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ABSTRACT: 
 
Due to rich information of a full waveform of airborne LiDAR (light detection and ranging) data, the analysis of full waveform has 
been an active area in LiDAR application. It is possible to digitally sample and store the entire reflected waveform of small-footprint 
instead of only discrete point clouds. Decomposition of waveform data, a key step in waveform data analysis, can be categorized to 
two typical methods: 1) the Gaussian modelling method such as the Non-linear least-squares (NLS) algorithm and the maximum 
likelihood estimation using the Exception Maximization (EM) algorithm. 2) pulse detection method——Average Square Difference 
Function (ASDF). However, the Gaussian modelling methods strongly rely on initial parameters, whereas the ASDF omits the 
importance of parameter information of the waveform. In this paper, we proposed a fast algorithm——Progressive Waveform 
Decomposition (PWD) method to extract local maxims and fit the echo with Gaussian function, and calculate other parameters from 
the raw waveform data. On the one hand, experiments are implemented to evaluate the PWD method and the results demonstrate its 
robustness and efficiency. On the other hand, with the PWD parametric analysis of the full-waveform instead of a 3D point cloud, 
some special applications are investigated afterward. 
 
 

1. INTRODUCTION 

A topographic LiDAR (light detection and ranging) device is a 
laser rangefinder delivering a reliable, accurate but irregular 
representation of terrestrial landscapes through georeferenced 
3D point clouds. Laser scanners employ pulsed lasers that 
repetitively emit short pulse (most with infrared band) at a high 
repetition frequency (PRF). The two-way runtime of the 
backscattered signal from the sensor to the Earth surface is 
measured: it enables range measurements from the LiDAR 
system to the landscape (Baltsavias, 1999b).  
 
Since 2004, new laser scanning commercial systems called full-
waveform LiDAR have appeared with the ability to digitize and 
record the entire waveform of the backscattered signal echo. 
Thus, in addition to range measurements, further physical 
properties of objects included in the diffraction cone may be 
derived with an analysis of the backscattered waveforms (Hug 
et al., 2004; Mallet and Bretar, 2009). Due to rich information 
of a full waveform of LiDAR data, the analysis of full-
waveform, which helps to increase pulse detection reliability, 
accuracy and resolution, has been an active area in LiDAR 
researches. Most full-waveform commercial systems are small-
footprint (0.2-3 m diameter) and carried by airborne platforms.  
 
Based on a physical understanding of the pulse propagation and 
its interaction with the illuminated surface, the waveform can be 
considered as a result of a convolution of the LiDAR system 
backscattered signal and the cross section profile of the 
observed target. Deconvolution methods such as the Wiener 
filter can be used for retrieving the surface response (Jutzi and 
Stilla, 2006).  
 
A more commonly used waveform processing method is to 
decompose the original waveform in to a sum of echoes to 
generate a 3D point cloud. Often a parametric approach using 
analytical functions is chosen to model and fit the echoes within 

a waveform. The parameters of the mathematical model are then 
estimated for each detected peak in the signal to determine the 
corresponding range of each echo. This waveform analysis 
method is often referred as Gaussian decomposition when the 
LiDAR system waveform resembles a Gaussian pulse (Wagner 
et al., 2004, 2006). Chauve at al. (2007) extended the method to 
allow for pulse shape more complex than the Gaussian model, 
such as the lognormal or the generalized Gaussian function. 
 
As noted by Jung and Crawford (2008), decomposing a 
waveform into distinct echo components by fitting a mixture of 
Gaussian distributions is an unsupervised machine learning 
issue, which generally involves three steps: 
 Firstly identify the number of Gaussian components of the 

waveform; 
 Secondly, estimate the parameters of each Gaussian 

components; and  
 Finally, optimize the parameters. 

 
Two representative optimization methods have been carried out 
to fit the waveform: Non-linear least-squares (NLS) approach 
using Levenberg-Marquardt optimization algorithm (Hofton et 
al., 2000, Reitberger et al., 2008) and Maximum likelihood 
estimate with Expectation-Maximization (EM) algorithm 
(Persson et al., 2005). The NLS and EM algorithms are known 
to be kind of robust to decompose the waveform and obtain the 
corresponding parameters of the modeling function. However, 
both of them use an iterative algorithm and strongly rely on 
initialization step where the initial values are mainly provided 
by traditional pulse detection methods such as zero crossing or 
constant fraction (Wagner et al., 2004, 2006). Unfortunately, 
problems would occur when the fit ends up in a local minimum, 
which may not be the best possible solution, or if the initial 
estimates are significantly far from the true answer.   
 
Another echo extraction method has been carried out to reduce 
the impact of initial value estimation by using correlation 
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techniques for pulse detection—Average Square Difference 
Function (ASDF) method (Roncat et al., 2008). Different from 
the noise dependent threshold method used by some LiDAR 
manufacturers (Mallet and Bretar, 2009), this ASDF method 
also assume that the waveform is a mixture of a series of 
distinct echoes. Some criteria were applied to detect the local 
maxima and then to obtain its position information. This 
method could achieve a good range estimation result, but some 
important parameters information of the waveform is omitted.  
 
The aim of this paper is to present an improvement of the 
processing to the backscattered waveform recorded by the new 
generation of airborne LiDAR sensors. On one hand, a novel 
algorithm called Progressive Waveform Decomposition 
(PWD) method is proposed to precisely and efficiently 
decompose the waveform into a sum of components or echoes, 
which involves the detection and localization of these echoes 
and also the model parameters. The method requires neither 
iterative solution nor initial estimation of the number of peaks. 
On the other hand, with this parametric analysis of the full-
waveform instead of a 3D point cloud, some topographic 
mapping applications with special interest in urban areas are 
investigated afterward.  
 
 

2. WAVEFORM DECOMPOSTION: PWD MEHTOD 

2.1 Modelling Using Gaussian Function 

A single function is always used to model all echoes of the 
waveforms. One wishes to decompose a waveform  ixfy   

into a sum of n components (Mallet and Bretar, 2009): 
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uniformly spaced points,  the sampled waveform, 

and b the noise. 
 
It has been shown that if the vertical height distribution of the 
elements within the diffraction cone follows a Gaussian law, the 
reflected waveform can be approximated by a sum of Gaussians 
(Zwally et al, 2002). Wagner et al. (2006) have also shown that 
more than 98% of the observed waveforms could be well 
modeled as a mixture of Gaussian distributions. The analytical 
expression of the Gaussian function is:  
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where is the pulse amplitude, kA k the pulse half-width, 

k the pulse position. Thus, model parameters 

 kkkAk  , , .  

 
If the impulse response is not well-represented by a Gaussian, 
then a more appropriate function can be substituted in the 

modelling and fitting processing. Nevertheless, these model 
parameters are estimated for each detected peak in the signal, 
which provide additional information about the target 
characteristics (shape and reflectance) and extend waveform 
processing capabilities. 
 
2.2 Fitting with PWD 

With a superimposition of Gaussian functions, the proposed 
algorithm in this study aims to detect and fit the distinct return 
echo components one by one using a peak detecting method, 
which differs with the previous methods that approximate the 
measured waveforms with least squares.  
 
2.2.1 De-noising and Smoothing: In order to improve the 
signal to noise ratio of the raw signal waveform, the de-noising 
and smoothing processing is applied before the proposed 
algorithm. Here an empirical method is used for de-noising, i.e., 
we assume the end 5% of the signal as the background noise 
level since the tail jitters around a small value; then the mean 
value form this noise part is calculated as noisem . Depending 

on different LiDAR system, a noise threshold thresholdN is set 

as m (the value of threshold noiseN    could be given in the 

range from 1.1 to1.5), then all samples with amplitude less than 

noisem  are set to thresholdN .  
 
Smoothing is performed after the de-noising step. A 1× 3 

Gaussian filter with a predefined half-width 0
k  (often given 

the standard deviation of the transmitted pulse) is used to 
smooth the whole waveform signal to improve the signal to 
noise ratio. 
 
2.2.2 Peak detecting one by one:  With the smoothed curve, 
the peak detector is applied in the following steps: 
1) Determination the peak threshold value thresholdC . 

Considering the physical performance of the returns echo 
in the waveform signal, the peak threshold thresholdC  is set 

to as (the coefficient threshold noiseC m   is an 

empirical value being direct proportional to the strength of 
peak detection; often the range form 1.5 to 3 is used). 
Therefore, only potential local maxima with amplitude 
larger than the peak threshold thresholdC  would be selected.  

2) According to the given threshold thresholdC , find the global 

maximum peak from the pre-processed copy of the raw 
waveform with the amplitude larger than thresholdC . Flag 

this peak as the kth Gaussian component  xk  with the 

found peak position k . 

3) Isolate the consecutive inflection points 2 1p k and 2p k  

in the range of  ,u W u Wk k  , which are assumed to 

belong to the flagged Gaussian component  xk . The 

value of W is larger than the predefined half-width 0
k , 

but also up to a specified empirical value maxW . 

4) Estimate of the parameters of the flagged Gaussian: The 
half-width k  is given  by  

 
 

| 2 1 2p pk k k   | / 2                                  (5) 
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The corresponding pulse amplitude can also be easily 

measured from the detected peak. 
kA

5) Fit the flagged Gaussian with the pulse amplitude kA , the 

pulse position k  and half-width k using (2). 

6) Subtract this flagged Gaussian component from the 
smoothed copy of signal and go back to step 1 to detect the 
next peak.  

 
The algorithm will stop at step 6 if no detected peak value in the 
remaining signal is above the . Figure 1 shows the 

main processing flow of this proposed waveform decomposition 
method.  

thresholdC

 
 

Raw Signal

De-noising and 
smoothing

Fit the Gaussian component 
using the parameters

Find the inflection points of the peak to 
compute the halfwidth k

Determination of the maximum 
peak position        and its 

amplitude
k

Ak

Subtract the Gaussian component 
from the smoothed signal

If the local maxima in the 
remaining signal > 

?

no

Yes

Waveform decomposition 
finished

thresholdC

 
Figure 1.  Flowchart for PWD method 

 
This “find one and then subtract it” work mode is efficient for 
that the repeating times of the Gaussian fitting depend on the 
number of the peaks of the signal, and no initialization step is 
needed.  
 
2.2.3 PWD parameters estimation: During the 
decomposition, the Gaussian model function parameters 

kkkk A  ,,  are estimated for each detected peak in the 

signal. Another significant parameter in our PWD method is the 
peak shift between the theoretical peak position and the 
measured one, which could be given by (6) and (7): 
 
 

( 2 1 2x p pk k k  ) / 2

k

                      (6) 

shift xk                                  (7) 

 
 

In addition to the model parameters  kkkk A  ,, , this 

shift provides another piece of information about the shapes 
of the echoes, and it could be useful for hit surface slope (e.g. 
building facade) detection purpose, (see Section 4.2). 
 
 

3. EVALUATION OF THE PWD METHOD  

3.1 Dataset description  

The data acquisition was performed with the RIEGL LMS-
Q560 system. The pulse rate of the RIEGL system is 100 kHZ, 
which allows determining the vertical distribution of targets 
within the diffraction cone with a temporal resolution of around 
1ns. The waveform data is provided in two files: LWF and LGC 
files. The LWF file contains the calibrated waveform sample 
data, whereas the LGC file contains geocoding and indexing 
information for each laser shot.  
 
3.2 Demonstration of the PWD method on observed 
waveform data  

The proposed PWD method will be demonstrated here for the 
decomposition of observed waveform data into a series of 
Gaussian peaks. Figure 2(a) shows the typical example of raw 
backscattered waveform containing several modes. Before 
applying the proposed PPD method, a pre-processing is 
implemented to de-noise and smooth the raw signal. The result 
waveform is displayed in Figure 2(b), where the noise threshold 

 is set as 2.2 counts for this case with the thresholdN  =1.1 for 

the observed RIEGL full-waveform data. 
 
 

 
(a) 

 
(b) 

Figure 2.  (a)Example of the RIEGL raw backscattered signal. 
(b) Pre-processed result of the  RIEGL raw signal example. 

 
As shown in the Figure 2. (b), the waveform is complex, which 
involves multiple pulses. We compute the peak detecting 
threshold  as 6 counts with =3. Actually, letting thresholdC 
 =3 is a conservative choice in order to void the wrong 
detection with some weak pulse close to the noise level. 
However, a small value of  makes it possible to detect weak 
pulses corresponding to partially occluded targets or objects 
within noise at cost of reliability reducing, e.g. a low amplitude 
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pulse detection corresponding to the ground within the 
topographical mapping in thick forest area.  
 
The first global maximum amplitude value from the smoothed 
waveform is detected in Figure 3(a). In order to isolate the 
consecutive inflection points of the peak, the range coefficient 
W is recommend as 5to 8 bins and we use 6 bins to the entire 
data. The red solid line canopy curve in the Figure 3 is the fitted 
Gaussian peak.  
 
After subtracting the detected single Gaussian peak from the 
“parent” waveform, a new waveform with different structure 
and shape is then obtained as shown in Figure 3 (b) and (c). A 
new round of peak detecting and fitting is repeated on the 
subtracted waveform until no peak above the can be 

detected as shown in Figure 3(d). Three peaks are found here 
using the PWD method. 

thresholdC

 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. The demonstration of the PWD decomposition 
processing 

 
3.3 Comparison of the 3D point could derived from system 
and PWD method  

To maximize the detection rate of relevant peaks to generate a 
denser 3D point cloud and, finally, to extend waveform 
processing capabilities by fostering information extraction from 
the raw signal is the main aim of full-waveform decomposition.  

We compare the 3D point cloud generation result using PWD 
method with that from the real-time hardware systems here. 
Numbering the detected echoes, the points form PWD method 
and hardware system are both recorded as listed in Table 1. The 
differences of the two results are also presented.  
 
 

Echoes’
numbering

Points from 
PWD 

Points from hardware 
system 

Difference

1 1429005 1416285 12720 
2 77240 50631 26609 
3 10904 2036 8868 
4 2762 0 2762 
5 1896 0 1896 
6 1736 0 1736 
7 1566 0 1566 
8 1087 0 1087 

> 8 559 0 559 
SUM 1526755 1468952  57803 

 
Table 1.  Comparison of points from the hardware system and 

PWD method decomposition 
 

From Table 1, the following conclusions can be drew: 1) the 
proposed PWD method can accurately recover a larger number 
of echoes than embedded real-time systems, and 2) the detection 
ability of PWD to the multiple echoes is obviously stronger 
with distinctive nuance in vertical structure, which will bring 
benefit to the computation of the forest parameters estimation, 
urban modelling, as well as the Terrain break lines extraction. 

 
3.4 Contributions of PWD method 

The proposed PWD method can make two important 
contributions: First, it makes up the weakness of the existing 
full-waveform decomposition method, i.e., on the one hand, 
there is no initialization and iteration limitation which is 
required in the classic Gaussian decomposition; on the other 
hand, besides the accurate range measurement and peak number  
determination, additional information about the target can be 
provided through the modelling parameters whereas the pulse 
detection method such as ASDF totally omits these parameters. 
This leads to a fast and effective decomposition and to richer 
parameter information providing for further analysis. Second, 
by offering a flexible coefficient setting, it gives more control to 
an end user in the PWD processing of the LiDAR signal (see 
Section 3.2). 
 
 

4. APPLICATIONS OF PWD RESULTS  

 
Figure 4.  3D point cloud section of urban area derived from the 

full-waveform data using PWD method 
 
With the PWD method, a 3D point cloud has been generated as 
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displayed in Figure 4. Despite of the derived 3D point cloud, the 
full-waveform decomposition steps also obtain their parameters 
contain significant information on the roughness, slope and 
reflectivity of the hit surfaces. A parametric analysis of the 
processed PWD full-waveform results instead of a 3D point 
cloud can be applied to find features. Some special applications 
of the PWD parameters are presented in this section.   
 
4.1 Remove the vegetation influence  

The discrimination between the low vegetation and the ground 
surface which are very closely located in range has been a 
difficult issue of the 3D points cloud filtering. Based on the 
understanding of the roughness of a reflected waveform, the 
porous surfaces (multiple echoes at different depths, equivalent 
to the behaviour of trees and vegetation) could be discriminated 
with the smooth surface (one or two echoes if there are 
discontinuities). Therefore, just by estimating the peak number 
parameters using PWD method, the reflected waveform data 
with multiple echoes (larger than two) will be considered as 
vegetation and removed from the entire data. The derived 3D 
point cloud can then be free from the influence of vegetation 
(see Figure 5). Without the influence of vegetation above the 
ground surface, the filtering of a 3D point cloud can then be 
improved. 
 

 
Figure 5. Section view of an urban area with vegetation. (a) 
before removing the vegetation influence (b) after removing the 
vegetation influence 

 
4.2 Weaken the Building Facade Influence 

According to Jutzi and Stilla (2006), when the laser beam hits a 
planar surface at a certain incidence angle, the shape of the 
reflected waveform will change (see Figure 6).  
 
 

 
Figure 6. (a) Waveform behavior for a laser beam hits a planar 
with no slope (incidence angle=0); (b) Waveform behavior for a 
laser beam hits a planar with a slope at a certain incidence angle 
 

Consequently, an asymmetrical characteristic of the echoes 
shape may indicate the response surface as slope terrain or 
building facade. Furthermore, variations in the shape are also 
noticed with changes in the angle of incidence, i.e., the smaller 
the incidence angle, the narrower and more symmetrical the 
peak, which helps to distinguish the building façade (with 
narrower peak) with the slope terrain. The calculated parameter 

shift in PWD method can help to quantify the behaviour of 
the building façade on the return waveform. Once the building 
façade echo was detected, it would be cut to weaken its 
influence to the building remove in filtering. Figure 7 shows a 
example of this application. 
 
 

 
 
Figure 7.  Vertical view of the buildings. (a) Before the building 

façade weakening (b) After weakening the building façade  
 

Abnormal altimetric points extraction  4.3 

The adjacent pulses recorded in the waveform may indicate the 
neighborhood objects in the response surface. By analyzing the 
parameters of each echo and taking the relationships between 
adjacent waveforms into account, the abnormal altimetric points, 
such as the man-made structure edge, in the direction of the laser 
pulse travel path can be extracted (See Figure 8). In order to 
void the influence of vegetation, method introduced in section 
4.1 can be applied first if necessary.   
 
 

 
Figure 8．Man-made structure edge extraction results based on 

PWD parameters 
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5. CONCLUSION 

A fast algorithm named progressive waveform decomposition 
method has been created to decompose the reflected full-
waveform data form simple and complex surfaces into a series 
of echoes. With a superimposition of Gaussian functions, the 
PWD algorithm aims to detect and fit the distinct return echo 
components one by one using a peak detecting method. The 
advantages of PWD waveform processing are threefold: 
1) Fast and efficient: The repeating times of the Gaussian 

fitting depend on the number of the peaks of the signal, and 
no initialization step is needed. 

2) Robust and accurate: Due to real measured value for the 
peak position instead of inflection points calculating, as 
well as the flexible coefficient setting,  it is possible to 
fitting of asymmetric or weak echoes  and then to improve 
the ability of peak detection. This leads to denser point 
clouds than the hardware system. 

3) Providing with parameters: In addition to the normal 
Gaussian model parameters, the special peak shift 
parameter provides another piece of information about the 
shapes of the echoes. All these parameters could be useful 
in the analysis of waveform for different applications. 
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