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ABSTRACT:  
 
The increasing use of electrical energy has yielded more necessities of electric utilities including transmission lines and electric 
pylons which require a real-time risk monitoring to prevent massive economical damages. Recently, Airborne Laser Scanning (ALS) 
has become one of primary data acquisition tool for corridor mapping due to its ability of direct 3D measurements. In particular, for 
power-line risk management, a rapid and accurate classification of power-line objects is an extremely important task. We propose a 
3D classification method combining results obtained from multiple classifier trained with different features. As a base classifier, we 
employ Random Forests (RF) which is a composite descriptors consisting of a number of decision trees populated through learning 
with bootstrapping samples. Two different sets of features are investigated that are extracted in a point domain and a feature (i.e., 
line & polygon) domain. RANSAC and Minimum Description Length (MDL) are applied to create lines and a polygon in each 
volumetric pixel (voxel) for the line & polygon features. Two RFs are trained from the two groups of features uncorrelated by 
Principle Component Analysis (PCA), which results are combined for final classification. The experiment with two real datasets 
demonstrates that the proposed classification method shows 10% improvements in classification accuracy compared to a single 
classifier. 
 
 

1. INTRODUCTION 

Airborne Laser Scanning (ALS) data is a promising data source 
being able to cost-effectively cover a huge area and possessing 
an advantage of direct 3D measurement with high density, high 
accuracy, and multiple echoes compared to other remote sensed 
data. ALS has been mainly utilized for Digital Terrain Model 
(DTM) data, urban management, costal line detection, etc. 
Recently, many power-line industries are using ALS for the 
purpose of the risk management of electric utilities such as 
transmission lines and electric pylons. Currently, 340,000 km of 
power networks have been installed across entire North 
America continent (NERC). The complicatedly connected 
power-line network requires a regular monitoring to ensure a 
reliable supply of electric power. Otherwise, a considerable 
amount of economical loss and inconvenience might happen as 
Northeast Blackout of 2003. To prevent such a disaster in 
advance, most of utility firms are trying to build their own risk 
management system to deliver vegetation clearance report and 
mitigate possible risks within few days. However, current status 
of the state-of-the art technologies still involves labour-centric 
processing, in particular for scene classification. Thus, an 
automated classification method is urgently required to realize 
the rapid corridor mapping. 
 
In this study, we extend our previous research by investigating 
object-based features (i.e. features that are structured in line and 
polygon). In fact, key objects comprising power-line scene such 
as wire and pylon can be viewed as lines and their associations, 
while building as polygon objects, and vegetation as non-
structured object. Compared to point-based feature, the object-
based feature provides certain advantageous aspects for 
classification purpose. For instance, the object-based feature is 
useful to analyze a group of points if they are a structured object 
or non-structured one. In addition, it also provides an 

opportunity to analyze contextual properties between features 
(e.g., a relation of line-line, line-polygon, polygon-polygon). In 
this research, we aims to investigate complementary role of 
object-based feature compared to point-based one and develop a 
Multiple Classifier System (MCS) to synergistically fuse the 
classification results obtained  from each feature for power-line 
scene classification. 
 

2. PREVIOUS RESEARCH 

Many researches on classification are carried out in various 
ways according to data source and target object. Baillard & 
Maître (1999) represented elevation data as a node and an edge 
potential function based on Markov Random Field (MRF) in 
order to identify ground. For extracting bare-earth surface, Lu et 
al. (2009) introduced three types of features (i.e., point-features, 
segment-feature, and disc-feature) from ALS incorporated in 
Conditional Random Field (CRF). Not many researches related 
to power utilities including classification and modelling have 
been reported. Kim & Sohn (2010) proposed a point- and voxel-
scaled feature extraction and 3D classification using Random 
Forests in power-line scene where a few structures such as wire, 
building, pylon, and vegetation would be vertically overlapped. 
Jwa et al. (2009) introduced an automatic algorithm to 
reconstruct 3D transmission models from ALS point of clouds 
using non-linear least square regression method. McLaughlin 
(2006) performed transmission line identification by applying 
Gaussian mixture model to eigenvalues computed from 
ellipsoid neighbourhoods and transmission line modelling by 
iteratively estimating model parameters using the tangent to the 
span at each point. Melzer & Briese (2004) extracted power 
lines from LIDAR data using iterative Hough transform (HT) 
and modelled them by grouping close reference vectors 
quantized by Neural Gas Network. 
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Feature design and feature extraction are important steps in 
pattern recognition and classification. Lipson & Shpitalni (1996) 
defined 13 regularities between lines for 3D object 
reconstruction from a single freehand line drawing. Certain 
regularities or features may correspond to noise and thus do not 
have any information due to correlation between them. 
Therefore, regularity or feature selection is necessary for 
effective 3D object reconstruction from a single line drawing 
(Yuan et al., 2008). Elder & Goldberg (2002) suggested a 
perceptual contour grouping from natural images by applying 
the inferential power of three classical Gestalt cues: proximity, 
good continuation, and luminance similarity. They represented 
the quantitative description of three cues as likelihood 
distribution by training samples in order to calculate posterior 
probability distribution under Bayesian framework. Rutzinger et 
al. (2008) used surface roughness, point density ratio of 2D to 
3D domain, and echo information as well as FW features for 
urban vegetation classification. In this research, RANSAC and 
Minimum Description Length (MDL) were employed to 
produce line and polygon objects for additional feature 
extraction (Yang & Förstner, 2010). 
 
Another classification approach is to adopt the machine learning 
technique, which can yield a decision boundary or a decision 
classifier. Lodha et al. (2006, 2007) applied SVM and 
AdaBoost to ALS data using class- and sample-weighted feature 
values. Random Forests is one of the state-of-the-art 
classification methods (Chehata et al., 2009). Narayanan et al. 
(2009) applied ensemble classifiers to generate under-water 
habitat maps using FW data collected by SHOALS 3000. The 
Multiple Classifier System (MCS) makes a final decision by 
combining a set of classifiers. Suutala & Roning (2005) 
presented a MCS consisting of two combination stages: 
classifier fusion from features and classifier fusion from 
samples in order for person identification from footstep. 
Samadzadegan et al. (2010) proposed a classifier fusion 
composed of one-against-one SVM and one-against-all SVM 
learned from a feature set for ALS data classification. 
 

3. ENSEMBLE CLASSIFIER & MCS 

3.1 Ensemble classifier 

RF is a combination of a number of decision trees which are 
generated by learning instance groups sampled independently 
from a training set (Breiman, 2001). Each tree is branched off 
by splitting the nodes on a limited number of features randomly 
selected from input vector until they are impure in terms of 
class. Such random feature selection promotes the diversity of 
trees, and it improves classification performance at the end. 
After an ensemble of trees is populated, the final prediction is a 
majority vote of their individual predictions. We defined 
confidence value of each class as a proportion of votes of 
corresponding class. Several setup variables are necessary to 
run RF: the number of input features (M), the number of 
features randomly selected (F) and the number of populated 
trees (T). The larger M is, the more complicated each tree is. 
That is, RF might lead to overestimated decision trees. To avoid 
this problem, important feature selection is required. F is 
estimated as the first integer less than log2M+1 (Breiman, 2001).  
In addition to RF, the well-known ensemble methods are 
bagging where lots of sets of instances called bootstrap 
replicates randomly drawn from a training data grow an 
ensemble of trees (Breiman, 1996) and boosting which 
increases its performance by more considering the misclassified 
instances in the previous decision (McIver et al, 2002). 
However, bagging is likely to make similar decision trees due to 

the likeness to the bootstrapping samples and boosting tends to 
lead to poor performance on data with noise because it would 
regard noises as misclassified cases (Dietterich, 2000).  
 
3.2 Multiple classifier system 

Information fusion stands for the data fusion from different 
sources: sensory data, patterns, features, decisions, knowledge, 
classifier and so on. Multiple Classifier System means classifier 
fusion among the information fusion. MCS is a combination of 
a group of classifiers and its advantage is to reduce the risk of 
choosing a poor classifier in Single Classifier System (SCS) by 
considering all classifiers for a decision (Dara, 2007). Generally, 
there are two types of structures for MCS construction: parallel 
and cascade. The parallel MCS is more common architecture. 
All classifiers comprising of the MCS operate in parallel and 
their predictions are combined for a final decision. The 
combination strategies are maximum, minimum, sum, product, 
median, majority vote, averaging as simple ways and fuzzy 
integrals, weighted averaging, decision templates, and logistic 
regression as complicated ways (Dara, 2007). On the contrary, 
classifiers of the sequential MCS are applied in sequence, that is, 
an output of a classifier is used as an input of next classifier. 
This decreases a problem complexity, but the performance of 
each classifier extremely depends on that of its previous 
classifier. We choose the parallel MCS because two sets of 
input features are independent and sum rule due to the use of 
exactly same classifier (Sum rule works well with similar 
classifier). Sum rule makes a final decision by choosing a class 
corresponding to the highest value after adding confidence 
values from each classifier. 
 

4. METHOD 

In this research, our goal is to classify unlabeled power-line 
corridors into vegetation, wire, pylon, and building. Terrain is 
not an interesting class in this paper. Therefore, we are 
supposing that terrain has been identified by an independent 
terrain filtering algorithm. 
 
4.1 Feature extraction 

4.1.1 Point-based features 
Kim & Sohn (2010) investigated 21 features which enable to 
classify vegetation, wire, pylon, and building. For each point, 
they were computed with neighbouring points taken in a sphere 
with fixed radius. They then selected 12 out of 21 features 
according to the importance estimated by Random Forests: two 
important features for each class and four common features as 
shown in Table 1.  
 
Table 1. 12 important features in power-line scene (Kim & 
Sohn, 2010). 

Class Feature Description 

Vegetation 
Sphericity λ 3 /λ1, eigenvalue(λ1> λ2> λ3) 

Density ratio 
Point density of a circle / of a 
sphere 

Wire 
HT Hough transform 
Wire echo Proportion of firs return 

Pylon 
OnSegs Occupied segments 
ConOnSegs Sequentially occupied segments 

Building 
Surface 
roughness 

Averaged residual between points 
and a estimate plane 

Building echo Proportion of single return 

Common 

Height Height from ground 
Anisotropy (λ1-λ 3 )/λ1 , eigenvalue(λ1> λ2> λ3) 
Point density Point count of unit volume 
Terrain echo Proportion of single and last return 
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There would exist correlations and dependencies between the 
features above. Therefore, we applied Principle Component 
Analysis (PCA) to remove such factors. The amount of 
information loss was limited less than 5%. As a result of PCA, 6 
largest principle components were selected, that is, the 
dimension of feature space was reduced from 12 to 6. 
 
 
4.1.2 Object-based features 
A feature presented by a set of points belonging to a group can 
be augmented if they are truly a part of an object. From this 
viewpoint, wire and pylon can be typically decomposed into 
line, but pylon is close to line as low voltage type. On the other 
hand, building can be depicted as plane. Vegetation tends to be 
neither line nor plane (i.e., non-structured object). After voxel 
segmentation of 3D points, RANSAC and Minimum 
Description Length (MDL) were applied to produce line and 
plane segments for each occupied voxel (Ying & Förstner, 
2010). Unlike features from point domain, features from object 
domain have contexture properties between objects. For 
instance, colinearity indicates averaged angle difference 
between neighbours topologically placed at previous and next 
from a certain line. A 3D polygon and multiple 3D lines are 
generated in each voxel (Figure 1). This is because there might 
exist two more wires in the volume. The voxel sizes for line and 
polygon generation are 1.5m and 15m respectively.  
 
The follows are the features extracted from line models. Line 
segments within a buffer volume produced from a certain line 
are chosen as neighbours of the line.  
Line slope: is the angle from XY plane to the line. Pylon is 
mostly vertical structure, so its line slope tends to be 90 degrees. 
 
Line residual: is the averaged orthogonal distance from points 
to the line segment. Wire is small, but vegetation and building is 
large on this. 
 
In-out shell: Two different radius cylinders (in-out shell) are 
produced from the line segment. This feature stands for the ratio 
of number of points existing within inner and outer shell. Wire 
does not have any points in outer shell generally. 
 
Orientation direction difference: is to highlight wire which 
typically has same orientation direction. This feature indicates 
the orientation angle difference between a line and its 
neighbours projected on XY plane. 

 
Parallelism: means the magnitude of that a line is parallel to its 
side lines. Most wires are parallel each other. 
 
Structurality: Components of most man-made structures tend 
to be structurally regular, e.g., angles between struts of a truss 
bridge are likely to be 0, 45, and 90 degrees for an effective 
support. Similarly, struts of an electric pylon commonly form 
the regular angles. Thus, if angle difference between a target 
line and its neighbours is close to 0, 45, and 90 degrees, a high 
value is assigned to the line. Wire can is highlighted as well. 
 
Colinearity: is the averaged angle difference between lines. 
Wires and some of pylons could be characterized. 
 
Orthogonality: is opposite to colinearity. Parts of pylon would 
have high values, but wire is small. 
 
Standard deviation of line slope: is a root mean squared slope 
difference of lines along a voxel column. Lines corresponding 
to vegetation would be randomly populated, so vegetation is 

high. Building lines are also randomly generated, but their line 
slopes are mostly same because they lie on a plane. Wire and 
pylon lines have similar slope. 
 

(a) ALS data 

(b) 3D line segments 

(c) 3D polygon segments 
Figure 1. Line and polygon segments creation from LIDAR. 
 
Number of crossing lines: A set of points within each voxel 
were used to generate multiple lines until the derivative of total 
line description score changes from negative to positive or the 
number of created lines reaches a given threshold. As the result, 
most vegetation and most building produced maximum number 
of line models. This presents the number of generated models in 
a voxel. 
 
Line description length: is the ration of total description 
lengths when supposed there is no model and when lines are 
created. Wire and pylon are expected to be high. 
 
The next lists the features extracted from polygon models. Each 
occupied voxels generates a 3D polygon. 26 adjacent voxels to 
a voxel including a target polygon are considered as neighbours. 
Polygon slope: is slope of plane with respect to XY plane. 
Polygon from pylon is expected to be vertical. 
 
Polygon residual: Averaged orthogonal distance to a polygon. 
This feature is small in building. 
 
Ground frequency: is the proportion of ground under a 
polygon. There is rarely ground under building polygon. 
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Surface normal difference: is an averaged surface normal 
difference of a polygon and adjacent polygons. Building with 
gentle roof slope might be approximately zero degree. 
 
Perpendicularity: is a contrary feature to surface normal 
difference. If surface normal difference equals to 90 degrees 
(i.e., adjacent polygons are perpendicular), this feature is 
maximum.  
 
Standard deviation of surface normal: This feature is a root 
mean squared surface normal difference of a set of polygons 
close to each other. This is a feature for building. 
 
Polygon description length: is the ration of total description 
lengths when supposed no model and when polygons are 
created. Building would be high. 
 
All points are not used to model lines or polygons, so features 
of the unused points are brought from the nearest line or 
polygon. After that, all feature values are normalized using 
bipolar sigmoidal distribution [-1, +1] and the features then are 
projected by PCA to remove correlations between them. For 
object feature, PCA chose 11 largest principle components out 
of 18. 
 
4.1.3 Validation of Object-based feature  
For generating object-based feature, we conduct a “blind” 
segmentation approach, in which all points captured in a voxel 
are forced to be converted into either line or polygon regardless 
of the true classes. This “blind” segmentation might cause some 
problems. For instance, parallel lines are produced from 
building points whose space is fairly regular, and coplanar 
polygons were occasionally yielded from wire (especially, 
bundled conductors) and pylon. Therefore, an additional step is 
necessary to validate whether the generated lines and the 
generated polygons are populated from real line objects and real 
polygon objects or not.  
 

 
(a) Before line validation (b) After line validation 

Figure 2. Effectiveness of line feature validation on 
Structurality (x-axis is normalized feature values [-1,+1]). 
 
For line validation, we first picked up points existing within a 
buffer from each line segment, and then rotated them through 
the angle between the line and XY plane in order to project 
them on XY plane. After that, their xy were converted into 
Hough domain. The ratio of global maximum in the Hough 
accumulator to the number of taken points was multiplied by 
line features to augment them. Secondly, we validate polygons 
through computing the ratio of points composing of each 
polygon to its outline points, and then we multiplied the ratio by 
polygon features. Polygon from building would be larger than 
polygons from the other classes in terms of the ratio value 
because building polygon possesses relatively more points 
inside. Figure 2 shows an effectiveness of line validation which 
produces distinguishable distributions of vegetation and pylon. 
 
4.2 Prediction fusion 

Random Forests (RF) enables to output the confidence value of 
each class. From point-based features and object-based features 
extracted in section 4.1.1 and 4.1.2, we generate two different 

RF classifiers on a same dataset. As mentioned in section 3.2, 
we determined a parallel MCS of prediction fusion because two 
feature extraction methods are independent. For a combination 
strategy, we employed “Sum Rule” because both classifiers are 
populated in a same way, Random Forests (Dara, 2007). That is, 
confidence values voted by two classifiers are added for each 
class. Finally, a class with maximum confidence is chosen as a 
final prediction. Figure 3 delineates an entire workflow from 
feature extraction to classifier combination. 
 

 
Figure 3. Flow chart of Random Forest based MCS 
classification for training and testing. 
 
The expected effectiveness of MCS is a decrease of 
classification error by complementing each classifier. RF 
classifier from point feature more focuses on classification and 
RF classifier from line & polygon features once more validates 
predictions of the other classifier which are not confident.  
 

5. EXPERIMENTAL RESULT 

5.1 Experiment data 

We tested three subsets taken from two different corridors of 
high voltage type in California, USA. They were collected by 
LMS-Q560 of Riegl with 30/m2 of the point density on average. 
Two subsets from a scene were picked up for training and 
testing. One more subset was taken from a different scene from 
the previous one to evaluate a reliability of our approach. The 
two test sets are denoted TE#1 and TE#2 respectively, and 
training set is denoted TR. All datasets include vegetation, wire, 
electric pylon, and building. Additional major class contained in 
the test scenes is fence object, but we do not take into account 
of this object for classification for current study. TR and TE#1 
contain 115kV and 230kV transmission lines, lattice type of 
pylons, gable roofed type of buildings, and leaf-on trees. 
Moreover, most parts of 230kV conductors consist of two 
bundled wires. There are 230kV single conductor, steel pole 
type of pylon, gable building, and leaf-on trees in TE#2.  Both 
of them are categorized into high voltage type according to 
American National Standards Institute (ANSI).  
 
5.2 Point-based RF (PRF) and Object-based RF (ORF) 

Kim & Sohn (2010) introduced a classification method using 
Random Forests from point features. Here PRF is same as their 
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method, but we applied features uncorrelated by PCA using 12 
chosen critical features to Random Forests. Consequently, 6 
principle components were retained. For RF the number of 
random features is set F=3 following the equation described in 
section 3.1, in our case M=6. The ORF takes 11 principle 
components from 18-dimensional feature space, so F=4.  
 
Table 2. Confusion matrix for TE#1 using PRF (F=3, T=60) 
Class Veget Wire Pylon Bldg Recall (%) 
Veget 48,120 40 30 1224 97.38 
Wire 114 8,416 242 113 94.72 
Pylon 7 93 1,298 9 92.25 
Bldg 1,490 13 0 92,206 97.95 
Precision (%) 97.02 99.39 90.88 99.15  

 
Table 3. Confusion matrix for TE#1 using ORF (F=4, T=60) 
Class Veget Wire Pylon Bldg Recall (%) 
Veget 46,564 379 1,575 896 94.23 
Wire 128 8,412 55 20 97.64 
Pylon 321 44 1,031 11 73.28 
Bldg 5,049 191 132 88,337 94.27 
Precision (%) 89.44 93.20 36.91 98.96  

 
The numbers in Table 2 and 3 stand for point count. The 
confusion matrices present that PRF seems to be better than 
ORF. However, they are not competitors each other, but 
complementers for next fusion step. A lattice steel pylon which 
is a steel framework construction caused an accuracy decrease 
of pylon in ORF because some of line features for the pylon 
were not extracted incorrectly. Each of PRF and ORF recorded 
97.5% and 94.3% overall performance. 
 

Figure 4. Classification error for TE#1 
 
5.3 Combination of two predictions 

The second experiment is to combine two predictions that   are 
confidence values for each class, resulted by PRF and ORF. As 
shown in figure 4, the omission errors and commission errors 
were simultaneously declined thanks to complementary activity 
between two success rates to 98.5% and the accuracy for all 
classes was also much better than that of each single classifier. 
Thus, the advantage of our MCS is that ORF validates errors 
from PRF once more. However, we cannot guarantee our MCS 
is superior to PRF or ORF in all cases (Dara, 2007). 
 
Figure 5 depicts how PRF and ORF are complementary. In PRF, 
10 % of misclassification cases are strongly confident even if 
they are false confidences. Such false confidences were 
disappeared by combining classifiers. Probably, false 
confidences with some of misclassification cases might change 
into true confidences or their values would decrease. 

 

 
Figure 5. Difference between confidences corresponding to 
predicted class and true class in case of misclassification 
inTE#1. 
 
5.4 Classification on different scene (same voltage type) 

To validate our approach, we applied it to another data set 
(TE#2) taken from different source (from different site and at 
different time). As TE#2 has different scene characteristics from 
TR, point-based features respectively extracted from two data 
might be different. However, object-based features would be 
invariant (wire is always linear, building planar, pylon vertical, 
and vegetation scattering). PRF seems to be very sensitive to 
data source. There exist numbers of clear omission errors of 
building incorrectly committed into wire and vegetation. Some 
of wire points were classified into pylon (Figure 6-a). This does 
not happen in real. Lots of such obvious errors were corrected 
by our suggested method (Figure 6-b). However, confusion 
between vegetation and building still exist when they are close 
or when vegetation are not broadly thick with leaves such as 
low vegetation. Quantitatively, the class overall success rate 
increased from 83.0% to 93.9%. 
 

(a) PRF 

(b) Prediction fusion 
Figure 6. Classification map of TE#2 (green: vegetation, red: 
wire, blue: pylon, and yellow: building) 

 
6. CONCLUSIONS 

We suggested random forests based multiple classifier system 
for power-line scene classification from airborne laser scanning 
data. For the RF, we investigated two sets of features 
respectively extracted from two different domains: 12 features 
from point domain and 18 features from line & polygon domain. 
PCA was then applied to the features in order to eliminate 
correlations and dependencies between them. At the end, 6 and 
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11 principle components were retained among point features 
and line & polygon features respectively. It seems that PRF 
generally performs well on the data sets from same sources as 
learning set and better than ORF, but there are still a number of 
errors which are regarded as obvious misclassification. 
Therefore, we designed another classifier which is able to 
remove such clear errors as possible by complementing each 
other. ORF was invented for the purpose of validation of PRF. 
That is, line- & polygon-based classifier encourages point-based 
classifier to judge better by adding confidence when the 
decision is not obvious. We observed not only the decrease in 
both omission and commission error but also the increase in 
performance after combining the results of two classifiers. We 
tested a new data (TE#2) taken from a different site to validate 
our approach. As a result of the experiment, 93.9% 
classification performance was achieved. RF-based MCS 
resulted in 10% improvement compared to PRF. Therefore, we 
conclude the suggested approach is not definitely sensitive to 
data source. 
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