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ABSTRACT: 
The estimation of the transformation parameters between different point clouds is still a crucial task as it is usually followed by scene 
reconstruction, object detection or object recognition. Therefore, the estimates should be as accurate as possible. Recent 
developments show that it is feasible to utilize both the measured range information and the reflectance information sampled as 
image, as 2D imagery provides additional information. In this paper, an image-based registration approach for TLS data is presented 
which consists of two major steps. In the first step, the order of the scans is calculated by checking the similarity of the respective 
reflectance images via the total number of SIFT correspondences between them. Subsequently, in the second step, for each SIFT 
correspondence the respective SIFT features are filtered with respect to their reliability concerning the range information and 
projected to 3D space. Combining the 3D points with 2D observations on a virtual plane yields 3D-to-2D correspondences from 
which the coarse transformation parameters can be estimated via a RANSAC-based registration scheme including the EPnP 
algorithm. After this coarse registration, the 3D points are again checked for consistency by using constraints based on the 3D 
distance, and, finally, the remaining 3D points are used for an ICP-based fine registration. Thus, the proposed methodology provides 
a fast, reliable, accurate and fully automatic image-based approach for the registration of unorganized point clouds without the need 
of a priori information about the order of the scans, the presence of regular surfaces or human interaction. 
 

1. INTRODUCTION 

The automatic registration of point clouds acquired with a 
terrestrial laser scanner (TLS) is still of great interest. Each 
point cloud represents dense and accurate 3D information about 
surfaces of objects in the local area around the scanner with 
respect to a local coordinate frame. However, usually multiple 
scans from different locations have to be recorded to obtain a 
full scene coverage. Hence, a registration process has to be 
carried out which transforms all point clouds into a common 
coordinate frame. 

Standard approaches for calculating the transformation 
parameters between two partially overlapping point clouds are 
based on the Iterative Closest Point (ICP) algorithm (Besl & 
McKay, 1992) and different variants of it (Rusinkiewicz & 
Levoy, 2001). The ICP algorithm minimizes the difference 
between two point clouds. For large numbers of points, 
however, the ICP algorithm shows a high computational effort 
which is due to the iterative processing scheme. Hence, it seems 
quite feasible to extract relevant information from the point 
clouds which can be used for registration. Such relevant 
information may for example be derived via the distribution of 
the points within each point cloud by using the normal 
distributions transform (NDT) either on 2D scan slices (Brenner 
et al., 2008) or in 3D (Magnusson et al., 2007). 

Urban environments or scenes containing industrial installations 
usually contain regular surfaces of which various types of 
geometric features might arise. Simple features which are likely 
to occur and useful for registration are lines (Stamos & 
Leordeanu, 2003) derived from the range information sampled 
as range images. Other commonly used features which are 
extracted directly from the point clouds are planes (Dold & 
Brenner, 2004; Brenner et al., 2008; Pathak et al. 2010a; Pathak 
et al. 2010b) or more complex geometric features like spheres, 
cylinders or tori (Rabbani et al., 2007). However, all these 
feature types representing geometric primitives are not suited in 
scenes without regular surfaces. In addition to regular surfaces, 
scans in urban scenes might also contain a typical skyline. This 
border between the sky and a set of buildings shows special 

features when using a cylindrical projection model for sampling 
the range information to panoramic range images covering 360° 
in the horizontal direction, e.g. extrema or flat regions which 
are suited for a coarse alignment of two scans (Nüchter et al., 
2011). As such features strongly depend on the scene content, 
this approach is not suited if the skyline is less distinctive and 
thus not sufficient for registration purposes. 

In the presence of cluttered scenes, descriptors representing 
local surface patches are more appropriate. Such descriptors 
may be derived from geometric curvature or normal vectors of 
the local surface (Bae & Lichti, 2004; Bae & Lichti 2008). 
Further approaches which are suitable for more complex scenes 
are based on extracting special feature points in the range 
images in order to support the registration process (Barnea & 
Filin, 2008; Steder et al., 2010). 

Currently, most of the terrestrial laser scanners can not only 
measure the distance to 3D scene points but also capture either 
co-registered camera images or panoramic reflectance images 
representing the respective energy of the backscattered laser 
light. Therefore, several approaches are based on the use of 2D 
imagery as the images provide additional information about the 
local area around the scanner which might not always be 
represented in the range measurements. Hence, the registration 
of two point clouds can be supported by using reliable feature 
correspondences between the respective camera or reflectance 
images. For this purpose, different kinds of features can be 
used, but most of the current image-based approaches are based 
on the use of feature points or keypoints. Many of the image-
based approaches use SIFT features to detect distinctive 2D 
feature points by which point correspondences between two 
images can be detected. These features can be extracted from 
the co-registered camera images (Bendels et al., 2004; Al-
Manasir & Fraser, 2006; Barnea & Filin, 2007) or from the 
reflectance images (Böhm & Becker, 2007; Wang & Brenner 
2008; Kang et al., 2009). For all point correspondences, the 
respective feature points are projected into 3D space and thus 
lead to a much smaller set of 3D points used for registration. 

In this paper, a method for a fully automatic registration of a 
large number of unorganized scans is proposed. Reaching a 
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high level of automation also including the sorting of the scans 
is essential as most of the current approaches are based on 
pairwise registration for which an already known order of the 
scans is assumed. For pairwise registration, a modification of a 
fast and automatic image-based registration approach which has 
been published recently (Weinmann et al., 2011) and which is 
also suited for scenes without regular surfaces is presented. In 
contrast to this approach, only those correspondences with 
reliable range information are used and, instead of a refinement 
step, an ICP-based fine registration is introduced. Thus, besides 
being very fast, the proposed algorithm does neither depend on 
a priori information about the order of the scans nor on the 
presence of regular surfaces. 

The paper is organized as follows. In Section 2, the processing 
chain of the proposed algorithm is outlined. As it will be shown, 
the algorithm can be divided into the two major steps of 
organizing the TLS data and carrying out a successive pairwise 
registration which are presented in Section 3 and Section 4 in 
detail. In Section 5, the performance of the proposed algorithm 
is proved by processing 11 point clouds of a benchmark TLS 
data set. The capability of the proposed method is discussed in 
Section 6 with respect to accuracy, reliability and performance. 
Finally, conclusions and suggestions for future work are 
outlined in Section 7. 

2. METHODOLOGY 

The registration approach proposed in this paper aims at 
reaching a high level of automation and simultaneously getting 
fast, reliable and accurate results. As illustrated in Figure 1, the 
approach can be divided into two major parts. The first part 
deals with the organization of unorganized point clouds which 
is later required for a successive pairwise registration. Hence 
after the acquisition of TLS data, special features have to be 
extracted which are suitable for organizing the scans. The 
second part focuses on the registration of the point clouds. 
Using reliable 3D points derived via the previously extracted 
features and introducing their projections onto a virtual plane 
yields 3D-to-2D correspondences. These are used for receiving 
a coarse registration of the point clouds which is followed by a 
fine registration in order to improve the accuracy of the results. 
The scheme of this briefly summarized methodology is 
presented in detail in Section 3 and Section 4. 

3. ORGANIZATION OF TLS DATA  

The current registration approaches address a fully automatic 
registration of different scans of a scene. To further increase the 
level of automation, the proposed algorithm first organizes the 
scans automatically, which yields a structure for successive 
pairwise registration. This is done by considering the recorded 
scans (Section 3.1), extracting distinctive features and feature 
correspondences between the scans (Section 3.2) and using a 
graph-based approach (Section 3.3). 

3.1 Data Set and Reference Values 

In the following, the quality of the proposed registration 
approach is demonstrated with a benchmark TLS data set 
provided by the University of Hanover. This set consists of 12 
upright scans and 8 tilted scans which were acquired in the 
German city of Hanover in an area called Holzmarkt, and the 
respective reference values for the relative orientation between 
the scans. The scans were recorded with a Riegl LMS-Z360i 
scanner and contain information about the 3D coordinates of 
object points as well as the corresponding reflectance 

information. Covering 360° in the horizontal direction and 90° 
in the vertical direction with a single shot measurement 
accuracy of 12mm and an angular resolution of 0.12° up to a 
range of approximately 200m, each scan returns 2.25 million 
3D points from a regular scan area of 3000 x 750 points being 
represented as panoramic reflectance image (Wang & Brenner, 
2008). The reflectance and range information derived from the 
scan at scan position 01 are visualized in Figure 2. 

In order to check the quality of the automatically calculated 
registration results, accurate reference values are needed. The 
provided reference values are based on the use of artificial 
targets and a manual alignment which yields an expected 
accuracy of the scan positions in the low millimeter range. For 
testing the proposed algorithm, a subset consisting of 11 upright 
scans with a spacing of approximately 5m is used. 

 

Figure 1. Processing chain of the proposed approach. 

3.2 Feature Extraction 

Once several scans have been acquired, the next step consists of 
extracting distinctive features. Here, the Scale Invariant Feature 
Transform (SIFT) (Lowe, 2004) is utilized for detecting such 
distinctive keypoints in an image derived from the TLS data and 
extracting local feature descriptors which are invariant to image 
scaling and image rotation, and robust with respect to image 
noise, changes in illumination and small changes in viewpoint. 
These descriptors allow for locating correspondences between 
different images and, finally, to derive common image objects. 
As the descriptors are represented as vectors, they can be 
compared by considering Euclidean distances. An effective 
measure describing the distinctiveness of a keypoint can be 
derived from the ratio of the Euclidean distances of a descriptor 
belonging to a keypoint in one image to the nearest neighbor 
and the second nearest neighbor in the other image. This ratio 
has to be below a given threshold tdes, which can vary between 0 
and 1. For practical purposes and different applications, 
distinctive features arise when using a threshold between tdes = 
0.6 and tdes = 0.8. As the feature correspondences used for 
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registration should be reliable, a threshold of tdes = 0.66 is used. 
This means that the distance of a descriptor belonging to a SIFT 
feature in image i to the nearest neighbor in image j is only 
about 2/3 of the distance to the second nearest neighbor. 

 
(a) 

 
(b) 

Figure 2. Visualization of the captured TLS data: (a) reflectance 
and (b) range information. 

In order to check the similarity of the scans, the number of SIFT 
features between image pairs from all available positions is 
calculated and stored in the confusion matrix C. For this 
purpose, the same scan IDs are used as in the provided data set. 
The diagonal elements C(i,i) represent the total number of SIFT 
features extracted in the respective reflectance image i. As can 
be seen in Table 1, the confusion matrix is not necessarily 
symmetric which depends on the calculated ratio of the 
Euclidean distances of a feature descriptor to the nearest and 
second nearest neighbor. If, for a feature descriptor derived 
from image i, the nearest neighbor and the second nearest 
neighbor in image j are a little more distinctive as required, this 
ratio is below the threshold tdes and thus meets the constraint. In 
the reverse case, when comparing a feature descriptor derived 
from image j to feature descriptors derived from image i, it 
might occur that the nearest neighbor and the second nearest 
neighbor are more similar which causes a ratio above the 
threshold tdes. 

3.3 Organizing Large Numbers of Scans by Similarity 

When dealing with a large number of scans, it might be 
desirable to reach a high level of automation. This will also 
include automatically sorting the scans for pairwise registration 
so that the error between estimated and real position is minimal. 
Therefore, a graph-based algorithm is proposed here.  

Any set of unorganized point clouds can directly be represented 
as a graph, where the nodes represent the scans and the edges 

are weighted with the total number of SIFT correspondences 
between the respective scans. In the most general case, every 
node is connected with every other node which results in a 
complete graph. As mentioned before, the confusion matrix C is 
not necessarily symmetric and therefore, a directed graph is 
used instead of an undirected graph. Hence, the entry C(i,j) of 
the confusion matrix represents the weight of an unidirectional 
edge from node i to node j. 

The first step towards organizing the point clouds consists of an 
initialization which can be done via selecting a defined initial 
scan. Alternatively, it would be possible to use other criterions 
if only the relations between the scans are of importance, e.g. 
the node from which the edge with the maximum weight within 
the graph starts. This initial set containing exactly one node is 
then iteratively expanded until it contains all nodes of the graph. 
Each iteration starts with searching unidirectional edges from 
the actual set of nodes to the remaining nodes and the edge with 
the maximum weight leads to the node by which the actual set is 
expanded. Resulting from the selected connections, a structure 
can be generated which represents the order of the scans for the 
automatic pairwise registration. For the given confusion matrix 
C (Table 1), the resulting structure for a successive pairwise 
registration process is shown in Figure 3. 

 

 

Figure 3. Resulting scheme for successive pairwise registration: 
The scans are labeled with their ID and the 
connections used for further calculations are labeled 
with the number of detected SIFT correspondences 
between the respective reflectance images. 

4. REGISTRATION OF TLS DATA  

After calculating the order of the scans by checking the 
similarity of the respective reflectance images, a pairwise 
registration of successive scans can be carried out. For this 
purpose, the already calculated 2D SIFT features leading to 

Scan ID 01 02 03 05 06 08 09 11 15 17 19 
01 4986 217 63 45 33 58 41 28 44 62 39 
02 229 5663 319 100 59 80 43 48 35 46 38 
03 88 308 5967 253 120 56 47 68 57 38 56 
05 70 114 277 6200 484 78 58 68 131 68 84 
06 31 70 124 466 6682 169 68 56 477 134 71 
08 86 96 53 78 163 6867 205 64 328 404 99 
09 39 34 37 56 68 158 5571 330 78 577 656 
11 17 24 37 40 44 41 277 4061 24 134 408 
15 61 40 59 129 503 344 82 30 7154 211 53 
17 53 56 34 60 121 379 590 169 240 6159 361 
19 21 25 43 51 54 84 629 482 42 344 4852 

Table 1. Number of SIFT correspondences between the reflectance images of different scans within the chosen subset. The 
values can be summarized in the confusion matrix C and the entry C(i,j) of this matrix denotes the number of point 
correspondences found when all descriptors derived from image i are compared to the nearest neighbor and the second 
nearest neighbor derived from image j.  
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correspondences have to be projected to 3D space, and the 
reliability of the calculated 3D points has to be checked with 
respect to range information (Section 4.1) before registration. 
The following registration is based on 2D projections of the 
reliable 3D points onto a virtual plane (Section 4.2), and 
divided into a coarse registration (Section 4.3) and a fine 
registration (Section 4.4). 

4.1 3D Point Estimation 

As SIFT features are determined with subpixel accuracy, the 
respective 3D information has to be interpolated as the 
measured values are only available on the regular scan raster. A 
reliable 3D point corresponding to a SIFT feature can however 
only be generated, if all of the four nearest points on the scan 
raster contain valid range information. The measured points 
which arise from objects in the scene will probably provide a 
smooth surface whereas points corresponding to the sky or 
points along edges of the objects might be very noisy. 
Therefore, points have to be discarded if they do not lie on the 
surface of any object in the scene. 

The provided scans are already filtered with respect to minimum 
values of the backscattered energy (Figure 4a). Additionally, the 
proposed algorithm considers the standard deviation σ of the 
values within a 3 x 3 neighborhood of each pixel in the range 
image in order to avoid unreliable range information at edges of 
scene objects. If the standard deviation σ of the respective range 
values is larger than a predefined threshold tstd which is selected 
to tstd = 0.1m, the range information of the center pixel is not 
reliable, otherwise the range information of the center pixel is 
assumed to be reliable (Figure 4b). Combining these constraints 
yields a 2D confidence map MC which is illustrated in Figure 
4c. 

 
(a) 

 
(b) 

 
(c) 

Figure 4. Confidence map for the scan at scan position 01: (a) 
information filtered with respect to reflectance, (b) 
information filtered with respect to the standard 
deviation σ using a threshold value of tstd = 0.1m and 
(c) the resulting confidence map MC. The reliable 
points are shown in green, the unreliable ones in red. 

4.2 Perspective Plane Projection 

The reflectance images have been sampled using a spherical 
projection. For the registration, however, it is useful to get the 
coordinates of the extracted and reliable 3D points Xi projected 

onto a 2D image plane of a virtual camera in order to use 
powerful algorithms of computer vision applications. The 
respective transformation can be described via 

 [ ]|i i=x K R t X  (1) 

where the matrix K is the calibration matrix of a virtual camera, 
and the matrix R and the vector t describe the rotation and the 
translation of this virtual camera with respect to the local 
coordinate frame of the laser scanner. In the registration 
process, R refers to the local coordinate frame so that the virtual 
camera has the same orientation as the laser scanner and looks 
into the horizontal direction (Weinmann et al., 2011). Besides, 
the position of the virtual camera is assumed to equal the 
location of the laser scanner and therefore, the translation vector 
is set to t = 0. As a consequence of introducing a virtual camera 
plane, any parameters can be used for the focal lengths of the 
camera in x- and y- direction as well as for the coordinates of 
the principal point. Furthermore, the image plane has not 
necessarily to be limited on a finite area and all points behind 
the camera may also be included by mapping them onto the 
virtual plane via symmetric constraints as they represent the 2D 
projections onto the virtual plane of a second camera looking in 
the opposite direction. Thus, instead of creating synthetic 
camera images and using these for registration (Forkuo & King, 
2004), only a few points are projected with subpixel accuracy. 

4.3 Coarse Registration using EPnP and RANSAC 

Once 3D-to-2D correspondences are known, the problem of 
pose estimation is the same as when using a camera instead of a 
laser scanner. Recently, the Efficient Perspective-n-Point 
(EPnP) algorithm has been proposed as a non-iterative method 
to estimate the exterior orientation or pose of a camera from a 
set of n correspondences between 3D points Xi of a scene and 
their 2D projections xi onto the image plane (Moreno-Noguer et 
al., 2007; Lepetit et al., 2009). The EPnP algorithm is based on 
the idea of expressing the n known 3D scene points Xi as a 
weighted sum of four virtual and non-coplanar control points Cj 
for general configurations. The weights αij remain unchanged 
when transferring this relation to camera coordinates and 

therefore, the points c
iX  can be expressed via the control points 

c
jC  which leads to 

 
4

11
i c c

i i ij j
j

w α
=

 
= = = 
 

∑
x

K X K C  (2) 

for i = 1, …, n, where K describes the camera matrix. The scalar 
projective parameters wi can be substituted by 

 
4

1

c
i ij j

j

w Zα
=

=∑  (3) 

via the cZ coordinates of the control points. Concatenating the 
resulting equations for all n 3D-to-2D correspondences yields a 

linear system =M x 0  with 1 2 3 4, , ,
TcT cT cT cT =

 
x C C C C  and a 

2n x 12 matrix M. The solution x then leads to the camera 

coordinates c
iX . Once the world coordinates and the camera 

coordinates of the 3D points are known, the rotation and 
translation parameters aligning both coordinate systems can be 
retrieved via standard methods (Horn et al., 1988). As the EPnP 
algorithm considers all 3D-to-2D correspondences without 
checking their reliability, the quality of the registration results 
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can be increased by introducing further constraints. The 
RANSAC algorithm (Fischler & Bolles, 1981) provides a good 
possibility for eliminating outliers and thus reaching a more 
robust pose estimation. This combination of EPnP and 
RANSAC is based on randomly selecting small, but not 
minimal subsets of seven correspondences for estimating the 
model parameters, and checking the whole set of 
correspondences for consistent sample points (Moreno-Noguer 
et al., 2007; Lepetit et al., 2009). 

4.4 Fine Registration using Outlier Removal and ICP 

The results from the previous coarse registration provide a good 
a priori alignment which is required for using the ICP algorithm 
in order to get a fine registration. However, the RANSAC 
algorithm only considers the quality of the 3D-to-2D 
correspondences. Hence, the quality of the 3D points has to be 
considered separately. This is done by eliminating those 3D-to-
3D correspondences for which at least one 3D point arises from 
periodic shapes of façades and thus from ambiguities in the 
scene via geometric constraints (Weinmann et al., 2011). The 
resulting points used for fine registration are very reliable as 
they have been checked with respect to the reliability of their 
range information, the quality of the 3D-to-2D correspondences 
and the quality of the 3D-to-3D correspondences. Therefore, the 
ICP algorithm is expected to yield very accurate results. 

5. EVALUATION 

The first part of the presented approach can easily be verified if 
the nodes belonging to the scans are projected onto the 
reference positions of the respective scans in the scene, which is 
done in Figure 5. 

 

Figure 5. Scans sorted with respect to their reference position in 
the nadir view of the scene: The streets are colored in 
bright gray, buildings in dark gray. 

Once the scans are sorted, a successive pairwise registration can 
be carried out. Between the reflectance images of the scans 01 
and 02, a total number of 217 SIFT correspondences has been 
detected (Table 1) of which 89 are reliable with respect to the 
range information of the corresponding SIFT features. The 
respective 3D points of those reliable SIFT correspondences are 
projected to 3D space using bilinear interpolation. If for one 
scan, the absolute transformation parameters with respect to the 
world coordinate frame are known which is assumed for scan 
position 01, the 3D world coordinates of the calculated 3D 
points can easily be determined. For a new scan, the 
corresponding 2D features with reliable range information are 
also projected to 3D space and backprojected onto a virtual 
plane assigned to the local coordinate frame which yields 2D 
observations. Establishing 3D-to-2D correspondences from the 
3D information derived from the first scan and the 2D 
observations derived from the new scan allows for using the 

EPnP algorithm which has been extended by the RANSAC 
algorithm for an increased robustness. Subsequently, a 
consistency check with respect to 3D distances between the 3D 
points transformed into a common coordinate frame via the 
coarse estimate of the transformation parameters is carried out.  
After this geometric outlier removal, the remaining 3D-to-3D 
correspondences (29 between the scans 01 and 02) are used for 
an ICP-based fine registration. As shown in Figure 6, the 
absolute position errors after coarse registration are in the range 
between 12mm and 49mm, and the fine registration yields 
accurate results with absolute position errors between 9mm and 
32mm.  

 

Figure 6. Absolute error between reference and estimated 
positions for coarse (dotted line with diamonds) and 
fine registration (solid line with squares). 

6. DISCUSSION 

The presented registration approach was tested in Matlab on a 
standard PC with 2.83GHz. Although the code is not fully 
optimized with respect to a possible parallelization on multiple 
cores and thus only one core is used, the average time required 
for pairwise registration is about 13s. Of this time, about 5s are 
needed for calculating the SIFT correspondences, about 7s for 
coarse estimation using a RANSAC-based scheme including 
EPnP and only 1s for consistency checks and ICP on two 
relatively small subsets each consisting of approximately 100 
points. If the ICP algorithm is used for larger subsets, the 
computational effort increases highly. 

Concerning accuracy and performance, the proposed approach 
is comparable to other image-based approaches (Wang & 
Brenner, 2008; Weinmann et al., 2011). As the approach 
focuses on using only reliable information concerning range, 
3D-to-2D correspondences and 3D-to-3D correspondences, the 
estimated transformation parameters are very reliable which can 
be seen when comparing them to the reference values (Figure 
6). The approach is suited for both urban environments and 
scenes containing vegetation and does neither depend on 
regular surfaces nor human interaction. However, one constraint 
concerning the scene arises as point-like features have to be 
extracted. Hence, the scene has to be well-structured which is 
assumed in all image-based approaches using SIFT features. 

As the total number of SIFT correspondences decreases with an 
increasing distance between the respective scan positions which 
can be seen when considering the entries in the confusion 
matrix (Table 1) and the reference positions (Figure 5), the 
presented approach as well as other image-based approaches 
will not lead to optimal results for larger distances between the 
scans. For this purpose, approaches based on geometric 
primitives (Brenner et al., 2008; Rabbani et al., 2007) might be 
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more robust in direct comparison, but they assume that regular 
surfaces can be found in the scene and thus less general scenes. 

7. CONCLUSION AND OUTLOOK 

In this paper, a fully automatic registration approach is 
presented which is based on both the range information and the 
reflectance information of terrestrial laser scans. Automatically 
sorting any number of unorganized scans by means of their 
similarity and then carrying out a successive fast and accurate 
pairwise registration, the approach provides a powerful 
framework suited for typical environments. The approach has 
been successfully applied to a benchmark TLS data set 
containing millions of points and been discussed concerning 
accuracy, reliability and performance. For future work, the 
approach could be extended by introducing a final global 
registration over all scans or at least considering those parts of 
the confusion matrix arising from the similarity of a new scan to 
all of the already registered scans. This might improve the 
quality of the estimated transformation parameters and yield an 
even further increased robustness. 
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