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ABSTRACT: 

Light Detection and Ranging (LiDAR) systems are remote sensing techniques used mainly for terrain surface modelling. LiDAR 

sensors record the distance between the sensor and the targets (range data) with a capability to record the strength of the backscatter 

energy reflected from the targets (intensity data). The LiDAR sensors use the near-infrared spectrum range which provides high 

separability in the reflected energy by the target. This phenomenon is investigated to use the LiDAR intensity data for land-cover 

classification. The goal of this paper is to investigate and evaluates the use of different image classification techniques applied on 

LiDAR intensity data for land cover classification. The two techniques proposed are: a) Maximum likelihood classifier used as pixel-

based classification technique; and b) Image segmentation used as object-based classification technique. A study area covers an 

urban district in Burnaby, British Colombia, Canada, is selected to test the different classification techniques for extracting four 

feature classes: buildings, roads and parking areas, trees, and low vegetation (grass) areas, from the LiDAR intensity data.  

Generally, the results show that LiDAR intensity data can be used for land cover classification. An overall accuracy of 63.5% can be 

achieved using the pixel-based classification technique. The overall accuracy of the results is improved to 68% using the object-

based classification technique. Further research is underway to investigate different criteria for segmentation process and to refine 

the design of the object-based classification algorithm. 
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1. INTRODUCTION 

Currently Light Detection and Ranging (LiDAR) becomes one 

of the most important remote sensing techniques for 3D data 

acquisition of the Earth surface, (Song et al, 2002, Brennan and 

Webster, 2006, Hui et al., 2008, and Yan & Shaker, 2010). 

LiDAR acquires highly precise and accurate vertical and 

horizontal data (±30 cm), (Brennan and Webster, 2006). This 

high accurate data are used for generating digital elevation 

and/or surface models (DTM/DSM). LiDAR data have been 

used intensively in the 3D City modelling and building 

extraction and recognition (Haala & Brenner, 1999, Song et al, 

2002, and Yan & Shaker, 2010). The concept of LiDAR sensors 

is based on sending laser pulses toward objects and receiving 

the reflected signals. The distances between the targets and the 

laser sensor (range data) and the 3D coordinates (x, y, and z) for 

points cloud are, consequently, calculated with the aid of other 

sensors (GPS, and IMU), (Ackreman, 1999).  

Traditionally, classification of LiDAR data referred to the 

separation of terrain point from other objects (non-terrain point) 

based on the elevations, (Antonarakis et al., 2008). Kraus & 

Pfeifer, (1998) have used LiDAR data to create DTM in 

wooded areas. The accuracy of the DTM extracted was 25 cm 

for flat areas, which is improved to 10 cm by refining the data 

processing method. The work includes automatic classification 

of the laser point cloud into terrain and vegetation points using 

special filtering and interpolation techniques. With the 

capability to record the intensity of the reflected energy, 

definition of the classification of LiDAR data includes the use 

of the intensity data as well as the range in the LiDAR 

classification. Haala & Brenner (1999) combined LiDAR 

elevation data and a multi-spectral aerial photo (Green, Red and 

NIR bands) for building extraction using unsupervised 

classification technique. It was found that combining the multi-

spectral aerial photo with the LiDAR elevation data improved 

the classification results significantly. 

LiDAR sensors use Near Infrared (NIR) spectrum range to 

record the backscatter energy reflected from the targets 

(intensity data). A NIR image can be generated by interpolating 

the intensity data collected by the LiDAR sensor. Intensity data 

is investigated to be used to distinguish different target 

materials using various image classification techniques. In the 

last decade, researchers studied the integration of the LiDAR 

intensity and range data for data classification and feature 

extraction. The intensity data were used primarily as 

complementary data instead of the traditional multi-spectral 

remote sensing imageries (such as aerial photos and satellite 

images) for data visualization and interpretation. LiDAR 

intensity data are advantageous over the multi-spectral remote 

sensing data in avoiding the shadows appear in the multi-

spectral data that is because LiDAR sensor is an active sensor. 

Hui et al., 2008, used the intensity and height LiDAR data for 
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land-cover classification. Supervised classification technique 

was used to differentiate four classes: Tree, Building, Bare 

Earth and Low Vegetation. It was observed that combining the 

intensity data with the height data is an effective method for 

LiDAR data classification. However, quantitative accuracy 

assessment was not included in that research work. 

Recent researchers combine the laser data with other auxiliary 

data such as multispectral aerial photos or satellite images, 

USGS DEM, texture data, normalized height, and multiple-

returns data. Charaniya et al, (2004) used LiDAR height and 

intensity data, height variation data, multiple-return data, USGS 

DEM, and luminance data of a panchromatic aerial imagery for 

land-cover classification. A supervised classifier was used to 

distinguish four classes: trees, grass, roads, and roofs. The effect 

of band combinations on the classification results was studied. 

It was observed that height variation affected positively the 

classification results of the high vegetation areas, Luminance 

and intensity data was useful for distinguishing the roads from 

the low vegetation areas, and the multiple-return differences 

slightly improved the classification of roads and buildings but 

reduced the accuracy of the other classes.   

A rule-based approach was presented by Bartels, (2006) to 

improve the accuracy of the classification obtained by 

supervised Maximum Likelihood classification for the LiDAR 

data (first and last echo and intensity data) that are fused with 

other co-registered bands (aerial and near Infrared bands). Four 

classes were identified: Buildings, Vegetation, Cars and 

Ground. The accuracy obtained by this approach varied based 

on the bands used in the classification. The overall accuracy of 

the classification of the intensity data, and height data were 36 

and 51%, respectively. Combining the two data sets improve the 

overall accuracy to 62%. The accuracy obtained reaches 71% 

when the first and last echo data are used. Using the co-

registered data improve the accuracy by 13-33%, (Bartels, 

2006). 

Subsequently, researchers have paid more attention to the 

intensity data and started to analyse the data and study different 

enhancing methods to remove the noise and improve the data 

interpretation. Song et al, (2002) examined different resampling 

techniques to convert LiDAR point data to grid image data 

which is filtered to remove the noise with minimum influence 

on the original data. The resampled grid is used to investigate 

the applicability of using the LiDAR intensity data for land-

cover classification. It is conclude that the LiDAR intensity data 

contain noise that is needed to be removed.  

Radiometric correction of the intensity data was suggested in 

some of the recent literatures (Coren and Sterzia, 2006; Höfle 

and Pfeifer, 2007). The process mainly relies on the use of the 

laser range equation to convert the intensity data into the 

spectral reflectance with consideration of the scanning 

geometry, the atmospheric attenuation, and the background 

backscattering effects. After the radiometric correction, the 

homogeneity of the land cover is improved and thus enhances 

the performance of feature extraction and surface classification. 

Yan et al. (2011) evaluated the accuracy of different land cover 

classification scenarios by using the airborne LiDAR intensity 

data before and after radiometric correction. An accuracy 

improvement of 8% to 12% was found after applying the 

radiometric correction. 

The previous studies conducted the land-cover classification 

using the common parametric classifiers, such as the Maximum 

Likelihood. Nevertheless, these parametric classifiers are 

considered as pixel-based classification, which might not be 

efficient with high resolution images, according to Blaschke, 

(2010). Object-based classification using image segmentation is 

proposed for land cover classification of the high spatial 

resolution imageries. LiDAR intensity images can be considered 

as high spatial resolution images. The object-based approach for 

LiDAR intensity data classification has been investigated in 

several studies. In Brennan and Webster, (2006), the object-

based classification is used for distinguishing ten classes of land 

cover, including saturated and non-saturated intertidal 

sediments, saturated or stressed and lush ground cover 

vegetation, low and tall deciduous and coniferous trees, roads 

and bare soil, bright-roofed structures, dark-roofed structures, 

and water. The classification approach was applied on five 

different images generated from the LiDAR data, DSM, DTM, 

Normalised height, intensity, and multiple return data. The 

overall accuracy of the ten classes is 94% increased to 98% 

when the classes aggregated to seven classes, (Brennan and 

Webster, 2006).  

Antonarakis et al., (2008) followed different object-oriented 

approach for land cover classification. This classification used 

point distribution frequency criteria such as skewness and 

kurtosis to differentiate between the land cover classes. This 

study verified that a combination of intensity and elevation 

LiDAR data can be used for multiple land-cover classification. 

It showed that high accuracy of 95% can be achieved for forest 

areas.  

This research investigates the use of the intensity data for land-

cover classification. Different classification techniques are 

proposed, and classification accuracy is assessed to further 

improve the results. The paper divided into five sections. 

Section 1 is the introduction and highlights on the previous 

work. Section 2 comprises the methodology used in this 

research. Section 3 is a description to the study area and the 

data sets used. Section 4 includes the results of the experimental 

work and further analysis. The paper is concluded by a 

summary of the work and the future work. 

2. METHODOLOGY 

The possibility of using the LiDAR intensity data in land cover 

classification is investigated. Two classification approaches are 

examined and their results are compared for further assessment. 

The two approaches are pixel-based and object-based 

classification approaches. First, the pixel-based classification 

approach presented by the maximum likelihood classification 

technique is used to classify the LiDAR intensity data into 

number of information classes. Then, more bands such as DSM, 

texture of the intensity data, and terrain slope are added, as 

different bands, to the intensity data to examine any 

improvement in the classification accuracy. Second, image 

segmentation is introduced for the object-based classification 

approach. A decision tree with certain criteria is developed to 

distinguish the different information classes. These criteria are 

based on the segmentation of the intensity data taking into 

consideration the surface elevation data. The results of the two 

approaches are evaluated and assessed for future improvement. 

Details of the two classification approaches are discussed in the 

following sections. 
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2.1 Pixel-Based Classification 

Maximum Likelihood classifier is selected as a pixel-based 

supervised classification algorithm that considers the 

probability and class variability of the classes, (Jensen, 2005).  

The procedure of the Maximum Likelihood pixel-based 

classifier is: First, intensity data is imported as a single band 

image. Second, training signatures are identified for the four 

different classes. Statistical assessments of the training 

signatures are done and further enhancement to the selection of 

the training areas are taken place. Then, the Maximum 

Likelihood algorithm is applied and the intensity data is 

classified into the corresponding classes. In similar way, 

additional bands (DSM, texture, and slope) are imported and 

included in the process and the results are evaluated and 

assessed for the production of the Land Cover classes. The 

classification process is evaluated using more than 1000 

reference points that are randomly selected from the original 

point cloud data to avoid the effect of the interpolation on the 

accuracy of the ground truth. These points are well-distributed 

over the study area. The ground truth information is collected 

from the ortho-rectefied aerial photo provided with the LiDAR 

data. The Erdas Imagine version 10 is used to conduct the pixel-

based classification. 

2.2 Object-Based Classification 

The LiDAR intensity data has interpolated to an intensity image 

of 20 cm spatial resolution. This intensity image is considered 

as a high resolution image; accordingly, the pixel-based 

classification may not be the best classification technique for 

such high spatial resolution data, (Blaschke, 2010). Therefore, 

the object-based classification approach, presented by image 

segmentation technique, is followed. Segments are 

homogeneous regions generated based on one or more criteria 

of homogeneity. Segmentation, also, relates each pixel to the 

surrounding neighbours, which gives it additional spatial 

advantages over the single pixel, (Blaschke, 2010).  

Similar to the sequence of the work with pixel-based 

classification, the intensity data are used primarily and then 

additional bands such as DSM are used in the image 

classification process. The object-based classification is 

executed in two levels. First, the intensity image is segmented 

into homogeneous and heterogeneous areas in order to gather 

all neighbour pixels in one area. To define the variation in 

brightness values to be used for segmentation criterion, several 

trials have been done. The results of these trials are compared 

and the best difference in the brightness values that separates 

the objects is  3. The split and merge segmentation method is 

used. Area size equals to 100 m2 is used as a criterion to 

separate the homogeneous surfaces from the heterogeneous 

ones. This criterion, defining the minimum homogeneous area, 

is established based on the common minimum size of buildings 

in the urban areas in Canada. Moreover, the DSM is separated 

into Terrain and Objects (non-terrain) based on the elevation 

values, (the elevation value criterion will be different for 

different study area). As a result from this step, four classes are 

defined, man-made features, represented by the homogeneous 

areas, vegetation features, represented by heterogeneous areas, 

terrain (low elevation areas), and objects (high elevation areas), 

as shown in Figure 1, Level 1. Secondly, by intersecting each of 

the homogeneous and heterogeneous super-classes with each of 

the Objects and Terrain super-classes, the four final classes are 

formed as shown in Figure 1, Level 2. Two man-made classes, 

buildings and roads (homogeneous areas with high and low 

elevations), and two vegetation classes; trees and grass 

(heterogeneous areas with high and low elevations). 

 

Figure 1: Object-Based Classification Decision Tree 

3. STUDY AREA AND DATA SETS 

3.1 Study Area 

The study area covers the British Columbia Institute of 

Technology (BCIT), which is located in the Burnaby, British 

Columbia, Canada (122°59’W, 49°15’N). An area of 500 m x 

400 m is clipped for the experimental work (Figure 2). This area 

is selected because it contains a variety of the land cover 

features on the ground including; buildings, parking areas, trees 

and open spaces with grassy coverage. The West side of the 

study area is covered by trees and is higher in elevation 

comparing to the South and the North parts of the study area by 

around 10 m. 

3.2 Data Sets 

A Leica ALS50 sensor operating in 1.064 μm wavelength and 

0.33 mrad beam divergence is used to acquire the LiDAR data. 

The LiDAR acquisition mission was conducted on July 17, 

2009 at local time 14:55. The data acquired contains a 3D point 

cloud (x, y, and z coordinates) and linearized intensity values (I) 

for each point, (Figure 3). The study area is covered by around 

million points of the LiDAR data.  

About one million points are extracted from the data sets for 

this study. The data sets used are: a) geometrically calibrated 

and radiometrically corrected LiDAR data (including x, y, z and 

I), b) Digital surface model (DSM) generated from the range 

measurements and converted into raster data using Kriging 

interpolation algorithm, and c) an Ortho-rectified aerial photo 

acquired at the same time of the LiDAR data, all data sets are 

rasterized with pixel size equals to 20 cm. (Figure 4). 
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Figure 2: Study Area (British Colombia Institute of Technology, 

Vancouver) 

 

Figure 3: Raster Image of the Original LiDAR Intensity Data  

 

  
A b 

 
c 

Figure 4: Geometrically Calibrated and Radiometrically corrected 

Intensity Image (a), DSM (b), and Ortho-rectified Aerial Photo 

(c) 

4. RESULTS AND DISCUSSION 

After examining the study area and the provided data sets, it 

was noticed that: 

 Areas covered by trees and grass have brighter values 

of the intensity data comparing to areas covered by 

buildings and roads. This is expected as the used 

signals are in near Infra-Red range, which has high 

reflectance from vegetation.  

 The area at the West South corner is higher in 

elevation than the Northern and Eastern areas. This 

difference in terrain elevation is expected to have 

negative effect on the results of the classification 

when the DSM data are included. The reason is that 

grass in high terrain will be difficult to be 

distinguished from trees.  

 The intensity values of the buildings and roads are 

more homogeneous than it is in the trees and the 

grasses. 

 The surface of each building has constant slopes for 

large area. On the other hand, the slope of the tree 

area is not constant.   

4.1 Results of Pixel-Based Classification  

Based on the previous observations, it can be noted that 

intensity data can be effectively used for distinguishing man-

mad objects from the vegetation. Generating different bands and 

including them in the classification process is expected to 

improve the classification results. These bands can be 

summarized as; texture image for the intensity data, slope image 

of the DSM to represent the roof slopes, and modified DSM in 

such a way that avoids the effect of the terrain elevation on the 

classification created by subtracting an inclined surface from the 

DSM. The inclined surface is generated from few points located 

on the roads at the four corners of the study area. This 

modification of the DSM depends on the data set. For more 

accurate results the multi-return data have to be used to avoid 

the terrain elevation effects on the data; however these data are 

not available for this study. Figure 5 illustrates the bands used 

in the study. 

   
i Ii Iii 

   
iv V Vi 

Figure 5: Bands used in the study i) raw data, ii) 

Geometric Calibrated and Radiometric corrected 

Intensity Data, iii) DSM, iv) Modified DSM, v) 

Intensity Texture, and vi) DSM slope 

Five combinations of bands are developed to study the effects 

of the auxiliary data on the classification results. These 

combinations are: a) Intensity image only, b) Intensity image 

and DSM, c) Intensity image and Modified DSM (after 

eliminating the terrain height effects), d) Intensity image, 
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Modified DSM, and Intensity Texture image, and e) Intensity 

image, Modified DSM, Texture, and DSM slope image. 

  
(a) (b) 

  
(c) (d) 

 

Buildings  
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Roads  

  
Grass  

 

(e)  
Figure 6: Results of Pixel-Based Classification 

The results of the five combinations are illustrated in Figure 6, 

the overall accuracy for each case are listed in Table 1, and the 

individual classes accuracies are represented in Table 2. From 

the results obtained, the overall accuracy from classifying the 

intensity data only to two classes is 71% which is decreased to 

43% considering 4 classes (roads, building, trees, and grass). It 

is obvious that depending only on the intensity data, man-made 

features can be distinguished from natural features. However, 

one cannot distinguish the buildings from the roads in the man-

made features or the grass from the trees in the natural features, 

since both pairs of classes have similar spectral reflectance 

characteristics in the Near Infra-red spectrum range. As a result, 

the intensity data can be used to distinguish the man-made 

features from the vegetation, yet additional information is 

required to differentiate between the roads and buildings in the 

man-made features, and between the trees and the grass in the 

vegetation features. Adding the elevation data, a significant 

improvement in the overall accuracy of the classification results 

is achieved (increases from 42.97% to 52.97%), Figures 6a and 

6b.  

Nevertheless, it is clear from Figure 6b that the South Western 

area is classified incorrectly as trees. That is because this area 

has higher elevation, which affects the classification results. 

Therefore, the modified DSM is used instead of the provided 

one. This improves the overall accuracy of the results from 

52.97% to 59.21%, Figures 6b and 6c. Based on the previous 

observation that the buildings and roads have more 

homogeneous intensity data than the trees and the grass, the 

overall accuracy of the classification is increased when the 

texture of the intensity data are used (from 59.21% to 64.12%), 

Figures 6c and 6d. No further improvements to the accuracy of 

the classification results are found when the slope of the 

surfaces is considered in the classification process (64.12% and 

63.74%), Figures 6d and 6e. It can be concluded that using the 

elevation data does improve the classification results 

significantly. Moreover, other auxiliary data such as texture of 

intensity data have an essential role in improving the 

classification results. 

Table 1: Accuracy Assessment of Pixel-Based Classification 

Case Band Combination 
Overall 

Accuracy 

a Intensity Band 42.97% 

b Intensity, DSM Bands 52.97% 

c Intensity, Modified DSM Bands 59.21% 

d Intensity M-DSM, Texture Bands 64.12% 

e Intensity M-DSM, Texture Slope Bands 63.74% 

Table 2: Producer and User Accuracies of the Pixel-Based 

Classes 

Class Name Producers Accuracy. Users Accuracy. 

Tree 92.74% 59.63% 

Build 40.61% 91.18% 

Grass/Soil 46.00% 74.68% 

Road 78.33% 66.45% 

4.2 Results of Object-Based Classification  

Figure 7 shows the produced land-cover classes from the 

object-based classification process. It is found that there are 

several buildings, which were classified as trees in the pixel-

based classification, are classified correctly as buildings in the 

object-based classification. To assess the overall accuracy of the 

results, the same 1000 reference points that were used in the 

pixel-based classification assessment are used here. The overall 

accuracy of the object-based classification is increased to 

65.91%. The individual class accuracies are shown in Table 3. 

 

Building

s 

 

  
Trees  

  
Roads  

  
Grass  

 

Figure 7: Results of Object-Based Classification 
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Table 3: Producer and User Accuracies of the Pixel-Based 

Classes 

Class Name Producers Accuracy. Users Accuracy. 

Tree 88.33% 75.47% 

Build 67.25% 76.24% 

Grass/Soil 42.80% 45.34% 

Road 59.70% 62.55% 

The accuracy obtained is higher than the one obtained from 

applying the pixel-based classification; however, it is less than 

expected. This may be due to the results achieved which 

classified the buildings as unfilled polygons where some of the 

check points fall within holes in the classified building 

polygons giving incorrect results, and the misclassification of 

the some small roof structures. The results are expected to be 

improved by using the multi return data for separating the 

terrain and objects. Further researches are underway to improve 

the representation of the objects through improving the design 

of the decision. 

5. CONCLUSIONS 

LiDAR intensity data have been examined to be used for Land-

Cover classification. Both Pixel-based and Object-based 

classification techniques are used to classify the LiDAR 

intensity data. From the results obtained, it can be concluded 

that the intensity data can be used successfully to distinguish the 

vegetation from the man-made features (overall accuracy = 

71%). However to distinguish trees from grass and roads from 

buildings, auxiliary data are required. Adding auxiliary data, 

such as DSM, Texture of the intensity data and slope of surfaces 

improves the accuracy of the pixel-based classification from 

43% to 64%. Classifying the LiDAR intensity data using the 

object-based classification further improves the accuracy of the 

classification results. A special decision tree is designed for this 

research work considering the intensity and the elevation data. 

The classification accuracy using the object-based classification 

approach reached 66%. Further research work is underway to 

further improve the classification accuracy. 
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