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ABSTRACT: 

 

The paper investigated the effectiveness of point pattern methods in the application of forest species classification using airborne 

LiDAR data. The forest stands and individual trees in our study area were classified as either shade tolerant or intolerant species. The 

purpose of adopting the point pattern methods is to develop new features to effectively characterize the pattern of internal foliage 

distribution of forest stands or individual trees. Three methods including Quadrat Count, Ripley’s K-function, and Delaunay 

Triangulation were applied, and six feature groups were derived for a stand or tree sample. Feature selection was performed based on 

the derived features in order to find the best ones for the following classification procedure, which was implemented by two 

supervised and two unsupervised methods. These newly derived features were proved effective for the classification. The highest 

classification accuracy 97% was achieved at stand level and 90% at individual tree level. The sensitivity of classification accuracy to 

the number of features used was also investigated in this paper.     

 

 

                                                                 

*  Corresponding author.  This is useful to know for communication with the appropriate person in cases with more than one author. 

1. INTRODUCTION 

The species type of natural forests plays important roles in the 

application of forest inventory and environment management. 

Trees in natural forests can be classified into certain categories 

on the basis of different physiological factors. The shade 

tolerance of a tree is generally used to indicate the tree’s 

capacity to develop, survive and grow beneath a forest canopy. 

Classifying the trees in forests into shade tolerance and 

intolerance is very important when forest and environment 

management decisions are made, for instance, providing enough 

sunlight conditions for maintaining intolerant species stands.  

 

Conventionally, classification of tolerant and intolerant species 

in forests is mainly performed by foresters in the field based on 

the virtually identified structural information below canopies 

such as live crown ratio and radial growth patterns (Craig 1982). 

It is also a challenging task to carry out the classification from 

the remotely sensed imagery because there is little information 

provided about the foliage structure below tree canopies. The 

development of LiDAR instruments provides a good 

opportunity to exploit the structural difference between tolerant 

and intolerant trees because of its capacity to penetrate canopy 

vertically.  

 

Several studies have been carried out on classification of 

species at the stand or individual tree level using airborne 

LiDAR data on the basis of a number of derived structure 

features. Holmgren et al. (2008) classified Scots pine, Norway 

spruce and deciduous trees based on the features related to 

crown shape, height distributions, pulse type and intensity. 

Reitberger et al. (2008) used the LiDAR data to classify 

coniferous and deciduous trees, based on five salient features 

representing outer tree geometry, geometrical tree structure and 

pulse width. Vauhkonen et al. (2009) used alpha shape metrics 

for tree species classification in Scandinavian test site 

comprising 92 individual trees. Woods et al. (2008) used height 

percentiles as a part of the structure features derived from forest 

stands to calculate volume, basal area, and biomass. In these 

researches, the trees or stands were subdivided vertically into 

certain layers based on height percentiles, and the features are 

mostly some general statistical values derived for each layer, 

such as total number of points, mean intensity value, proportion 

of the first return, and so on. However, one of the issues is that 

these statistical features sometime are not sufficient to 

characterize the spatial distribution of leaves and branches 

within crowns. For example, the same number of points at a 

height layer maybe corresponds to two different foliage 

distribution patterns: clumped and dispersed, due to the 

different structures of species. To investigate and further 

characterize how leaves and branches distribute spatially within 

certain height layer, we adopted point pattern methods in this 

study. Point pattern analysis is a common statistical technique 

for analyzing spatial distributions of points, and it has been 

used in many study fields, such as mathematics, ecology, and 

forestry (Dale 1999, Fortin 2005). One of the advantages of this 

technique is its capability of directly processing point data with 

relatively simple calculations.  

 

Objectives of this study are: 1) to develop the features using 

point pattern methods to characterize the degree of foliage 

clumping of forest stands and individual trees; and 2) to classify 

the stands and individual trees into three species categories, i.e. 

intolerant-deciduous, intolerant-coniferous and tolerant-
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deciduous. The tolerant-coniferous species is not common in 

our study area, thus it was not included in this study. 

 

2. STUDY AREA AND DATA 

The study area selected is near Sault Ste. Marie, Ontario, 

Canada (463356N, 832518W) at elevations ranging from 

300m to 410m above the mean sea level. Located in the Great 

Lakes-St. Lawrence forest region, the natural forests in the 

study area include many homogeneous stands where one species 

dominated most of the area. Three typical species, Aspen 

(Populus tremuloides Michx.), Jack pine (Pinus banksiana 

Lamb.) and Sugar maple (Acer saccharum Marsh.), were 

selected in the forest area representing the three categories 

intolerant-deciduous species, intolerant-coniferous species and 

tolerant-deciduous species, respectively. Corresponding to each 

species, 50 forest stands of size 20 m × 20 m and 30 individual 

trees were chosen for this study. The trees attain a height of 21-

30 m depending on site fertility. The species information of 

these stands and individual trees were identified based on the 

field survey conducted in July 2009.  The general information 

of study area can be referred to Table 1.  

 

 Stands Trees 

 A Ms Pj A Ms Pj 

Numbers 50 50 50 30 30 30 

Average 

points 
24930 11914 19992 2436 4123 1485 

Mean 

height(m) 
31.57 25.04 31.62 25.23 20.11 24.19 

 

Table 1. The statistical information of the forest stands and 

individual trees used in this study. A: aspen; Ms: sugar maple; 

Pj: jack pine. Height is calculated as the elevation difference 

between the highest point and the lowest point.   

  

Simultaneously to the field survey, the discrete LiDAR data 

over this study area were collected using a Riegl QS-560 

scanner at the flying height of about 250m above the mean 

terrain. The data collection configuration resulted in a point 

density of about 20 point m-2 in forest area. The vertical 

resolution of the discrete LiDAR data of each flight line was 

about 0.15 m. The point clouds of the 150 forest stands and 90 

individual trees were manually cut out from the raw dataset.  

 

3. METHODS 

3.1 Feature extraction 

This section will describe the methods that were developed to 

derive novel features characterizing the vertical and horizontal 

distribution of tree elements, such as braches, leaves, etc. These 

features can be used to identify tree species at both stand level 

and tree level.  

 

Let’s denote the entire LiDAR point cloud of a forest stand or 

an individual tree as an object. The LiDAR point clouds of an 

any given object were firstly subdivided into n equal height 

intervals (denoted as h1, h2, …, and hn) and ordered from high 

to low elevation. The points within each height interval were 

then projected on the horizontal plane. In this way, the object 

can be modelled by n two-dimensional layers ordered from top 

canopy to terrain. In this study, the value of n was chosen as 20. 

For a stand, the size of each layer is 20 m × 20 m, and for an 

individual tree the size is determined by the bonding box of the 

entire tree points projected on horizontal 2D plane.  For each 

layer, the distribution of LiDAR points which represent the 

distribution of foliage of trees in the layer, can be regarded as 

from dispersed to clumped pattern, and it can be further 

characterized by the following point pattern analysis methods.  

 

Quadrant Count 

Introduced by Dale (1999) and Tariq (2004), the Quadrant 

Count method was used in this study mainly to describe to what 

degree the foliage clumped. Following the definition in the 

literature (Dale 1999), the LiDAR points of each layer was 

partitioned into m equal size sub regions which were called as 

quadrants. In each quadrant the number of points that occur was 

counted and the distribution of the quadrant counts was used as 

the indicator of the spatial pattern of the LiDAR points. There 

are several ways to construct the indicator and the variance-to-

mean ratio (feature denoted as VTMR) was computed and used 

in this study. To explain in detail, given the point data of a layer, 

the mean can be calculated as the ratio of number of points in 

the layer and number of quadrants in the layer. Let xi be the 

number of points in each quadrant and m be the number of 

quadrants of the layer, the variance can be calculated as: 
2
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The VTMR was then calculated as the ratio of mean and 

variance. The value of VTMR can be used to interpret whether 

the point pattern is clustered, random, or dispersed (Tariq 2004). 

For example, if VTMR=1, the pattern is random and if VTMR>1, 

the pattern is clustered. In this study, instead of comparing 

VTMR with 1, we interpreted the value of VTMR as the degree 

that the point patter clustered. Generally, comparing with a 

small VTMR, a larger VTMR indicates that the point pattern 

tends to be more clustered. In this study, the size of each 

quadrant is chosen empirically as 0.25m 0.25m.  

 

Figure 1 shows the VTMR profile (right panel) of an aspen tree 

(left panel), and as examples, point clouds of two layers (middle 

panel). The two layers contained similar number of LiDAR 

points (385 of layer A vs. 419 of layer B), but they have 

different distribution patterns, represented by two different 

VTMR values: 4.9 for layer A and 2.6 for layer B. This is 

consistent with previous statement that larger VTMR value 

indicates the point pattern is more clumped, i.e. layer A is more 

clumped than layer B. 

 

 
Figure 1. Left: point cloud of an aspen tree. Middle: projected 

point cloud of two example layers. Right: calculated VTMRs of 

the 20 height layers.  

 

 A 

B 
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Ripley’s K-function 

The method was mainly used in this study to describe where 

and at which scale the foliage clumped mostly. According to the 

definition proposed firstly by Ripley (1976) and further 

explained by Fortin (2005), if we denote   as the density of 

LiDAR points in the area of an arbitrary 2D layer, the expected 

number of points occurring in a circle radius t centered on a 

randomly chosen point is ( )K t , where ( )K t is a function of t 

depending on the point pattern of the area. For instance, if the 

points are dispersed over the entire area, ( )K t  will be close to 0 

for small radius t and increase for larger radius t. Let’s denote 

ijd as the distance between points i and j, the following statistic 

ˆ ( )K t  is an estimate of ( )K t : 

2

1 1

ˆ ( ) ( , ) /
n n

t

i j
i j j i

K t A I i j n
 
 

  ,                                                  (2) 

where A is the area of the layer, ( , )tI i j  is an indicator function, 

taking the value 1 if ijd t and 0 otherwise. If the LiDAR 

points projected on the layer follow complete spatial 

randomness, the number of points in a circle follows a Poisson 

distribution and the expected value of ˆ ( )K t is 2t . An L-

function is then created to characterize K-function’s deviations 

from its expected value (i.e. 2t ) in a circle of radius t: 

ˆ ˆ( ) ( ) /L t t K t   .                                                               (3) 

Large positive value of ˆ( )L t indicates that the points are 

overdispersed at scale t and large negative value indicates the 

point pattern is clumping at scale t. 

 

For a given layer of any object, the calculation of ˆ( )L t resulted 

in a curve with certain positive or negative peaks. In the 

continuous steps, four features were extracted to characterize 

the ˆ( )L t curve: the number of peaks determined by the number 

of local minimums (denoted as Npeaks), the ˆ( )L t value of the 

largest peak indicating the degree of clumping (Lpeak), the 

radius scale t of the largest peak indicating where the points 

clumps mostly (Tpeak), and the scale t where the ˆ( )L t value 

passes zero from positive to negative (Tpeakzero). Figure 2 

shows the ˆ( )L t curves of the point cloud of the two example 

layers A and B. It is clear that the layer A with more clumped 

point pattern has larger positive peak values than the other layer 

B, and vice versa.  In addition, as shown by the dash line on the 

two curve plots, the point cloud of layer A clumped with 

clumps at the distance scale about 2.1 m, while the point cloud 

of layer B clumped with clumps at the radius scale about 1.0 m.  

 

Delaunay Triangulation 

The Delaunay Triangulation method usually developed and 

applied for computational geometry (de Berg 2008); however, it 

is applied in this study to mainly characterize the distance 

distribution of the points. Given the LiDAR points projected in 

an arbitrary 2D layer, the delaunay triangulation was firstly 

created for the entire points in the layer. The edge length of the 

triangulations were then computed and sorted from short to long 

without repeat. The frequency distribution of the edge lengths 

was then computed. The variance of the frequency distribution 

(denoted as VarEdge) was then calculated and regarded as the 

feature extracted from the Delaunay Triangulation method. A 

large VarEdge value indicates the points are clumping, and a 

smaller VarEdge value indicates the points are relatively less 

clumping. 

  

 

Figure 2. The L̂ function derived from the LiDAR points of the 

two layers demonstrated in Figure 1. The dash line indicates the 

location of the radius scale t (Tpeak) where the points tend to be 

clumped to the maximum degree.  

 

3.2 Feature selection 

Generally, the features extracted from original dataset are not 

suggested to be used directly for classification or pattern 

recognition because not all of the features are significant for 

separating classes. There are two ways to use the feature 

information appropriately prior to classification. The first way is 

to rank the individual features based on certain criteria, combine 

the ranked features appropriately and select the “best” feature 

vectors (Theodoridis 2006). The second way is to transform the 

original features based on an optimal criterion to a new feature 

space to offer high classification ability (Theodoridis 2006). 

Two algorithms were adopted representatively in order to 

compare the effectiveness of the two ways for the classification.  

 

The first algorithm used is called scalar feature selection which 

treats features individually (Theodoridis 2006). The algorithm is 

able to rank and select the given number of “best” features for 

two classes separations based on a given class separability 

measure. It also has an embedded approach to minimize the 

correlation of the selected features. In this study, the Fisher’s 

discriminant ratio (Theodoridis 2006) was adopted as the class 

separability measure. Three trials were performed to find k 

features for each trial, to be used to best separate aspen and 

sugar maple, sugar maple and jack pine, and aspen and jack 

pine, respectively. The final selected feature vector is the 

combination of the features of the three trials without repetition, 

and the number of features in the feature vector is denoted as N1.   

 

The second algorithm adopted is the principal component 

analysis (PCA) (Pearson 1901, Everitt 2001) which has been 

widely used in remote sensing field.  Given the number of 

required features (denoted as N2), the combination of the N2 

highest principal components (i.e. Pc_1, Pc_2, …, Pc_ N2) were 

selected as the final feature vector. 

 

In this study, the original features included VTMR, Npeaks, 

Lpeaks, Tpeak, Tpeakzero, and VarEdge. The above six features 

were calculated for each of the 20 horizontal layers mentioned 

 

 

A 

B 

A 

B 
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previously, and they were further denoted as, for example, 

VTMR_h1, VTMR_h2,…, and VTMR_h20 (suffix _hn, n=1, 

2, …, 20). The total number of original features is 120. 

 

3.3 Classification 

For the purpose of comparison, species of forest stands and 

individual trees are classified by two unsupervised classification 

methods: K-means (Duda et. al 2001) and Expectation-

Maximization (EM) (Duda et. al 2001), and two supervised 

classification methods: Decision Tree (DT) (Breiman et. al 1984) 

and linear discriminent analysis (LDA) (Duda et. al 2001). The 

classifications were carried out using the features selected in 

section 3.2. 

 

As is well known, the unsupervised classification methods do 

not require training and testing data. The K-means and EM 

algorithms performed clustering on the entire input dataset, and 

a unique class label was assigned at last for each individuals of 

the input dataset. In this study, the number of output class for 

the above two algorithms are all set as 3, representing the three 

species: aspen, sugar maple, and jack pine. The DT classifier is 

a rule-based classification algorithm which does not require any 

assumption of the data distribution, and the decision rules are 

easy to be interpreted. The complexity of the LDA algorithm is 

relatively simpler than DT and the LDA has been widely used in 

many object recognition applications.    

 

For the unsupervised classification, the overall accuracy  was 

calculated by the following formula: 

100%cN

N
   ,                                                                      (4) 

where cN  is the number of correctly classified samples 

and N is the total number of input samples. For the supervised 

classification, the overall accuracy  was assessed by a 10-fold 

cross validation: 
10

1

100%i

i

N

N




  .                                                                 (5) 

The entire dataset were randomly split into 10 equal subsets and 

one subset was used for testing and the left were used for 

training. This classification procedure was repeated 10 times, 

and the overall accuracy   was then calculated by Eq. (5), 

where iN is the number of correctly classified samples at each 

time, and N is the total number of input samples. 

 

4. RESULTS AND DISCUSSION 

4.1 Feature importance 

120 input features were ranked based on the scalar feature 

selection method to separate aspen and sugar maple, sugar 

maple and jack pine, aspen and jack pine, respectively. The top 

five features for each separation were listed in table 2, in which 

the features with bold font indicate they appeared at least twice 

in the three separation trials.    

 

It is observed from table 2 that, at the stand level, most of the 

selected features belong to the VTMR and Lpeaks feature groups. 

VTMR features seem good for separating aspen and sugar maple, 

which are both deciduous but the former one is intolerant and 

the latter one is tolerant species. Lpeaks features seem good for 

separating sugar maple and jack pine. To further investigate the 

importance of these two features groups, two scatter graphs 

were plotted shown in figure 3a) and figure 3b). Figure 3a) 

shows the values of the features VTMR_h8 and VTMR_h7 

derived from aspen and maple stands, and figure 3b) shows the 

values of the features Lpeaks_h12 and Lpeaks_h10 derived 

from maple and jack pine stands. It is shown in each scatter 

graph that there are very distinguish separations between the 

two species even though with some overlaps. Based on figure 

3a), it is observed that aspen stands have higher VTMR values at 

7th and 8th layers (some meters above the middle height 10th 

layer of the stand) than maple stands. It indicates that the 

foliage of aspen are generally clumped more than maple at the 

two height layers. It is make sense because of the following 

reason. The leaves and branches of aspen in the 7th and 8th 

layers are near the base of live crown, and can not receive 

enough sunlight. Because of aspen’s shade tolerance property, 

these tree elements can not expend horizontally without enough 

sunlight to occupy as many gaps and space as maples. As a 

result, these leaves and branches are mostly concentrated 

around of tree truck, tending to be clumped pattern. 

 
Top 5 

features 
A & Ms Ms & Pj A & Pj 

Stand 

level 

VTMR_h8 Lpeaks_h12 Lpeaks_h12 

VTMR_h7 Lpeaks_h10 Lpeaks_h13 

VTMR_h5 Lpeaks_h11 VTMR_h8 

VTMR_h10 Lpeaks_h13 VTMR_h19 

Lpeaks_h6 Lpeaks_h14 Tpeakzero_h12 

Tree 

level 

Tpeak_h20 Tpeak_h20 Npeaks_h12 

VarEdge_h5 Tpeakzero_h18 Npeaks_h13 

Tpeakzero_h8 Npeaks_h15 Tpeakzero_h13 

VarEdge_h2 Npeaks_h13 Tpeak_h20 

Npeaks_h17 Tpeakzero_h12 Npeaks_h11 

 

Table 2. The best five features selected by scalar feature 

selection method for each separation group for both of the stand 

and individual tree level. A: aspen;Ms: sugar maple;Pj: jack 

pine. 

 

Based on figure 3b), it is observed that maple stands mostly 

have larger negative Lpeaks values at 11th and 12th layers (some 

meters below the middle height 10th layer of the stand) than jack 

pine stands. It indicates that the foliage of maple clumped more 

than jack pine at the two height layers. By visually examining 

the point clouds of the sample stands, this indication can be 

explained mostly by the following two reasons. The first reason 

is because the LiDAR points returned from the 11th and 12th 

height layers of maple stands are generally less than jack pine 

stands, and most of these returned LiDAR points are 

concentrated around tree trucks tending to be clumped pattern. 

The other reason is, even if as intolerant species, the jack pine 

stands have lots of spread dead branches in the two specific 

height layers, and these branches resulted in the returned 

LiDAR points to be dispersed. In addition, the jack pine stands 

also contain some shade tolerant understory plants growing up 

to the specific height layers. These understory plants will result 

in the returned LiDAR points to be more random and dispersed 

than maple stands.      

 

In addition, the significance of selected features for individual 

tree level is not as obvious as for stand level. However, it is 

noticed that the Tpeak_h20 feature is significant as it was 

selected for all the three separations. This feature is derived 

from the lowest height layer of a tree containing mainly LiDAR 

points penetrated and returned from terrain and low vegetation, 

which is directly correlated with the gaps and clumping 

intensity of the upper canopy. For example, if the points 

returned from terrain are clumped, it probably means there are 
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some gaps in the tree canopy so that the laser pulse is able to 

penetrate the canopy and hit the terrain.   

 

 
Figure 3. Scatter graphs of VTMR and Lpeaks features for 

species separation at stand level. 

 

4.2 Classification 

The classification was tested based on different number of 

features selected by the two feature selection methods. Figure 4 

shows how the overall classification changes with respect to the 

increasing number of features. The highest overall accuracy 

obtained at the stand level was 97.3% based on two features 

selected by PCA (figure 4b)), and at the tree level was 90% 

based on five features selected by PCA also. Generally, for all 

the classifiers, the overall accuracy not necessarily increases 

with the increasing number of features. The supervised 

classification methods are generally better than unsupervised 

methods according to the four graphs in figure 4. PCA has 

better performance and contribution than scalar feature 

selection method for the classification. 

 

At the stand level, LDA was proved to be the most effective 

method with highest accuracy and relatively more robust than 

other classification methods (figure 4a) and 4b)). What’s more, 

it is noticed that the classification accuracy is very stable even 

the number of features changed, if PCA was used as the feature 

selection method (figure 4b)). In addition, EM classifier seems 

to be the worst classifier in this study due to the reason that we 

assume the features for each species only contain one Gaussian 

model, which may not correct for certain features and thus 

affect the performance of the EM classifier. At the individual 

tree level, DT was proved to be the most effective and robust 

method if features were selected by PCA (figure 4 d)). In 

addition, it is observed that by using just two features selected 

by scalar feature selection (i.e. Tpeaks_h20 and Npeaks_h12), 

the classification accuracy can be about 85% no matter which 

classifier was adopted (figure 4 c)).  

 

 
a) 

 

 
b) 

 
c) 

 

 
d) 

 

Figure 4. Overall classification accuracy changes with the 

number of features selected by two feature selection methods, at 

a) 

b) 
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the stand level (a) and b)) as well as the individual tree level (c) 

and d)).  

       

5. CONCLUSIONS 

This paper described the application of point pattern analysis in 

the classification of shade tolerant and intolerant species. The 

features newly derived from point pattern methods were proved 

effective for the species classification at the stand level and 

individual tree level. The linear discriminant analysis classifier 

was the best classifier for the classification at the both levels 

comparing with other three classifiers.  

 

6. FUTURE WORKS 

Besides to the number of features selected by feature selection 

methods and the choice of classifier, it is considered that there 

are some other factors may influence the feature values and thus 

influence the final classification accuracy. For example, the 

point density of LiDAR data, the quadrant size of Quadrant 

Count method, and the number of height layers for each object, 

etc. Therefore, more work should be done to analyze the 

sensitivity of these factors for the derivation of point patter 

features and the classification accuracy.  

 

Species classification at individual tree level is more 

challenging than stand level due to the complex structure of 

trees. It is believed that some other features may also effective 

for the species separation at individual tree level such as echo 

types, intensity, and crown geometry, and thus the integration of 

these features will be investigated. Last but not least, some 

hierarchical methods will be proposed and exploited, 

considering the hierarchical relationships of types of species.  
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