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ABSTRACT: 
 
The three-dimensional reconstruction of the vegetation structure is a requirement for the analysis of interaction between biosphere 
and atmosphere. Information about the 3D structure of plants enables the modeling of crucial processes, like water interception or 
absorption of light. Terrestrial laser scanners have proven to be a valuable tool to rapidly and accurately capture the geometry of 
plants as point clouds, which provide the foundation for analyzing their structure. Based on a very dense but unstructured, noisy point 
cloud, we have presented a method to extract the topology of a tree in form of a tree graph, demonstrated on a test set of single 
birches. In a first step we have applied a variation of the Circular Hough Transform to detect a set of 3D points, which represent the 
tree trunk. Subsequently, the point cloud is transformed onto a voxel space and filtered to a connected component representation of 
only the main object. In the second step, the residual voxels are interpreted as a connected graph and the Depth First Search 
algorithm is employed to retrieve the topology of the scanned tree. 
 
 

1. INTRODUCTION 

Terrestrial laser scanning (TLS) is an efficient method to 
capture accurate 3D geometry of real objects as point clouds. 
The point cloud representation of these 3D objects can be 
acquired rapidly and easily. The use of point clouds for 
forestry-related tasks is already rather appealing, because 
forestry measurements are often labor-intensive, limited to a 
few parameters and biased by the observing operator. The 
extraction of various forest inventory parameters has well 
advanced (Hopkinson et al., 2004; Maas et al., 2008), whereas 
capturing the complex tree structure is still a difficult task.  
 
Forests are described by their ecological characteristics, which 
are established by the actual structure of the individual trees. 
The distinctive forest structure governs processes such as water 
interception, absorption of light, and distribution of energy and 
precipitation. In order to gain a fundamental understanding of 
the interrelationships between physical characteristics of trees 
and environmental variables, detailed information on the 
structure of single trees is required. For that purpose, a detailed 
representation of the tree topology is an inevitable first step.  
 
We are focusing on single trees of a birch stock to identify 
segments like the trunk, branches, and twigs. These segments 
describe the topological composition of a tree, and will enable 
the determination of common parameters, for instance crown 
base height, crown diameter, tree height, and trunk diameter at 
breast height (DBH). Herein, a topology representation is not 
necessarily an actual skeleton of the tree, but rather an 
approximation of the spatial plant structure.  
 
In this paper, we present an approach for extracting the 
topological structure of individual trees, which is applicable to 
unfiltered 3D TLS point clouds. The first step uses a variation 
of the Circular Hough Transform to find a set of 3D points 
distributed along the 𝑧 axis and centered within the tree trunk.  

Due to the high number of points, for instance, up to 10 million 
points per tree, the direct analysis of unstructured 3D point 
clouds is cumbersome. Therefore, the point cloud is 
transformed to a voxel space representation to reduce the total 
number of elements and to facilitate neighbor-related 
operations. Afterwards, voxels are subjected to a thresholding 
operation, and removed where appropriate. Subsequently, 
Connected Component Labeling is utilized to determine the 
number of components in the voxel space and the main 
component representing the tree is isolated. Because the voxel 
space can be interpreted as a graph, we employ a graph theory 
algorithm, called Depth First Search, to retrieve the tree 
topology.  
 
The paper is organized as follows: Section 2 gives a brief 
overview of existing approaches to extract the topology of tree 
point clouds and ways to process 3D data. In Section 3 the 
study site is introduced and data capturing is illustrated. Our 
method is described in detail in Section 4. The following 
section discusses our approach and the resulting topology 
representation. Finally, the paper closes in Section 6 with the 
conclusion. 
 
 

2. RELATED WORK 

As terrestrial laser scanners become more powerful, also the 
handling of large point clouds proves to be increasingly 
demanding.  
 
In (Xu et al., 2007) a nearest neighbor graph was created on the 
raw sparse point cloud. The shortest paths from each point to a 
predefined root point were retrieved by Dijkstra’s shortest path 
algorithm. Following, the amount of paths was condensed to a 
graph representing the main skeletal tree structure. A similar 
approach was presented in (Côté et al., 2009). In (Yan et al., 
2009) an adjacency graph was built between clusters of points 
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previously determined by repetitive application of k-means and 
fitting of minimum boundary cylinders. Though, the high point 
numbers in our test data make the usage of nearest neighbor 
graphs of raw point clouds infeasible. 
 
Therefore, the application of grid- and voxel-based methods for 
analyzing TLS point clouds is widespread, because they 
facilitate handling of the point clouds. For instance, image 
processing methods can be applied, if the 3D TLS points are 
projected onto a discrete 2D grid. Accordingly, (Aschoff and 
Spiecker, 2004) have presented an approach to detect cross 
sections of trunks using the Circular Hough Transform. 
However, this method is not robust enough if the data contains 
a significant amount of noise. As suggested in (Schilling et al., 
2011), using the 3D points directly for a Circular Hough 
Transform, exploiting the usually high number of 3D points on 
trunks, yields more distinct peaks in the accumulation array. 
 
Several publications have shown that utilizing a 3D grid 
simplifies working with huge point clouds: (Gorte and 
Winterhalder, 2004) have presented an approach based on 
Connected Component Labeling to segment a point cloud into 
contiguous branches of the tree. Connected Component 
Labeling is a 2D image processing technique that can be easily 
extended to 3D voxel space. In addition, (Gorte and Pfeifer, 
2004) have analyzed the tree topology in the voxel space by 
also augmenting morphological operators to 3D voxel space. 
The procedure has been further improved and presented as 
Dijkstra Skeletonization in (Gorte, 2006) utilizing Dijkstra’s 
algorithm, as well. In (Bucksch and Appel van Wageningen, 
2006) a graph-reduction approach for skeleton extraction has 
been introduced. An octree structure containing the tree point 
cloud is created and subjected to a set of rules. Though, loops 
are present in the resulting graph and need to be carefully 
removed again. The approach has been continuously enhanced 
and has been recently applied to imperfect point clouds 
(Bucksch et al., 2010). Furthermore, (Bienert et al., 2010) have 
employed a voxel space representation to perform a point 
distribution analysis of several voxels to identify structural 
elements. 
 
Our approach consists of two parts: On the one hand, we apply 
a variation of the Circular Hough Transform to identify the 
trunk of the tree in a point cloud, using the raw 3D points 
directly. And on the other hand, we utilize a 3D voxel grid and 
propose the application of the Depth First Search algorithm as a 
novel way to retrieve the relevant skeletal tree structures 
efficiently.  
 
 

3. STUDY SITE AND INSTRUMENTS 

3.1 Study Site 

For testing purposes, we used TLS point clouds, which were 
acquired in the scope of our research project. Our study site is a 
plain birch stock (Betula pendula) located approximately 15𝑘𝑚 
southwest of Dresden, Germany and under observation of the 
Chair of Silviculture of the TU Dresden for more than 
40 years. The birch stock covers an area of about 1.3ℎ𝑎  
(160𝑚 × 80𝑚) and consists of more than 350 trees, which are 
about 55 years of age. Trunk diameters at breast height (DBH) 
were measured manually as a reference and range from 16.6𝑐𝑚 
to 34.4𝑐𝑚; tree height varies from 27.8𝑚 up to 28.8𝑚. The 
birch trees show an almost straight trunk until about half of the 
entire tree height. 

3.2 Data Capturing 

The birch stock was scanned using the Imager 5006i terrestrial 
laser scanner from Zoller+Fröhlich. The scanner employs a 
phase shifting technique and exhibits an average distance 
accuracy of 2.6𝑚𝑚 at 25𝑚 on dark material (Zoller+Fröhlich, 
2009). In order to ensure scan coverage as complete as possible 
of the entire study site, twelve ground positions have been 
established. Following, the twelve single scans were co-
registered with the ZF-LaserControl software using 40 fixed 
targets mounted on selected trees. Scans were taken with an 
average angular scan resolution of 0.018° and limited to a 
maximum range of 37𝑚 afterwards. Because the point density 
decreases with distance, tree crowns are represented by 
significantly fewer points than trunks, and small structures 
cannot be resolved in detail. In addition, gaps occur in the scan 
data due to occlusions. The study site was scanned four times in 
2010: in leafless condition, while leaves unfolding, with full 
leaves, and during leaf-fall.  
 
The results, presented in this paper, were obtained using only 
the data sets of trees in leafless condition. A subset of 37 trees 
was selected and each tree was separated automatically, as in 
(Schilling et al., 2011). Thus, each tree point cloud 
encompasses a volume with a square base of 6𝑚 × 6𝑚 with the 
tree at its center. Points of a 3D point cloud originate from more 
than one scan positions, therefore the plant is represented from 
several sides. As can be seen in figure 1, point clouds contain a 
significant amount of noise. 

 
a) 

 
b) 

Figure 1. Input TLS point clouds with noise. 

 
 

4. METHODS 

Our method processes unfiltered laser scanner points of single 
birch trees. The result is a set of polygonal lines approximating 
the tree topology. Extraction of the topology is fully automated 
with only a few parameters to be adjust beforehand. The general 
outline of our algorithm is summarized in figure 2. The 
following subsections discuss the separate phases in detail. 

 

 
Figure 2. Processing scheme outline for topology extraction. 

Input: TLS Tree Point Cloud 

Disc Hough Transform 

Voxel Space Analysis 

Output: Topology Representation of Tree 

Depth First Search 
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4.1 Disc Hough Transform 

A visual impression of the cross section of a point cloud can be 
obtained by projecting the 3D TLS points onto a discrete grid 
parallel to the 𝑥𝑦-plane. Trunks appear as circle- or arc-like 
structures depending on scan coverage, which can be detected 
by the Circular Hough Transform, as detailed in (Sonka et al., 
1998). Applying the Circular Hough Transform directly on the 
3D points can yield more robust results if a lot of other 
structures caused by understory vegetation are present. 
Furthermore, as the radius of the trunk cannot be determined 
reliably in advance, a disc instead of a circle is employed for the 
accumulation step. We have termed this variation Disc Hough 
Transform. The use of a disc also overcomes the problem that a 
trunk cross section does not necessarily resemble a perfect 
circle. 
 
In order to obtain 3D center points of assumed circular 
structures in the point cloud, the Disc Hough Transform is 
applied to the entire point cloud as follows: The input data is 
divided in slices of predefined thickness 𝑡𝑠 along the 𝑧-axis. 
Only the slices up to one third of the entire vertical extend of 
the data bounding box are considered. Furthermore, we restrict 
the slices to a circular area around the 2D slice center point. A 
Disc Hough Transform is conducted on each slice. For each 
slice, a copy of the accumulation array is binarized by a fraction 
of the maximal array value. Subsequently, the connected 
components in this array are identified. Reducing each 
component to the element with the highest array value in the 
accumulation array produces a set of 2D points per slice. A 
circle is fitted to a subset of 3D points for each of the 
determined 2D points in the current slice, as shown in (Schilling 
et al., 2011). 3D points located within a radius 𝑟𝑎 around the 
particular 2D point, considering their Euclidean distance in the 
𝑥𝑦-plane, are used for the circle fitting. The center point of each 
circle and its radius are stored per slice. In this way the entire 
input data is processed yielding a set of 3D points distributed in 
the 𝑥𝑦-plane over a range of discrete 𝑧-Coordinates. 
 
As a short segment of the trunk can be assumed to approximate 
a 3D line; RANSAC (Fishler and Boles, 1981) is then used to 
identify points contributing to a 3D line under a predefined 
error threshold. All points not contributing to the support set of 
the established trunk line are removed. If the remaining points 
do not exhibit spacing along the z-axis equal to 𝑡𝑠, missing 
points are interpolated. 
 
In brief, this phase produces a set 𝑇 of 3D points with radius 
values. These points constitute a polygonal line that represents 
the skeleton line of the tree trunk in the point cloud data set. 
 
4.2 Voxel Space Analysis 

The tree point cloud is converted to a discrete voxel space 
representation, as illustrated in figure 3. Each voxel of the 3D 
matrix contains the number of 3D points it comprises. Voxels 
with a number of points less than a predefined threshold are 
cleared. A Connected Component Labeling, as described in 
(Shapiro and Stockmann, 2001), is applied on the 3D matrix. 
This operation considers the 26-adjacency of each voxel and 
labels them with the corresponding component index. 
Furthermore, voxels containing a 3D point of the set 𝑇 are 
tagged as trunk. The index of the component containing these 
voxels is identified. Subsequently, all voxels are checked; if 
their component index does not match with the established 
index, they are cleared. 

In summary, using the previously determined point set 𝑇, the 
connected components present within the voxel space are 
reduced to the particular one, which actually composes the tree. 
 
4.3 Depth First Search 

Depth First Search, as explained in (Russell and Norvig, 2010), 
is engaged to find a path from a particular start to a defined goal 
state. At each step, this general search algorithm evaluates its 
neighbors and moves to the neighbor which seems most 
appropriate. The most appropriate neighbor is usually 
determined by evaluation of a path-cost function 𝑔(𝑛) 
considering all available neighbors. If the search cannot 
advance, because all neighbors have already been visited, the 
path is backtracked until an unexplored neighbor is 
encountered. If the current state is identified as a goal state, the 
algorithm finalizes. If no path can be found, the current path is 
backtracked to its start state.  
 

 
a) 

 
b) 

Figure 3. Voxel space representation of raw point cloud. 
 
In the following, the voxel space is interpreted as a single 
connected graph. Each non-empty voxel in the voxel space is 
considered a state and accordingly, the 26-adjacency of a voxel 
denotes its neighboring states.  
 
Previously, a single connected component, representing the tree, 
within the voxel space was isolated. Clearly, there exists at least 
one path between a specific voxel to any other voxel within this 
component.  
 
Because it might be more difficult to trace the branches 
beginning from the trunk, we are trying to trace paths starting at 
the branch endings. Moreover, it is a reasonable assumption that 
every branch is eventually connected to the trunk section of the 
tree. As voxels corresponding to the trunk have already been 
labeled accordingly, they are employed as goal states. However, 
the start states still need to be identified.  
 

 
a) 

 
b) 

Figure 4. Voxel with a) 26-adjacency and b) 6-adjacency. 
 
To identify voxels at branch endings their 6-adjacency, as 
depicted in figure 4b, is considered. All voxels above a 
predetermined height with less than three neighbors are 
regarded as potential branch ending voxels, as depicted in figure 
5c and d. Each of them is employed as a start state for the 
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search algorithm. Moreover, voxels composing a path from a 
start voxel to the goal are assigned an index identifying the 
particular path uniquely. 
 

 
a) 

 
b) 

Figure 5. a) and b) Isolated tree component with the set of 
branch ending voxels highlighted in green. 

 
In our implementation of the Depth First Search, the path-cost 
function 𝑔(𝑛) evaluates the Euclidean distance of the 
considered voxel to the closest goal state. Consequently, one of 
the neighbor voxels minimizes 𝑔(𝑛); therefore, it is interpreted 
as the most appropriate choice for the next step. Here, the 
neighborhood comprises the entire 26-adjacency of the current 
voxel. The selection of the next voxel is performed in two 
stages. First, the neighbors are inspected whether a path already 
passes through any of them. In this case, those neighbors are 
preferred and the one minimizing 𝑔(𝑛) is selected. Hence, if the 
current path encounters an already established path, the search 
is terminated and paths are linked together. Second, if no path 
passes the vicinity of the current voxel, the path-cost function 
𝑔(𝑛) is evaluated for all of the neighboring voxels accordingly. 
 
A Depth First Search is performed for each of the potential 
branch ending voxels. In each application of the search 
algorithm a different path through the voxel component is 
retrieved. The total amount of paths constitutes the tree 
topology representation, as illustrated in figure 6a and b.  
 
4.4 Topology Representation 

The output of our method is a tree in a graph theoretical sense 
resembling the trunk and branching structure of the scanned 
physical tree, as shown in figure 6a and b. Nodes in the tree 
graph are 3D center points of voxel passed by a search path. 
Each node is linked to its precursor and one or more successors, 
in case it is a branching node. Furthermore, the tree graph does 
not contain loops due to two constraints of the Depth First 
Search: Neighbor voxel are only considered as a valid next step 
if they have not already been visited. An exception is made, if a 
path crosses through the neighbor voxel and the current search 
could thus be terminated in the next step. Similarly, start voxel 
are only considered for a search, if they are unvisited and do not 
already belong to a previously found path. 
 
 

5. RESULTS AND DISCUSSION 

In figure 3, 5 and 6 results of the different stages of our method 
are demonstrated on typical data sets. Hence, the function of our 
method is twofold. On the one hand, it can be applied as a filter 
to the tree point cloud. If all points that are further away from 
the closest topology segment than a predefined threshold are 
removed, the resulting point cloud comprises almost 
exclusively 3D points, which are actually located on the tree 
surface, as depicted in figure 6c and d. On the other hand, it is a 

way to swiftly compute an approximation of the tree topology. 
In the following subsections the parts of our method are 
examined separately. 
 

 
a) 
 

 
b) 
 

 
c) 

 
d) 

Figure 6. a) and b) Tree topology representation.  
c) and d) The filtered tree point cloud. 

 
5.1 Disc Hough Transform 

Both the Disc Hough Transform and its application on each 
height interval account for the robustness of this part of our 
method. 
 
Because of the high scan coverage in our data sets, the trunks 
are represented by a large number of points. This circumstance 
is exploited by the Disc Hough Transform as it generates 
distinct peaks at trunk centers in the accumulation array. In our 
tests, the threshold value for array binarization was set to one 
sixth of the largest value of the array. Therefore, the threshold 
value depends on the considered height slice. Of course, if 
trunks are weakly represented, they will hardly be recognized if 
denser understory vegetation is present as well. The threshold 
value was determined empirically and performs well on our 
data. However, a more sophisticated approach to identify the 
important peaks in the accumulation array would be preferable.  
 
Ideally, the consecutive analysis of all stacked slices produces a 
trunk point at each height interval. Even if scan points at the 
trunk surface are lacking in some heights, because of occlusions 
from other vegetation, usually a sufficiently large number of 
points is found. In fact, only the resulting ample amount of 
trunk points allows the application of RANSAC to recover a 
trunk line in the set of points. The MATLAB implementation of 
RANSAC by (Kovesi, 2011) was employed in our tests, which 
finds a trunk line with a sufficient large set of supporting points 
usually within a few iterations. Trunks could be easily missed if 
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only a few slices would be examined. Moreover, it would be 
considerably more problematic to identify the trunk points 
correctly.  
 
Currently, the MATLAB implementation of the Disc Hough 
Transform is the slowest part of our method, as can be 
concluded from the averaged performance values on our test 
data in table 7. 
 

 Min. Max. Avg. 
Time Disc 
 Hough Transform 7.00𝑠 33.27𝑠 14.20𝑠 

Time Initialization  
Voxel Space 0.06𝑠 1.69𝑠 0.25𝑠 

Time Connected  
Component  
Labeling 

0.03𝑠 0.25𝑠 0.07𝑠 

Time Depth  
First Searches 0.42𝑠 7.64𝑠 2.16𝑠 

Total Processing  
Time per Tree 7.59𝑠 41.22𝑠 16.69𝑠 

Total Number 
 of Voxels  1149356 4166896 16744633 

Percent of  
Non-Empty Voxels 0.96% 10.85% 5% 

Number of Branch  
Ending Voxels 882 11522 3860 

Percent of Skipped  
Branch Ending  
Voxels 

30.55% 47.98% 39% 

Table 7. Performance values of the method on the previously 
selected 37 tree data sets. 

 
5.2 Voxel Space Analysis 

For efficiency reasons, all operations in the voxel space were 
implemented in C++. In case of a point cloud containing solely 
a single tree, only a few percent of the entire voxel grid actually 
do contain 3D points. Hence, if the voxel cell size does not fall 
below ca. 5𝑐𝑚, the grid can be easily kept in main memory as a 
one dimensional array, which also provides fast element access. 
Furthermore, the Connected Component Labeling employs a 
union-find data structure with path compression, as detailed in 
(Shapiro and Stockmann, 2001), for memory- and time-efficient 
labeling of the voxel grid elements.  
 
The cell size of the voxel grid need not be equal to the cell size 
of the accumulation array used by the Disc Hough Transform. 
However, it facilitates the evaluation of the results and an 
equally small value for both cell sizes is feasible.  
 
Another important parameter of the voxel space analysis is the 
required minimum number of 3D points per voxel, which is 
used for initial filtering of the voxel grid. In fact, both 
parameters are interdependent: The smaller a voxel is, the fewer 
points it may contain. This relation governs how close the 
connected components approximate the natural shape of the 
tree. Because of occlusions and depending on the parameters, 
branch parts can appear as separate components. Whereas, 
crowns of nearby trees might also be connected to the targeted 
tree component if they are too close together. Since we do not 
analyze the particular component shape in the voxel grid, we 
cannot avoid such configurations at the moment. Though, 
linking components which are close to each other might be 
easier than classifying separated components directly as tree 
parts. In addition, interconnected crowns may be detectable in 

the topology representation, as suggested by our preliminary 
tests. We used a cell size of 10𝑐𝑚 and 10 as the required 
minimum number of points per voxel. 
 
5.3 Depth First Search 

On the voxel grid, Depth First Search was implemented in C++ 
without any particular optimization. As can be seen in table 7, 
the search algorithm is quite fast on this data 
 
Using our definition, as mentioned in Section 4.3, the number 
of start voxel is between several hundred and a few thousand. 
The large number of path searches does not induce significant 
time overhead for two reasons: First, a lot of searches result in 
very short paths to the next path crossing nearby; and second, 
because a voxel loses its status as a start voxel if it is passed by 
a path starting elsewhere. Therefore, a bit less than half of all 
potential start voxel are usually skipped by the search 
algorithm. However, voxels which are not explicit branch 
ending voxels, but rather border voxels of branches result in 
short paths, which are not a reliable representation of the actual 
plant topology. The length of the shortest possible path segment 
equals the voxel cell size.  
 
The performance of Depth First Search depends on the path-
cost function 𝑔(𝑛) and the function determining the next 
possible states to move to. In our method, the Euclidean 
distance to the trunk is minimized, constraining the search to 
advance downward if possible. Regarding the tall birch trees in 
our test data sets, this behavior is suitable. Nevertheless, it will 
also find a path, if the branches do not grow monotonously 
upward, because the next step can advance to any valid state of 
the 26-adjacency of the current state. The search will initially 
explore any path that leads downward, until advancing to above 
neighbors remains the only alternative to backtracking the path, 
which is the very last option. In this case, the time necessary to 
find a path might be a bit longer, but we did not experience any 
significant impact on the runtimes. 
 
5.4 Topology Representation 

Clearly, the resulting topology representation is not a skeleton, 
because the tree segments are not centered within their 
surrounding 3D points. Furthermore, the path finding process is 
deterministic only insofar as the order of start voxel, which are 
consecutively processed by the search algorithm, stays the 
same. We observed that it is beneficial for our tall birch trees if 
the set of start voxel is sorted by their 𝑧 coordinate in 
decreasing order previous to the path finding process. In this 
way, long paths from the very top of branches to the trunk are 
found first. Then, the larger part of the other paths is usually 
quite short and linked to one of the few longer paths. As can be 
seen in figure 6a and b, the resulting tree graph is rather 
unrefined and needs further improvement. In some cases, a 
branch of the tree consists of a series of shorter paths that would 
have to be joined to a single longer segment. Afterwards, a 
filtering operation to remove short paths would be feasible to 
reduce the graph to the significant main structure.  
 
These enhancements of the topology representation would 
allow the automatic extraction of several important forest 
inventory parameters. During the Disc Hough Transformation, 
as already mentioned in Section 4.1, a circle is fitted to a 
selected set of 3D points around each determined peak. Hence, 
for each thusly detected trunk point, the radius of the trunk at 
this height is already available. Though, for the correct 
determination of the diameter at breast height, information 
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about the ground height is necessary. If the tree is represented 
well in the scan, the Disc Hough Transform can detect points 
down to the lowest height interval containing a part of the tree 
trunk. In this case, the lowest detected point can be assumed as 
the trunk foot point and used to determine the diameter at breast 
height relative to that. Otherwise, a digital terrain model has to 
be generated from the point cloud, for instance as in (Bienert et 
al., 2006), to compute the breast height exactly.  
 
The tree height cannot be inferred directly from the topology 
representation, yet. Because of weak scan coverage of the 
higher, finer branches in the tree crown, they are usually cleared 
by the initial filtering step and not part of the component in the 
voxel space. Therefore, the topology representation might not 
rise as tall as the real tree. But, with a suitable offset to the 
height extent of the representation, a rough estimate of the 
actual tree height would be possible. In addition, the crown 
diameter might be assessed similarly.  
 
However, the lower branches of the tree are normally recovered 
with sufficient accuracy. Therefore, the automatic detection of 
the crown base height from our topology representation would 
be feasible. At present, the topology representation has been 
evaluated solely by visual inspection. Though, we are striving 
to come up with a method for an objective evaluation. 
 
 

6. CONCLUSION 

In this paper, we have presented a method to generate a 
topology representation in form of a tree graph from point 
clouds of single trees captured by a terrestrial laser scanner.  
 
Our strategy involves a variation of the Circular Hough 
Transform, to detect arc- or circle-like 3D point subsets and an 
analysis of the connected component identifying the tree in the 
voxel space. Furthermore, the Depth First Search algorithm is 
employed to find paths from the branch ending voxels to the 
trunk. The resulting tree graph consists of smaller linked paths 
and outlines the principal topology of the scanned tree.  
 
Our method can, for instance, be applied to filter a noisy point 
cloud: If points are not close enough to the topology 
representation, they can be removed. An advantage of the 
proposed method is its simplicity and efficiency that allows for 
fast computation of the topology representation, which is, of 
course, our main objective.  
 
At present, the resulting tree graph is only an approximation of 
the tree topology. With further enhancements, it could provide a 
crucial intermediary step to enable an entirely automatic 
assessment of important forest inventory parameters, which we 
will investigate in the future.  
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