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ABSTRACT:

The estimation of the transformation parametersden different point clouds is still a crucial taskit is usually followed by scene
reconstruction, object detection or object recagnit Therefore, the estimates should be as accuaatgossible. Recent
developments show that it is feasible to utilizehbthe measured range information and the refleetanformation sampled as
image, as 2D imagery provides additional informatim this paper, an image-based registration ambrdor TLS data is presented
which consists of two major steps. In the firspstihe order of the scans is calculated by checttiegsimilarity of the respective
reflectance images via the total number of SIFTrespondences between them. Subsequently, in tladetep, for each SIFT
correspondence the respective SIFT features aszefil with respect to their reliability concernitfte range information and
projected to 3D space. Combining the 3D points \2ith observations on a virtual plane yields 3D-to-@Wrespondences from
which the coarse transformation parameters canstiemaed via a RANSAC-based registration schemeudicy the EPnP

algorithm. After this coarse registration, the 3birgs are again checked for consistency by usingstrtaints based on the 3D
distance, and, finally, the remaining 3D points @sed for an ICP-based fine registration. Thusptieposed methodology provides
a fast, reliable, accurate and fully automatic ievagsed approach for the registration of unorganiment clouds without the need

of a priori information about the order of the sgatfie presence of regular surfaces or human aiiena

1. INTRODUCTION

The automatic registration of point clouds acquineidh a

terrestrial laser scanner (TLS) is still of greaterest. Each
point cloud represents dense and accurate 3D iafovmabout
surfaces of objects in the local area around tlarser with
respect to a local coordinate frame. However, Ugunalltiple

scans from different locations have to be recordedbtain a
full scene coverage. Hence, a registration protessto be
carried out which transforms all point clouds irtocommon
coordinate frame.

Standard approaches for calculating the transfoomat
parameters between two partially overlapping polotids are
based on the Iterative Closest Point (ICP) algori{esl &
McKay, 1992) and different variants of it (Rusinkiezv &
Levoy, 2001). The ICP algorithm minimizes the diéece
between two point clouds. For large numbers of {soin
however, the ICP algorithm shows a high computatieffart
which is due to the iterative processing schemeckgit seems
quite feasible to extract relevant information frahe point
clouds which can be used for registration. Sucleveasit
information may for example be derived via the ritisition of
the points within each point cloud by using the mair
distributions transform (NDT) either on 2D scarca$ (Brenner
et al., 2008) or in 3D (Magnusson et al., 2007).

Urban environments or scenes containing industr&llations
usually contain regular surfaces of which varioypets of
geometric features might arise. Simple featurechvhre likely
to occur and useful for registration are lines 188 &
Leordeanu, 2003) derived from the range informasampled
as range images. Other commonly used features wdiieh
extracted directly from the point clouds are plafPsld &
Brenner, 2004; Brenner et al., 2008; Pathak et dl020Pathak
et al. 2010b) or more complex geometric features dipheres,
cylinders or tori (Rabbani et al., 2007). Howevel, these
feature types representing geometric primitivesnartesuited in
scenes without regular surfaces. In addition tal@gsurfaces,
scans in urban scenes might also contain a typlgdine. This
border between the sky and a set of buildings shepesial
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features when using a cylindrical projection mddelsampling
the range information to panoramic range imagegriog 360°
in the horizontal direction, e.g. extrema or flagions which
are suited for a coarse alignment of two scans Iihiicet al.,
2011). As such features strongly depend on theescentent,
this approach is not suited if the skyline is Idiinctive and
thus not sufficient for registration purposes.

In the presence of cluttered scenes, descriptqysesenting
local surface patches are more appropriate. Susbrigeors
may be derived from geometric curvature or nornelters of
the local surface (Bae & Lichti, 2004; Bae & LichtD@B).
Further approaches which are suitable for more ¢texrgrenes
are based on extracting special feature pointshan range
images in order to support the registration pro¢Bssnea &
Filin, 2008; Steder et al., 2010).

Currently, most of the terrestrial laser scanners wat only
measure the distance to 3D scene points but afstoreaeither
co-registered camera images or panoramic refleetamages
representing the respective energy of the backsedlttlaser
light. Therefore, several approaches are baseti®onge of 2D
imagery as the images provide additional infornratibout the
local area around the scanner which might not awhg
represented in the range measurements. Henceedfstration
of two point clouds can be supported by using bétideature
correspondences between the respective camerdlectaace
images. For this purpose, different kinds of feasucan be
used, but most of the current image-based appreaiecbased
on the use of feature points or keypoints. Manyhef image-
based approaches use SIFT features to detect atiigtin2D
feature points by which point correspondences batwevo
images can be detected. These features can betegtrimsom
the co-registered camera images (Bendels et al.4;2808
Manasir & Fraser, 2006; Barnea & Filin, 2007) ornfraghe
reflectance images (B6hm & Becker, 2007; Wang & Brenne
2008; Kang et al., 2009). For all point corresporws, the
respective feature points are projected into 30cespnd thus
lead to a much smaller set of 3D points used fgisteation.

In this paper, a method for a fully automatic régison of a
large number of unorganized scans is proposed. Repch
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high level of automation also including the sortofgthe scans
is essential as most of the current approacheshased on
pairwise registration for which an already knowmler of the

scans is assumed. For pairwise registration, afioation of a

fast and automatic image-based registration appradiich has
been published recently (Weinmann et al., 2011) whith is

also suited for scenes without regular surfacqgeasented. In
contrast to this approach, only those corresporatengith

reliable range information are used and, insteaal r@finement
step, an ICP-based fine registration is introdudédls, besides
being very fast, the proposed algorithm does neitlepend on
a priori information about the order of the scams on the

presence of regular surfaces.

The paper is organized as follows. In Section &,gtocessing
chain of the proposed algorithm is outlined. Awiit be shown,
the algorithm can be divided into the two majorpsteof
organizing the TLS data and carrying out a suceessairwise
registration which are presented in Section 3 aecti® 4 in
detail. In Section 5, the performance of the prepoalgorithm
is proved by processing 11 point clouds of a bermknTLS
data set. The capability of the proposed methatissussed in
Section 6 with respect to accuracy, reliability gpeformance.
Finally, conclusions and suggestions for future kvare
outlined in Section 7.

2. METHODOLOGY

The registration approach proposed in this papens aat
reaching a high level of automation and simultasgogetting
fast, reliable and accurate results. As illustrateBligure 1, the
approach can be divided into two major parts. Tir& part
deals with the organization of unorganized poiuds which
is later required for a successive pairwise regfistn. Hence
after the acquisition of TLS data, special featunase to be
extracted which are suitable for organizing thenscalhe
second part focuses on the registration of the tpdiouds.
Using reliable 3D points derived via the previousktracted
features and introducing their projections ontoirdual plane
yields 3D-to-2D correspondences. These are userkéeiving
a coarse registration of the point clouds whicfoimwed by a
fine registration in order to improve the accuratyhe results.
The scheme of this briefly summarized methodology
presented in detail in Section 3 and Section 4.

3. ORGANIZATION OF TLSDATA

The current registration approaches address a &utpmatic
registration of different scans of a scene. Tohfarrtincrease the
level of automation, the proposed algorithm firggamizes the
scans automatically, which yields a structure faccessive
pairwise registration. This is done by considering recorded
scans (Section 3.1), extracting distinctive featusaed feature
correspondences between the scans (Section 3.2using a
graph-based approach (Section 3.3).

3.1 Data Set and Reference Values

In the following, the quality of the proposed regition
approach is demonstrated with a benchmark TLS data
provided by the University of Hanover. This set sists of 12
upright scans and 8 tilted scans which were acduinethe
German city of Hanover in an area called Holzmaakid the
respective reference values for the relative oaitionh between
the scans. The scans were recorded with a Riegl ZBt®i
scanner and contain information about the 3D coartes of
object points as well as the corresponding reftexga
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information. Covering 360° in the horizontal directiand 90°
in the vertical direction with a single shot mea&snent
accuracy of 12mm and an angular resolution of OUR2%0 a
range of approximately 200m, each scan returns gilion

3D points from a regular scan area of 3000 x 75@tpdoeing
represented as panoramic reflectance image (WaBge&ner,
2008). The reflectance and range information ddrifvem the
scan at scan position 01 are visualized in Figure 2

In order to check the quality of the automaticaiiculated
registration results, accurate reference valuesnaegled. The
provided reference values are based on the usatiitial
targets and a manual alignment which yields an cbege
accuracy of the scan positions in the low millinmetenge. For
testing the proposed algorithm, a subset consistiig. upright
scans with a spacing of approximately 5m is used.

®)
®)
fE—
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A

Feature Extraction

A

Organizing

A

3D Point Estimation

A

Perspective Plane Projection
A

Coarse Registration
A

Figure 1. Processing chain of the proposed approach

Fine Registration

3.2 Feature Extraction

Once several scans have been acquired, the npxtatsists of
extracting distinctive features. Here, the Scalatiant Feature
Transform (SIFT) (Lowe, 2004) is utilized for deieg such
distinctive keypoints in an image derived from TeS data and
extracting local feature descriptors which are rarg to image
scaling and image rotation, and robust with respedmage
noise, changes in illumination and small changegiemwpoint.
These descriptors allow for locating correspondsripetween
different images and, finally, to derive common gmaabjects.
As the descriptors are represented as vectors, they be
compared by considering Euclidean distances. Arctife
measure describing the distinctiveness of a keypoam be
derived from the ratio of the Euclidean distanciea descriptor
belonging to a keypoint in one image to the neanesghbor
and the second nearest neighbor in the other inEgs.ratio
has to be below a given threshglgd, which can vary between 0
and 1. For practical purposes and different apfiting,
distinctive features arise when using a threshelivbentyes =

0.6 andtgs = 0.8. As the feature correspondences used for
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registration should be reliable, a thresholdygf= 0.66 is used.
This means that the distance of a descriptor batgng a SIFT
feature in imagée to the nearest neighbor in images only

about 2/3 of the distance to the second neareghbe.

(b)

Figure 2. Visualization of the captured TLS datg:reflectance
and (b) range information.

In order to check the similarity of the scans, hiaenber of SIFT
features between image pairs from all availableitioos is
calculated and stored in the confusion mat@ix For this
purpose, the same scan IDs are used as in thedptbdiata set.

The diagonal element(i,i) represent the total number of SIFT

features extracted in the respective reflectan@géen As can
be seen in Table 1, the confusion matrix is notessarily
symmetric which depends on the calculated ratio thod
Euclidean distances of a feature descriptor torntbarest and
second nearest neighbor. If, for a feature desmriperived

from imagei, the nearest neighbor and the second nearest
neighbor in imag¢ are a little more distinctive as required, this
ratio is below the thresholg.sand thus meets the constraint. In

the reverse case, when comparing a feature descdptived
from imagej to feature descriptors derived from imaigeit

might occur that the nearest neighbor and the secmarest
neighbor are more similar which causes a ratio abthe
thresholdtyeg

3.3 Organizing Large Numbersof Scans by Similarity

When dealing with a large number of scans, it miglet
desirable to reach a high level of automation. Til also
include automatically sorting the scans for paiewiggistration
so that the error between estimated and real podgiminimal.
Therefore, a graph-based algorithm is proposed here

Any set of unorganized point clouds can directlydgresented
as a graph, where the nodes represent the scanhamrdiges

are weighted with the total number of SIFT correxjfences
between the respective scans. In the most genasal, @very
node is connected with every other node which tesml a
complete graph. As mentioned before, the confusiatrix C is

not necessarily symmetric and therefore, a diregeaph is
used instead of an undirected graph. Hence, thg &ift,}) of

the confusion matrix represents the weight of aiditectional

edge from nodéto nods.

The first step towards organizing the point cloadssists of an
initialization which can be done via selecting dirted initial
scan. Alternatively, it would be possible to uskeotcriterions
if only the relations between the scans are of mgnze, e.g.
the node from which the edge with the maximum weigithin
the graph starts. This initial set containing elyaohe node is
then iteratively expanded until it contains all eeaf the graph.
Each iteration starts with searching unidirectioadfes from
the actual set of nodes to the remaining nodestenddge with
the maximum weight leads to the node by which thaa set is
expanded. Resulting from the selected connectiossiuature
can be generated which represents the order afctings for the
automatic pairwise registration. For the given cgidgn matrix
C (Table 1), the resulting structure for a succespairwise
registration process is shown in Figure 3.

Figure 3. Resulting scheme for successive pairvagestration:
The scans are labeled with their ID and the
connections used for further calculations are kdbel

with the number of detected SIFT correspondences

between the respective reflectance images.

4. REGISTRATION OF TLSDATA

After calculating the order of the scans by chegkitne
similarity of the respective reflectance images,parwise
registration of successive scans can be carried et this
purpose, the already calculated 2D SIFT featureslimg to

Scan ID

01 02 03 05 06 08 09 11 15 17 19
01 4986 217 63 45 33 58 41 28 44 62 39
02 229 5663 319 100 59 80 43 48 35 46| 38
03 88 308 5967 253 120 56 47 68 57 38 56
05 70 114 277 6200 484 78 58 68 131 68 84
06 31 70 124 466 6682 169 68 56 477 134 7]
08 86 96 53 78 163 6867 205 64 328 404 99
09 39 34 37 56 68 158 5571 330 78 571 656
11 17 24 37 40 44 41 277 4067 24 134 408
15 61 40 59 129 503 344 82 30 7154 211 53
17 53 56 34 60 121 379 590 169 240 6159 36[L
19 21 25 43 51 54 84 629 482 42 344 4852

Table 1. Number of SIFT correspondences betweerrdfiectance images of different scans within thesen subset. The
values can be summarized in the confusion ma@riand the entnyC(i,j) of this matrix denotes the number of point
correspondences found when all descriptors deffreed imagei are compared to the nearest neighbor and the decon

nearest neighbor derived from imgge
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correspondences have to be projected to 3D spack,the
reliability of the calculated 3D points has to Heecked with
respect to range information (Section 4.1) befawgistration.
The following registration is based on 2D projestioof the
reliable 3D points onto a virtual plane (Sectior2)4.and
divided into a coarse registration (Section 4.3§ am fine
registration (Section 4.4).

4.1 3D Point Estimation

As SIFT features are determined with subpixel aacyrthe
respective 3D information has to be interpolated the
measured values are only available on the regu&ar saster. A
reliable 3D point corresponding to a SIFT featuse bowever
only be generated, if all of the four nearest poion the scan
raster contain valid range information. The measupeints
which arise from objects in the scene will probaptypvide a
smooth surface whereas points corresponding toskyeor
points along edges of the objects might be verysynoi
Therefore, points have to be discarded if they dblie on the
surface of any object in the scene.

The provided scans are already filtered with resfmeminimum
values of the backscattered energy (Figure 4a)itidadlly, the
proposed algorithm considers the standard deviati@f the
values within a 3 x 3 neighborhood of each pixetha range
image in order to avoid unreliable range informat& edges of
scene objects. If the standard deviatioof the respective range
values is larger than a predefined threshgldvhich is selected
to tgq = 0.1m, the range information of the center pisehot
reliable, otherwise the range information of thatee pixel is
assumed to be reliable (Figure 4b). Combining tlcesestraints
yields a 2D confidence mad ¢ which is illustrated in Figure
4c.

(a)

(b)

(©

Figure 4. Confidence map for the scan at scan pasii: (a)
information filtered with respect to reflectancéd) (
information filtered with respect to the standard
deviationo using a threshold value tf;= 0.1m and
(c) the resulting confidence mddc. The reliable
points are shown in green, the unreliable onesdn r

4.2 Perspective Plane Projection

The reflectance images have been sampled usindherical
projection. For the registration, however, it i®fus to get the
coordinates of the extracted and reliable 3D pofqtsrojected
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onto a 2D image plane of a virtual camera in orteruse
powerful algorithms of computer vision application§he
respective transformation can be described via
x =K[R]t]X, (1)
where the matriX is the calibration matrix of a virtual camera,
and the matrixR and the vectot describe the rotation and the
translation of this virtual camera with respect ttee local
coordinate frame of the laser scanner. In the tegisn
processR refers to the local coordinate frame so that iheal
camera has the same orientation as the laser scanddooks
into the horizontal direction (Weinmann et al., 2D1Besides,
the position of the virtual camera is assumed taaedhe
location of the laser scanner and therefore, estation vector
is set tat = 0. As a consequence of introducing a virtual camera
plane, any parameters can be used for the focgtHerof the
camera inx- andy- direction as well as for the coordinates of
the principal point. Furthermore, the image plares mot
necessarily to be limited on a finite area andpalhts behind
the camera may also be included by mapping thero tre
virtual plane via symmetric constraints as theyespnt the 2D
projections onto the virtual plane of a second aan@oking in
the opposite direction. Thus, instead of creatiygtisetic
camera images and using these for registratiork@@o& King,
2004), only a few points are projected with subpaceeuracy.

4.3 Coarse Registration using EPnP and RANSAC

Once 3D-to-2D correspondences are known, the proldé
pose estimation is the same as when using a canstead of a
laser scanner. Recently, the Efficient PerspeatiRsint
(EPnP) algorithm has been proposed as a non-iteratethod
to estimate the exterior orientation or pose ofmera from a
set ofn correspondences between 3D poi{of a scene and
their 2D projections; onto the image plane (Moreno-Noguer et
al., 2007; Lepetit et al., 2009). The EPnP alganiib based on
the idea of expressing the known 3D scene pointX; as a
weighted sum of four virtual and non-coplanar cohpointsC;
for general configurations. The weight§ remain unchanged
when transferring this relation to camera coordisagnd

therefore, the pointXf can be expressed via the control points

C? which leads to

X. 4
w=|"" =KX =K Zaijci ®)

1 =
fori =1, ...,n, whereK describes the camera matrix. The scalar
projective parametess; can be substituted by

4
W=y
j=1

c
a,Z

®)

via the Z°€ coordinates of the control points. Concatenatirgy th
resulting equations for all n 3D-to-2D correspormimyields a

T
linear systemM x =0 with x:[CfT,CCZT,C%T ,CEH and a
2n x 12 matrixM. The solutionx then leads to the camera

coordinates X{. Once the world coordinates and the camera

coordinates of the 3D points are known, the rotatand
translation parameters aligning both coordinatéesys can be
retrieved via standard methods (Horn et al., 1988)the EPnP
algorithm considers all 3D-to-2D correspondenceshaovit
checking their reliability, the quality of the regiation results
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can be increased by introducing further constraintke  EPnP algorithm which has been extended by the RANSAC
RANSAC algorithm (Fischler & Bolles, 1981) provideg@od  algorithm for an increased robustness. Subsequerdly
possibility for eliminating outliers and thus reawh a more  consistency check with respect to 3D distances dwivthe 3D
robust pose estimation. This combination of EPnRI anpoints transformed into a common coordinate fraree the

RANSAC is based on randomly selecting small, but notcoarse estimate of the transformation parameterarised out.

minimal subsets of seven correspondences for dstignéhe
model parameters, and checking the whole set
correspondences for consistent sample points (Mekaguer
et al., 2007; Lepetit et al., 2009).

4.4 FineRegistration using Outlier Removal and ICP

The results from the previous coarse registratimvige a good
a priori alignment which is required for using 1@ algorithm
in order to get a fine registration. However, the NGXC
algorithm only considers the quality of the 3D-iD-2
correspondences. Hence, the quality of the 3D pdiat to be
considered separately. This is done by eliminativgge 3D-to-
3D correspondences for which at least one 3D poises from
periodic shapes of facades and thus from ambiguitiethe
scene via geometric constraints (Weinmann et 8l11P The
resulting points used for fine registration areyvegliable as
they have been checked with respect to the reliplf their
range information, the quality of the 3D-to-2D @®pondences
and the quality of the 3D-to-3D correspondencegrdiore, the
ICP algorithm is expected to yield very accurateltes

5. EVALUATION

The first part of the presented approach can ehsilyerified if
the nodes belonging to the scans are projected timto
reference positions of the respective scans is¢eae, which is

done in Figure 5.

Figure 5. Scans sorted with respect to their rafergosition in
the nadir view of the scene: The streets are cdlore
bright gray, buildings in dark gray.

Once the scans are sorted, a successive pairwjis¢ragion can
be carried out. Between the reflectance imagesettans 01
and 02, a total number of 217 SIFT correspondehessbeen
detected (Table 1) of which 89 are reliable withpect to the
range information of the corresponding SIFT feaur&€he
respective 3D points of those reliable SIFT coroesfences are
projected to 3D space using bilinear interpolatiinfor one
scan, the absolute transformation parameters \egthect to the
world coordinate frame are known which is assunmdstan
position 01, the 3D world coordinates of the ceadtedl 3D
points can easily be determined. For a new scae,
corresponding 2D features with reliable range imiation are
also projected to 3D space and backprojected ontirtaal
plane assigned to the local coordinate frame wiields 2D
observations. Establishing 3D-to-2D correspondefficen the
3D information derived from the first scan and tB®
observations derived from the new scan allows fingi the

59

After this geometric outlier removal, the remaini@p-to-3D

oforrespondences (29 between the scans 01 andéfsed for

an ICP-based fine registration. As shown in Figurethe

absolute position errors after coarse registragi@nin the range
between 12mm and 49mm, and the fine registratia@idyi
accurate results with absolute position errors betwdmm and
32mm.

0055 ! : e
0080 f : R T
0.045 : : SR R O
0.040¢
0035 [
0.030]
00251\
0020}

0015}
0010t
0005}

eaha [m]

i 1 i i | i 1 i
01-02 02-03 03-05 05-06 06-15 15-08 08-17 17-08 09-19 18-11
SCan positions

Figure 6. Absolute error between reference andmestid
positions for coarse (dotted line with diamondsjl an
fine registration (solid line with squares).

6. DISCUSSION

The presented registration approach was testedaitta on a
standard PC with 2.83GHz. Although the code is nuty f
optimized with respect to a possible parallelizatom multiple
cores and thus only one core is used, the averageréquired
for pairwise registration is about 13s. Of thisgimabout 5s are
needed for calculating the SIFT correspondences,talbs for
coarse estimation using a RANSAC-based scheme imgud
EPnP and only 1s for consistency checks and ICPwan t
relatively small subsets each consisting of appnakély 100
points. If the ICP algorithm is used for larger stbs the
computational effort increases highly.

Concerning accuracy and performance, the propospagh
is comparable to other image-based approaches (Wang
Brenner, 2008; Weinmann et al., 2011). As the amtroa
focuses on using only reliable information concegnirange,
3D-to-2D correspondences and 3D-to-3D corresporatertbe
estimated transformation parameters are very teliahich can
be seen when comparing them to the reference vékigsre
6). The approach is suited for both urban envirammend
scenes containing vegetation and does neither demen
regular surfaces nor human interaction. Howeveg, @mnstraint
concerning the scene arises as point-like feathes® to be
extracted. Hence, the scene has to be well-stedtwhich is
assumed in all image-based approaches using SHedrés.

As the total number of SIFT correspondences deeseagh an

thincreasing distance between the respective scatignsswhich

can be seen when considering the entries in thdéusiom

matrix (Table 1) and the reference positions (Fegb), the
presented approach as well as other image-basedaambhes
will not lead to optimal results for larger distescbetween the
scans. For this purpose, approaches based on geomet
primitives (Brenner et al., 2008; Rabbani et al., D0fight be
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more robust in direct comparison, but they assumae regular
surfaces can be found in the scene and thus lessajescenes.

7. CONCLUSION AND OUTLOOK

In this paper, a fully automatic registration apio is
presented which is based on both the range infawmand the
reflectance information of terrestrial laser scafistomatically
sorting any number of unorganized scans by meantheif
similarity and then carrying out a successive fa®d accurate
pairwise registration, the approach provides a pfuve
framework suited for typical environments. The agmh has
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containing millions of points and been discussedceoning
accuracy, reliability and performance. For futurerky the

approach could be extended by introducing a finaba

registration over all scans or at least considetituge parts of
the confusion matrix arising from the similarity @hew scan to
all of the already registered scans. This mightroap the
quality of the estimated transformation paramesers yield an
even further increased robustness.
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