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ABSTRACT: 
 
The registration of multiple surface point clouds into a common reference frame is a well addressed topic, and the Iterative Closest 
Point (ICP) is - perhaps - the most used method when registering laser scans due to their irregular nature. In this paper, we examine 
the proposed Iterative Closest Projected Point (ICPP) algorithm for the simultaneous registration of multiple point clouds. First, a 
point to triangular patch (i.e. closest three points) match is established by checking if the point falls within the triangular dipyramid, 
which has the three triangular patch points as a base and a user-chosen normal distance as the height to establish the two peaks. 
Then, the point is projected onto the patch surface, and its projection is then used as a match for the original point. It is also shown 
through empirical experimentation that the Delaunay triangles are not a requirement for establishing matches. In fact, Delaunay 
triangles in some scenarios may force blunders into the final solution, while using the closest three points leads to avoiding some 
undesired erroneous points. In addition, we review the algorithm by which the ICPP is inspired, namely, the Iterative Closest Patch 
(ICPatch); where conjugate point-patch pairs are extracted in the overlapping surface areas, and the transformation parameters 
between all neighbouring surfaces are estimated in a pairwise manner. Then, using the conjugate point-patch pairs, and applying the 
transformation parameters from the pairwise registration as initial approximations, the final surface transformation parameters are 
solved for simultaneously. Finally, we evaluate the assumptions made and examine the performance of the new algorithm against the 
ICPatch.  
 
 

1. INTRODUCTION 

There currently exist many ICP variants, which have various 
target functions and objectives. Rusinkiewicz & Levoy (2001), 
Bae & Lichti (2008), and Besl & McKay (1992) are a few 
examples of these variants. ICP like matching algorithms vary 
in the way their primitives are defined. The basic matching 
algorithms are mainly comprised of a point-to-point matching 
procedure; this method is sometimes desired due to the lack of 
pre-processing steps, the high convergence rate, and the speed 
of the algorithm. An example of such level could be found in 
the earliest work shown in Besl & McKay (1992). However, 
note that due to the false underlying assumption of point-to-
point correspondence in the case of irregular point clouds, the 
final transformations may be slightly biased (Shan & Toth, 
2008). 
 
Another representation of primitives is found where one point 
cloud is maintained in its original shape, while the other point 
set is converted into a higher order primitive (e.g., triangles, 
planes, surface normals, and higher order surfaces). In this 
representation, the mathematical model used is more complex 
and the expected execution time is longer; however, the 
expected surface registration accuracy is higher. Beinat et al. 
(2006), and Boström et al. (2008) are two examples of this type 
of primitive representation. 
 
An even more complex representation is to use object 
primitives. An example for the use of such primitives is found 
in Rabbani et al. (2007). In their work, point clouds are first 

segmented in order to extract useful objects (e.g., cylinders). 
Afterwards, a model fitting step takes place, followed by a 
correspondence specification step. Then, a check is performed 
to ensure that the information collected so far provide sufficient 
constraints. Finally, the sum of the squares of the orthogonal 
distances between the points and the extracted object are 
minimized, and the optimal registration is achieved. 
 
In the aforementioned brief literature review, the authors do not 
attempt to review all the existing matching algorithms, but to 
shed light on the three levels of primitive variation: (1) point-to-
point, (2) point-to-surface, and (3) point-to-object primitives. In 
the work presented here, both, the ICPatch and the ICPP belong 
to the second category of algorithms. However, the ICPP could 
also be seen as a first category algorithm due to the introduction 
of artificial projected points used for the registration as will be 
seen in the methodology section. 
 
The focus of this paper is to present and compare two triangular 
patch based registration methods, namely - the Iterative Closest 
Patch (ICPatch) and the Iterative Closest Projected Point 
(ICPP). In the previous work shown in Habib et al. (2010), the 
authors introduced the ICPatch method for the registration of 
multiple point clouds into a common reference frame. The 
ICPatch method could be summarized in two main steps. First, 
a pairwise registration is run between every two overlapping 
point clouds in order to solve for their relative transformation 
parameters. Note that for each point cloud pair a Delaunay 
triangulation must be performed over one of the two point 
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