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ABSTRACT:

The registration of multiple surface point clouds into a common reference frame is a well addressed topic, and the Iterative Closest
Point (ICP) is - perhaps - the most used method when registering laser scans due to their irregular nature. In this paper, we examine
the proposed Iterative Closest Projected Point (ICPP) algorithm for the simultaneous registration of multiple point clouds. First, a
point to triangular patch (i.e. closest three points) match is established by checking if the point falls within the triangular dipyramid,
which has the three triangular patch points as a base and a user-chosen normal distance as the height to establish the two peaks.
Then, the point is projected onto the patch surface, and its projection is then used as a match for the original point. It is also shown
through empirical experimentation that the Delaunay triangles are not a requirement for establishing matches. In fact, Delaunay
triangles in some scenarios may force blunders into the final solution, while using the closest three points leads to avoiding some
undesired erroneous points. In addition, we review the algorithm by which the ICPP is inspired, namely, the Iterative Closest Patch
(ICPatch); where conjugate point-patch pairs are extracted in the overlapping surface areas, and the transformation parameters
between all neighbouring surfaces are estimated in a pairwise manner. Then, using the conjugate point-patch pairs, and applying the
transformation parameters from the pairwise registration as initial approximations, the final surface transformation parameters are
solved for simultaneously. Finally, we evaluate the assumptions made and examine the performance of the new algorithm against the
ICPatch.

1. INTRODUCTION segmented in order to extract useful objects (e.g., cylinders).
Afterwards, a model fitting step takes place, followed by a
There currently exist many ICP variants, which have various correspondence specification step. Then, a check is performed
target functions and objectives. Rusinkiewicz & Levoy (2001), to ensure that the information collected so far provide sufficient
Bae & Lichti (2008), and Besl & McKay (1992) are a few  constraints. Finally, the sum of the squares of the orthogonal
examples of these variants. ICP like matching algorithms vary distances between the points and the extracted object are
in the way their primitives are defined. The basic matching minimized, and the optimal registration is achieved.
algorithms are mainly comprised of a point-to-point matching
procedure; this method is sometimes desired due to the lack of  [n the aforementioned brief literature review, the authors do not
pre-processing steps, the high convergence rate, and the speed  attempt to review all the existing matching algorithms, but to
of the algorithm. An example of such level could be found in shed light on the three levels of primitive variation: (1) point-to-
the earliest work shown in Besl & McKay (1992). However,  point, (2) point-to-surface, and (3) point-to-object primitives. In
note that due to the false underlying assumption of point-to-  the work presented here, both, the ICPatch and the ICPP belong
point correspondence in the case of irregular point clouds, the {0 the second category of algorithms. However, the ICPP could
final transformations may be slightly biased (Shan & Toth,  also be seen as a first category algorithm due to the introduction
2008). of artificial projected points used for the registration as will be
seen in the methodology section.
Another representation of primitives is found where one point
cloud is maintained in its original shape, while the other point The focus of this paper is to present and compare two triangular
set is converted into a higher order primitive (e.g., triangles,  patch based registration methods, namely - the Iterative Closest
planes, surface normals, and higher order surfaces). In this Patch (ICPatch) and the Iterative Closest Projected Point
representation, the mathematical model used is more complex (ICPP). In the previous work shown in Habib et al. (2010), the
and the expected execution time is longer; however, the  authors introduced the ICPatch method for the registration of

expected surface registration accuracy is higher. Beinat et al. multiple point clouds into a common reference frame. The
(2006), and Bostrom et al. (2008) are two examples of this type ICPatch method could be summarized in two main steps. First,
of primitive representation. a pairwise registration is run between every two overlapping

point clouds in order to solve for their relative transformation
An even more complex representation is to use object  parameters. Note that for each point cloud pair a Delaunay
primitives. An example for the use of such primitives is found triangulation must be performed over one of the two point
in Rabbani et al. (2007). In their work, point clouds are first
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clouds, while the other one is kept in its original format. All
possible point-to-closest triangular patch pairs are identified
within the dataset. Second, the point-to-patch matches together
with the relative transformation parameters from the pairwise
registration step are used to compute the global transformation
parameters of each point cloud, and thus perform the multi-
surface registration process in a network mode.

Inhere, the ICPatch method is briefly reviewed. Then, the new
one-step (multi-surface) registration ICPP algorithm is
presented, starting with the underlying assumptions and the
mathematical model. Next, a sample dataset is used to evaluate
the performance of the aforementioned methods. The paper is
then concluded with final remarks and a discussion of future
work.

2. METHODOLOGY

In this section, we first start by quickly reviewing the ICPatch
method, then, we present the new ICPP method. The motivation
behind both methods is the argument that a point-to-point
correspondence between two or more irregular point clouds is
an invalid assumption. The user simply cannot identify common
points among the point sets. Therefore, one must consider
higher order primitives to compensate for the discrete nature of
the data. Triangles are considered since they are the most
primitive areal features.

2.1 The Iterative Closest Patch

This algorithm has two main steps (for comprehensive details,
please refer to Habib et al. (2010)). First, a pairwise registration
is run between every two overlapping point clouds in order to
solve for their relative transformation parameters. Second, the
point-to-patch matches together with the relative transformation
parameters from the pairwise registration step are used to
compute the global transformation parameters of each point
cloud; the following subsections elaborate more on these two
steps.
2.1.1  Pairwise surface registration

Given two overlapping pairs, a Delaunay triangulation is
performed over one point set S, = (X,,¥,,Z,) to establish the
triangle primitives, while maintaining the other point cloud
S1 = (X1,Y41,Z,) in its original form. The point p in S, and a
triangle (V;,V,,V3) in S, are transformed into a common frame
as shown in Figure 1. It is important to note that the Delaunay
based Triangulated Irregular Network (TIN) patches are an
acceptable primitive only in the cases when the TIN model
represents the true physical surface of the reconstructed object
or the scene of interest (Habib et al., 2010). This means that the
surface models have to have point density high enough that no
triangles are built across what would be a breakline. If this is
true, then it can be assumed that point-to-patch correspondence
between the overlapping surface models does exist (see Figure
1). In order to deal with cases where the TIN does not represent
the physical surface (e.g. sparse areas in the point clouds), a
threshold is implemented in the matching strategy to prevent
undesired triangles from being used (thus resulting into a
triangular-prism looking search space). So, if it is safe to
assume that point p in surface one (S,) corresponds to the
triangular patch with vertices V;, V,, and V; in surface two (S;),
then this point should coincide with the patch after applying the
proper initial transformation parameters. The transformed point
p’ and the triangle vertices comprise a tetrahedron volume. The
target function is to minimize this tetrahedron volume. An
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alternative way to establish the similarity measure for the point-
patch pair is achieved by modifying the weight matrix in the
least squares adjustment. Basically, the weight matrix is relaxed
in the direction parallel to the patch surface. Hence, any vertex
of the patch could be used as a conjugate feature in the
matching process. Refer to Habib et al. (2010) for more details
about the weight constraints.

¢ *3 Simil / —
Similarity
Si Transform e } v,
/ n < threshold
P" €V, V,, V3
S:
(a) (b)

Figure 1: Surface model representation (a), and criteria for
accepting  correspondence  between conjugate
primitives (b) (Habib et al., 2010)

2.1.2  Multi-surface registration

One way of achieving multi-surface registration is to choose the
reference frame of one of the surface models as the common
one, and then to sequentially register the rest of the surface
models in the pairwise manner described before. However, the
first and the last surface models might exhibit incompatibility
due to errors propagated through the sequential registration
process. This will be similar to a closed-loop traverse in
surveying, where the constraint that the first and last point
coincide, has not been used. To avoid such an incompatibility,
the multiple-surface registration has to be performed
simultaneously, i.e. in a network mode. This procedure can be
viewed as an extension to the pairwise registration. In
particular, the pairwise registration procedure is used to
accumulate a list of the corresponding point-patch pairs and
estimate the transformation parameters between any two
overlapping surface models. The multiple-surface registration,
on the other hand, uses these corresponding point-patch pairs,
and applies the transformation parameters from the pairwise
surface registration as initial approximates, to simultaneously
solve for all the final surface transformation parameters. This is
done in a least-squares adjustment, where each surface is
iteratively transformed to a common reference frame until the
sum of the squared normal distances between the conjugate
point-patch pairs is minimized. This procedure is highly
nonlinear, so that is why the initial approximates from the
pairwise surface registration are necessary. It is also important
to note that the transformation parameters for one of the surface
models are kept fixed in order to define the datum for the final
surface model.

2.2 The Iterative Closest Projected Point

Let us first consider a pairwise registration scenario, where the
second point cloud S, = (X,,Y,,Z;) is transformed to the
reference frame of the first point cloud S, = (X1,Y,Z;). In
this case, the transformation mathematical model takes the
following form:

S,=T:+R}S, ey
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where T3, is the translation vector between S, and S,

R}, is the rotation matrix between S, and S

and when registering S; and S, onto a predefined reference,
the relationship takes the following shape:

T, +R}S, =T, +R}S, )

where T7, is the translation vector between S, and a
predefined reference frame

R, is the rotation matrix between S; and a
predefined reference frame

T?, is the translation vector between S, and a
predefined reference frame

R, is the rotation matrix between S, and a
predefined reference frame

This formulation could be rearranged by transforming all the
elements into the right side of the equation:
0=T;+R;S, —(TT+R1S,) 3)

Equation (3), establishes the mathematical relationship between
two conjugate points in the aforementioned point clouds. Before
searching for a match between the two clouds, a point (py) in
S 1 must be transformed to the point cloud S, reference frame
using the initial approximations provided:

pe = Ry (T1 —T3) + Ry Rip, “

where RY' is the transpose of R}
D¢ 1s Py transformed to the S, reference frame.

Next, one finds the closest three points (py, P2, P3) in S, to p;,
these three points establish the triangular base of a tetrahedron.
Note that these three points do not necessarily construct a
Delaunay triangle. In fact, avoiding the Delaunay triangles can
be beneficial as shown in Figure 2. For example, blunders can
result in undesired triangles in the dataset as shown in Figure 2
(b), thus leading to incorrect point-to-patch matches in some
cases. On the other hand, using the nearest neighbour for
finding the closest three points completely ignores erroneous
points falling beyond a certain threshold as shown Figure 2(a).
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(b)
© Acceptable point @ QOutlier
Figure 2: Side view example of a blunder ignored when using

nearest neighbours (a) and included when using
Delaunay triangles (b) for the same point set

A tetrahedron search space is then established to examine the
validity of the matched pair (p; & p1, P2, P3). Given a search
space threshold with a value of N, one can extrude the centroid
(pe) of (p1, P2, P3) by N to point p, using equation (5), thus
completing a tetrahedron. In fact, note that there are two
possible directions for the extrusion of centroid p., thus
resulting in two tetrahedrons (pq, P2, P3,P4), and (p1, P2, P3,
Ps), or a triangular dipyramid. Since point p, could fall in
either tetrahedron, the matching condition becomesp, €
V(p1, P2, P3, Ps Ps); where V(...) is the convex volume of the

63

shape specified by the given vertices. Figure 3 demonstrates one
of the resulting tetrahedrons. The set (p; & Py, P2, P3) is

accepted if p; € V (p1, P2, P3, P4) Or Py € dipyramid.

X X . a
[y ] =[y ] t e [b ] ®
ZApsorps “Zipc c

where x,y, z are the Cartesian coordinates of a point

a,b,c are the plane parameters derived from

(p1, P2 P3)

Da

P1 | )

Figure 3: The resulting tetrahedron (pq, p,, P3,P4), and the
matched point p,

The underlying principle behind using tetrahedrons as opposed
to using constant normal distance is to mimic a realistic
interpolation scenario. In other words, the closer the matched
points to the vertices, the smaller the matching threshold should
be. Figure 4(a) shows a 2D cartoon of a constant search space,
while Figure 4(b) is a 2D representation of the modified search
space proposed.

S

()
@ Matched point
@ Reference point set

@ Unmatched point
& Search space

Figure 4: A constant search space (a) and the revised search
space (b)

Using the point p;, the tetrahedron shown in Figure 3 could be
split into four different tetrahedrons as shown in Figure 5;
namely - (P1, P2, P3, Pe)s (P1, P2, Par Pe)s (P1, P3, P4, P)> and
(P2, P3, P4, De)-

Figure 5: Four tetrahedrons resulting from splitting the original
volume with p;



International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-5/W12, 2011
ISPRS Calgary 2011 Workshop, 29-31 August 2011, Calgary, Canada

Next, one could evaluate if p, falls inside the tetrahedron by
examining the signs of the determinants resulting from each
tetrahedron as suggested in Eq. (6). The signs of determinants in
Eq. (7) indicate the side (i.e., negative or positive) at which the
point p, fall with respect to the tetrahedron faces. The point p,
is inside the tetrahedron only if it falls on the same side (having
the same determinant sign) of the tetrahedron faces (Schneider
& Eberly, 2002).

.. (sign(Dy) = sign(D,) = sign(D3) =
if ( sign(D,) = sign(Ds) )

P: is inside tetrahedron 6)
else
P. is outside tetrahedron
where, D; to D5 are the following determinants:
Xp1 Yp1 Zp1 1 Xp1 Yp1 Zp1 1
D, = Xp2 Yp2 Zp2 1 D, = Xp2 Yp2 Zp2 1
Xp3 Yp3 Zpz 1f 4 Xpt Ypr Zpe 1
Xps Ypa Zpa 1 Xps Ypa Zps 1
xpt th Zpt 1 xpl Ypl Zpl 1
D, = Xp2 Yp2 Zp2 1 Dy = Xp2 Yp2 Zp2 1 )
Xp3 Yp3 Zp3 1 Xp3 Yp3 Zpz 1
Xpa Ypa Zpa 1 Xpt Ypr Zpe 1
Xp1 Yp1 Zp1 1
Dy = Xpt Ypt Zpt 1
Xp3 Yp3 Zpz 1
Xpa YVpa Zpa 1

The projection of p; into the plane described by the parameters
(a,b,c,d) Py is given by:
a
d
c

b, b, -

a,b,c,d are the plane parameters derived from
(P1, P2 P3)

axpt+bypt+czpt+d
a?+b?+c?

®)

where

Finally, the point p; and its projection p,, constitute an accurate
point pair between the two irregular point clouds. Similarly, in
the case where more than two surfaces exist, one could establish
a collection of points and their matching projections. Then, the
conventional ICP algorithm could be used to register the point
clouds into a common reference frame. Note that all the
possible matches between the point clouds are considered and
used at once to solve for the transformation parameters.
Equation (9) gives the basis of our problem formulation. The
left side of the equation is the observations, while the right side
is used to construct the Jacobian matrix with respect to the
unknowns. Note that, both, Horn's method using quaternions
and nonlinear least squares with Euler angles could be used
using this formulation (Vosselman & Maas, 2010). However,
one should be aware of possible point cloud rotations that might
lead to gimbal lock scenarios (Shoemake, 1985) when using
Euler rotations.

0 =T} + Rp, — (T} + Ripo) ©)
Due to the strict condition proposed in this algorithm (i.e., the
dipyramid search space), one could expect a lower convergence
rate of the ICPP. Thus, the following steps are suggested to
speed up the alignment of the point clouds:
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1. Random sampling of one of the datasets (using 10% of the
points) is used for two purposes: (a) to speed up each
individual iteration, and (b) to reduce the chances of
converging into local minima.

A conventional ICP method is performed in the first few
iterations with relaxed parameters.

3. The ICPP is performed using all the points in the last a few
iterations to fine tune the transformation parameters into
the final solution.

3. DATA USED

The ICPP method for performing multi-surface registration was
tested using a dataset of a scoliotic torso mannequin. The
approximate dimensions of the torso mannequin were: 60 cm,
40 cm, and 25 cm in height, width, and depth. The dataset
consisted of four point clouds modelling four partial areas of the
torso surface (i.e. the front, the back, and the two sides). The
point clouds were derived using photogrammetric means with a
system having multiple cameras and projectors (Detchev, 2010).
Figure 6 shows the torso mannequin during the data collection
process. The pattern projected was used to create artificial
texture in order to allow for the automatic matching process.
The resulting X, Y, Z coordinates for the four point clouds had
sub-millimetre precision (approximately 0.3 mm) and the
average overlap between the neighbouring clouds was roughly
30%. Table 1 shows the number of points generated for each
cloud, together with the required initial approximations for the
global transformation parameters. The initial approximations
were derived by roughly evaluating the position and orientation
of the central camera used in the point cloud generation. Note
that S, was used as the reference point set, so its translational
and rotational parameters are zeros.

Pointset | No.of | X, | Yy | Zo ) ¢ K

number | points |(mm)|(mm)|[(mm)| ) | ) | ®
S (ef) | 20915 0 | 0 | 0] 0] 0] o0
S, 17,222 | 0 | 300 [-300| 90| O 0
S3 21,878 0 [600| O | 180 | O 0
Sy 17,833 0 [300] 300270 | O 0

Table 1: Transformation parameter approximations used for the
initial point cloud alignment

Figure 6: The torso model used (Detchev, 2010).
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4. RESULTS AND DISCUSSION

In this section, the ICPP and the ICPatch algorithms were
applied over the dataset described using the initial
approximations provided. The following graph shows top and
side views of the torso model before the adjustment. The initial
approximations used provide minimal overlap for the matching
process to start successfully.

(b)
Figure 7: Side (a) and top (b) views of the Torso point clouds
before performing the ICPP

Table 2(a) and Table 2(b) show the final transformation
parameters resulting from the ICPP and the ICPatch methods.
The transformation parameters are comparable, with maximum
discrepancy of up to 0.24 mm in the translation vectors, and up
to 3' of angular variation.

Xo Yy Zy w ) K
(mm) | (mm) | (mm) @) ® ®)
S,| -26.42| 291.44| -265.04| 89.846| -2.830| -5.560
+0.009 | +0.020| +0.016| +£0.0046 | £0.0017 | £0.0017
S| -11.07| 557.08| 26.59| 180.062| -8.365| -2.670
+0.012| +£0.019| +0.023| +0.0034 | +0.0023 | +£0.0017
Sa 15.12| 267.57| 290.58| 270.067| -5.526 2.858
+0.014 | +0.035| +0.015| +£0.0046 | +£0.0017 | £0.0017
(a)
Xo Yy Zy w ) K
(mm) | (mm) | (mm) © ) )
S,| -26.47| 291.52| -265.08| 89.858| -2.816| -5.543
+0.027 | +0.043| +0.024 | +0.0070 | £0.0040 | +£0.0030
S3| -11.31| 556.91 26.93| 180.111| -8.362| -2.688
+0.029 | +0.031| +0.049| £0.0080 | £0.0040 | £0.0040
Sa 15.06| 267.36| 290.71| 270.089| -5.544 2.876
+0.024 | +0.053| +0.028 | +0.0090 | £0.0030 | +0.0030
(b)

Table 2: Final transformation parameters for the ICPP (a) and
the ICPatch (b) algorithms

65

One should also emphasize that these changes are justified due
to existing correlations between the translation vectors and the
rotation angles. For example, the largest correlation of 86% in
the ICPP is observed between Z, and k of S ,, and 90% between
the above parameters in the ICPatch. In addition, note that the
standard deviations of the estimated parameters in the ICPatch
case are double the values of those in the ICPP. This could be
attributed to the more relaxed search space in the ICPatch.

(b)
Figure 8: Side (a) and top (b) views of the Torso point clouds
after performing the ICPP

A more practical approach to compare both methods is achieved
by comparing the resulting adjusted point sets. The Root Mean
Square Error (RMSE) of the coordinate differences between the
transformed point clouds from both registration procedures is
shown in Table 3. Also, side (a) and top (b) views of the torso
point clouds after running the ICPP are shown in Figure 8. Both
point sets coincide within 0.25 mm RMSE, which is within the
accuracy range of both solutions.

RMSEx | RMSEy | RMSE z | RMSE

(mm) (mm) (mm) | (mm)
S, | 0147 0.091 0.128 0215
S3 | 0.156 0.106 0.135 0.232
Sy | 0131 0.056 0.054 0.152

Table 3: RMSE of the transformed point clouds from both
registration procedures

A systematic trend can be observed when the two point sets are
subtracted from each other. Basically, the coordinate differences
are evaluated between a point in the ICPP results and its
conjugate point in the ICPatch results. This systematic
difference could be attributed to: (1) the difference in the target
functions between the two methods, (2) the variance in the
number of matches and their nature (i.e., 26,147 Delaunay
triangles found in the ICPatch vs. 9,958 nearest neighbour
triangles in the ICPP), and (3) the shape of the search space
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(i.e., triangular prism vs. a triangular dipyramid). These
conclusions were also verified via simulations, where the same
reported variances were observed and in all cases, they
remained within the surface roughness range.
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0.300

0.275

0.250

0.225

0.200

0.175
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0.125

i L 1

180 -50 0 50

0.100

150 100 100 150 200
Figure 9: Top view of the torso, colour coded to reflect the
coordinate differences (mm) between regenerated

point clouds from both registration procedures

In Table 4, we present the main differences between the
ICPatch and the ICPP algorithms in terms of the primitives
used, the target function, the number of steps needed in a multi-
surface registration scenario, and other properties.

Comparison ICPatch (coplanarity ICPP
vs. modified weight)
Primitives point to patch or point to point

point to point

Target function

minimize volume or

minimize normal

normal distance distance
Registration two step one step
Matching space |triangular prism triangular dipyramid
Triangles used |Delaunay closest three points

Established more matches less matches

matches (26,147 pairs) (9,958 pairs)
Convergence fast, as a result of the |slightly slower, due to
rate pairwise step dipyramid check

Table 4: Comparison between the ICPatch and the ICPP
algorithms

5. CONCLUDING REMARKS

This paper presented a new approach for performing multi-
surface registration of overlapping point clouds, namely, the
Iterative Closest Projected Point (ICPP). In addition, the ICPP is
compared against the ICPatch algorithm in terms of primitives,
performance, number of matches established, etc. Both methods
were found to agree within the range of the data noise (0.3mm).
The main cause of variation is related to the triangle and search
space definition. While the ICPatch uses Delaunay triangles, the
ICPP uses the closest three points for the triangle definition.
Although the closest three points yield less matches, it is
favoured over Delaunay triangles as it reduces the number of
possible mismatches, and eliminates the need for constructing
Voronoi cells. In addition, a triangular dipyramid search space
is used in the ICPP while the ICPatch uses triangular prism
search space.

Future work will focus on evaluating the local point accuracy
for automated estimation of the normal distance threshold. More
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datasets with varying overlap and point density will also be
examined.
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