples in order for person identification from footstep.
Samadzadegan et al. (2010) proposed a classifier fusion
composed of one-against-one SVM and one-against-all SVM
learned from a feature set for ALS data classification.

3. ENSEMBLE CLASSIFIER & MCS
3.1 Ensemble classifier

RF is a combination of a number of decision trees which are
generated by learning instance groups sampled independently
from a training set (Breiman, 2001). Each tree is branched off
by splitting the nodes on a limited number of features randomly
selected from input vector until they are impure in terms of
class. Such random feature selection promotes the diversity of
trees, and it improves classification performance at the end.
After an ensemble of trees is populated, the final prediction is a
majority vote of their individual predictions. We defined
confidence value of each class as a proportion of votes of
corresponding class. Several setup variables are necessary to
run RF: the number of input features (M), the number of
features randomly selected (F) and the number of populated
trees (T). The larger M is, the more complicated each tree is.
That is, RF might lead to overestimated decision trees. To avoid
this problem, important feature selection is required. F is
estimated as the first integer less than log,M+1 (Breiman, 2001).
In addition to RF, the well-known ensemble methods are
bagging where lots of sets of instances called bootstrap
replicates randomly drawn from a training data grow an
ensemble of trees (Breiman, 1996) and boosting which
increases its performance by more considering the misclassified
instances in the previous decision (Mclver et al, 2002).
However, bagging is likely to make similar decision trees due to
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the likeness to the bootstrapping samples and boosting tends to
lead to poor performance on data with noise because it would
regard noises as misclassified cases (Dietterich, 2000).

3.2 Multiple classifier system

Information fusion stands for the data fusion from different
sources: sensory data, patterns, features, decisions, knowledge,
classifier and so on. Multiple Classifier System means classifier
fusion among the information fusion. MCS is a combination of
a group of classifiers and its advantage is to reduce the risk of
choosing a poor classifier in Single Classifier System (SCS) by
considering all classifiers for a decision (Dara, 2007). Generally,
there are two types of structures for MCS construction: parallel
and cascade. The parallel MCS is more common architecture.
All classifiers comprising of the MCS operate in parallel and
their predictions are combined for a final decision. The
combination strategies are maximum, minimum, sum, product,
median, majority vote, averaging as simple ways and fuzzy
integrals, weighted averaging, decision templates, and logistic
regression as complicated ways (Dara, 2007). On the contrary,
classifiers of the sequential MCS are applied in sequence, that is,
an output of a classifier is used as an input of next classifier.
This decreases a problem complexity, but the performance of
each classifier extremely depends on that of its previous
classifier. We choose the parallel MCS because two sets of
input features are independent and sum rule due to the use of
exactly same classifier (Sum rule works well with similar
classifier). Sum rule makes a final decision by choosing a class
corresponding to the highest value after adding confidence
values from each classifier.

4. METHOD

In this research, our goal is to classify unlabeled power-line
corridors into vegetation, wire, pylon, and building. Terrain is
not an interesting class in this paper. Therefore, we are
supposing that terrain has been identified by an independent
terrain filtering algorithm.

4.1 Feature extraction

4.1.1 Point-based features

Kim & Sohn (2010) investigated 21 features which enable to
classify vegetation, wire, pylon, and building. For each point,
they were computed with neighbouring points taken in a sphere
with fixed radius. They then selected 12 out of 21 features
according to the importance estimated by Random Forests: two
important features for each class and four common features as
shown in Table 1.

Table 1. 12 important features in power-line scene (Kim &

Sohn, 2010).
Class Feature Description
Sphericity A 3 /A, eigenvalue(A> 2> A3)
Vegetation Density ratio Point density of a circle / of a
sphere
Wire HT Hough transform
Wire echo Proportion of firs return
Pylon OnSegs Occupied segments
ConOnSegs Sequentially occupied segments
Surface Averaged residual between points
Building roughness and a estimate plane
Building echo Proportion of single return
Height Height from ground
Anisotropy (A=A 3 )/A, eigenvalue(A> > A3)
Common Point density Point count of unit volume
Terrain echo Proportion of single and last return
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There would exist correlations and dependencies between the
features above. Therefore, we applied Principle Component
Analysis (PCA) to remove such factors. The amount of
information loss was limited less than 5%. As a result of PCA, 6
largest principle components were selected, that is, the
dimension of feature space was reduced from 12 to 6.

4.1.2  Object-based features

A feature presented by a set of points belonging to a group can
be augmented if they are truly a part of an object. From this
viewpoint, wire and pylon can be typically decomposed into
line, but pylon is close to line as low voltage type. On the other
hand, building can be depicted as plane. Vegetation tends to be
neither line nor plane (i.e., non-structured object). After voxel
segmentation of 3D points, RANSAC and Minimum
Description Length (MDL) were applied to produce line and
plane segments for each occupied voxel (Ying & Forstner,
2010). Unlike features from point domain, features from object
domain have contexture properties between objects. For
instance, colinearity indicates averaged angle difference
between neighbours topologically placed at previous and next
from a certain line. A 3D polygon and multiple 3D lines are
generated in each voxel (Figure 1). This is because there might
exist two more wires in the volume. The voxel sizes for line and
polygon generation are 1.5m and 15m respectively.

The follows are the features extracted from line models. Line
segments within a buffer volume produced from a certain line
are chosen as neighbours of the line.

Line slope: is the angle from XY plane to the line. Pylon is
mostly vertical structure, so its line slope tends to be 90 degrees.

Line residual: is the averaged orthogonal distance from points
to the line segment. Wire is small, but vegetation and building is
large on this.

In-out shell: Two different radius cylinders (in-out shell) are
produced from the line segment. This feature stands for the ratio
of number of points existing within inner and outer shell. Wire
does not have any points in outer shell generally.

Orientation direction difference: is to highlight wire which
typically has same orientation direction. This feature indicates
the orientation angle difference between a line and its
neighbours projected on XY plane.

Parallelism: means the magnitude of that a line is parallel to its
side lines. Most wires are parallel each other.

Structurality: Components of most man-made structures tend
to be structurally regular, e.g., angles between struts of a truss
bridge are likely to be 0, 45, and 90 degrees for an effective
support. Similarly, struts of an electric pylon commonly form
the regular angles. Thus, if angle difference between a target
line and its neighbours is close to 0, 45, and 90 degrees, a high
value is assigned to the line. Wire can is highlighted as well.

Colinearity: is the averaged angle difference between lines.
Wires and some of pylons could be characterized.

Orthogonality: is opposite to colinearity. Parts of pylon would
have high values, but wire is small.

Standard deviation of line slope: is a root mean squared slope
difference of lines along a voxel column. Lines corresponding
to vegetation would be randomly populated, so vegetation is
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high. Building lines are also randomly generated, but their line
slopes are mostly same because they lie on a plane. Wire and
pylon lines have similar slope.

(c) 3D polygon segments
Figure 1. Line and polygon segments creation from LIDAR.

Number of crossing lines: A set of points within each voxel
were used to generate multiple lines until the derivative of total
line description score changes from negative to positive or the
number of created lines reaches a given threshold. As the result,
most vegetation and most building produced maximum number
of line models. This presents the number of generated models in
a voxel.

Line description length: is the ration of total description
lengths when supposed there is no model and when lines are
created. Wire and pylon are expected to be high.

The next lists the features extracted from polygon models. Each
occupied voxels generates a 3D polygon. 26 adjacent voxels to
a voxel including a target polygon are considered as neighbours.
Polygon slope: is slope of plane with respect to XY plane.
Polygon from pylon is expected to be vertical.

Polygon residual: Averaged orthogonal distance to a polygon.
This feature is small in building.

Ground frequency: is the proportion of ground under a
polygon. There is rarely ground under building polygon.
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Surface normal difference: is an averaged surface normal
difference of a polygon and adjacent polygons. Building with
gentle roof slope might be approximately zero degree.

Perpendicularity: is a contrary feature to surface normal
difference. If surface normal difference equals to 90 degrees
(i.e., adjacent polygons are perpendicular), this feature is
maximum.

Standard deviation of surface normal: This feature is a root
mean squared surface normal difference of a set of polygons
close to each other. This is a feature for building.

Polygon description length: is the ration of total description
lengths when supposed no model and when polygons are
created. Building would be high.

All points are not used to model lines or polygons, so features
of the unused points are brought from the nearest line or
polygon. After that, all feature values are normalized using
bipolar sigmoidal distribution [-1, +1] and the features then are
projected by PCA to remove correlations between them. For
object feature, PCA chose 11 largest principle components out
of 18.

4.1.3 Validation of Object-based feature

For generating object-based feature, we conduct a “blind”
segmentation approach, in which all points captured in a voxel
are forced to be converted into either line or polygon regardless
of the true classes. This “blind” segmentation might cause some
problems. For instance, parallel lines are produced from
building points whose space is fairly regular, and coplanar
polygons were occasionally yielded from wire (especially,
bundled conductors) and pylon. Therefore, an additional step is
necessary to validate whether the generated lines and the
generated polygons are populated from real line objects and real
polygon objects or not.

Vesstaten eatien

I i
. (a) Before line validation I (b) After line validation

Figure 2. Effectiveness of line feature validation on
Structurality (x-axis is normalized feature values [-1,+1]).

For line validation, we first picked up points existing within a
buffer from each line segment, and then rotated them through
the angle between the line and XY plane in order to project
them on XY plane. After that, their xy were converted into
Hough domain. The ratio of global maximum in the Hough
accumulator to the number of taken points was multiplied by
line features to augment them. Secondly, we validate polygons
through computing the ratio of points composing of each
polygon to its outline points, and then we multiplied the ratio by
polygon features. Polygon from building would be larger than
polygons from the other classes in terms of the ratio value
because building polygon possesses relatively more points
inside. Figure 2 shows an effectiveness of line validation which
produces distinguishable distributions of vegetation and pylon.

4.2 Prediction fusion

Random Forests (RF) enables to output the confidence value of
each class. From point-based features and object-based features
extracted in section 4.1.1 and 4.1.2, we generate two different
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RF classifiers on a same dataset. As mentioned in section 3.2,
we determined a parallel MCS of prediction fusion because two
feature extraction methods are independent. For a combination
strategy, we employed “Sum Rule” because both classifiers are
populated in a same way, Random Forests (Dara, 2007). That is,
confidence values voted by two classifiers are added for each
class. Finally, a class with maximum confidence is chosen as a
final prediction. Figure 3 delineates an entire workflow from
feature extraction to classifier combination.

‘ Training set ‘ ‘ Test set ‘

Preprocessing

—x—

e — =
! Line & Polygon
v Generation

v Feature
‘ Point—based ‘ ! Extraction
Feat!
eelores Object—based
Features
v
Feature Object feature
Selecticn Validation
Feature
Refinement
PCA PCA
(Point) (Object) @
l T
RF classifier - PCA PCA 77 RF classifier Random
(Point) (Point) (Object) (Object) Forests
L Prediction Prediction !
(Point) (Object)
I I
| Prediction | Prediction
77 Fusion - & Fusion

<«— Flow of training set
<——- — Flow of test set

Final decision

Figure 3. Flow chart of Random Forest based MCS
classification for training and testing.

The expected effectiveness of MCS is a decrease of
classification error by complementing each classifier. RF
classifier from point feature more focuses on classification and
RF classifier from line & polygon features once more validates
predictions of the other classifier which are not confident.

5. EXPERIMENTAL RESULT
5.1 Experiment data

We tested three subsets taken from two different corridors of
high voltage type in California, USA. They were collected by
LMS-Q560 of Riegl with 30/m” of the point density on average.
Two subsets from a scene were picked up for training and
testing. One more subset was taken from a different scene from
the previous one to evaluate a reliability of our approach. The
two test sets are denoted TE#1 and TE#2 respectively, and
training set is denoted TR. All datasets include vegetation, wire,
electric pylon, and building. Additional major class contained in
the test scenes is fence object, but we do not take into account
of this object for classification for current study. TR and TE#1
contain 115kV and 230kV transmission lines, lattice type of
pylons, gable roofed type of buildings, and leaf-on trees.
Moreover, most parts of 230kV conductors consist of two
bundled wires. There are 230kV single conductor, steel pole
type of pylon, gable building, and leaf-on trees in TE#2. Both
of them are categorized into high voltage type according to
American National Standards Institute (ANSI).

5.2 Point-based RF (PRF) and Object-based RF (ORF)

Kim & Sohn (2010) introduced a classification method using
Random Forests from point features. Here PRF is same as their
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method, but we applied features uncorrelated by PCA using 12
chosen critical features to Random Forests. Consequently, 6
principle components were retained. For RF the number of

random features is set F=3 following the equation described in

section 3.1, in our case M=6. The ORF takes 11 principle

components from 18-dimensional feature space, so F=4.

Table 2. Confusion matrix for TE#1 using PRF (F=3, T=60)
Class Veget Wire  Pylon  Bldg | Recall (%)
Veget 48,120 40 30 1224 97.38
Wire 114 8,416 242 113 94.72
Pylon 7 93 1,298 9 92.25
Bldg 1,490 13 0 92,206 97.95
Precision (%) 97.02  99.39  90.88  99.15

Table 3. Confusion matrix for TE#1 using ORF (F=4, T=60)
Class Veget  Wire Pylon Bldg | Recall (%)
Veget 46,564 379 1,575 896 94.23
Wire 128 8,412 55 20 97.64
Pylon 321 44 1,031 11 73.28
Bldg 5,049 191 132 88,337 94.27
Precision (%) 89.44 9320 3691  98.96

The numbers in Table 2 and 3 stand for point count. The
confusion matrices present that PRF seems to be better than
ORF. However, they are not competitors each other, but
complementers for next fusion step. A lattice steel pylon which
is a steel framework construction caused an accuracy decrease
of pylon in ORF because some of line features for the pylon
were not extracted incorrectly. Each of PRF and ORF recorded
97.5% and 94.3% overall performance.

30

25| L PRF
20 ORF
15 - | B2 Fusion

10 4

i/

Vegstaticn Wi

Cmission Error (%)

Building

PRF
1| EZ=3 ORF
2 Fusion

Commission Ermor (%)
8

Vegetation Wire
Figure 4. Classification error for TE#1

Building

5.3 Combination of two predictions

The second experiment is to combine two predictions that are
confidence values for each class, resulted by PRF and ORF. As
shown in figure 4, the omission errors and commission errors
were simultaneously declined thanks to complementary activity
between two success rates to 98.5% and the accuracy for all
classes was also much better than that of each single classifier.
Thus, the advantage of our MCS is that ORF validates errors
from PRF once more. However, we cannot guarantee our MCS
is superior to PRF or ORF in all cases (Dara, 2007).

Figure 5 depicts how PRF and ORF are complementary. In PRF,
10 % of misclassification cases are strongly confident even if
they are false confidences. Such false confidences were
disappeared by combining classifiers. Probably, false
confidences with some of misclassification cases might change
into true confidences or their values would decrease.
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Figure 5. Difference between confidences corresponding to
predicted class and true class in case of misclassification
inTE#1.

5.4 Classification on different scene (same voltage type)

To validate our approach, we applied it to another data set
(TE#2) taken from different source (from different site and at
different time). As TE#2 has different scene characteristics from
TR, point-based features respectively extracted from two data
might be different. However, object-based features would be
invariant (wire is always linear, building planar, pylon vertical,
and vegetation scattering). PRF seems to be very sensitive to
data source. There exist numbers of clear omission errors of
building incorrectly committed into wire and vegetation. Some
of wire points were classified into pylon (Figure 6-a). This does
not happen in real. Lots of such obvious errors were corrected
by our suggested method (Figure 6-b). However, confusion
between vegetation and building still exist when they are close
or when vegetation are not broadly thick with leaves such as
low vegetation. Quantitatively, the class overall success rate
increased from 83.0% to 93.9%.

2

(b) Prediction fusion
Figure 6. Classification map of TE#2 (green: vegetation, red:
wire, blue: pylon, and yellow: building)

6. CONCLUSIONS

We suggested random forests based multiple classifier system
for power-line scene classification from airborne laser scanning
data. For the RF, we investigated two sets of features
respectively extracted from two different domains: 12 features
from point domain and 18 features from line & polygon domain.
PCA was then applied to the features in order to eliminate
correlations and dependencies between them. At the end, 6 and
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11 principle components were retained among point features
and line & polygon features respectively. It seems that PRF
generally performs well on the data sets from same sources as
learning set and better than ORF, but there are still a number of
errors which are regarded as obvious misclassification.
Therefore, we designed another classifier which is able to
remove such clear errors as possible by complementing each
other. ORF was invented for the purpose of validation of PRF.
That is, line- & polygon-based classifier encourages point-based
classifier to judge better by adding confidence when the
decision is not obvious. We observed not only the decrease in
both omission and commission error but also the increase in
performance after combining the results of two classifiers. We
tested a new data (TE#2) taken from a different site to validate
our approach. As a result of the experiment, 93.9%
classification performance was achieved. RF-based MCS
resulted in 10% improvement compared to PRF. Therefore, we
conclude the suggested approach is not definitely sensitive to
data source.
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