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ABSTRACT:

In the course of a project related to green building design, we have created a group of eight parametric building models that can be
manipulated interactively with respect to dimensions, number of floors, and a few other parameters. We report on the commonalities
and differences between the models and the abstractions that we were able to identify.

1 INTRODUCTION

The creation of building models is a tedious task. Sophisticated
architectural software such as AutoCAD (Autodesk), ArchiCAD
(Graphisoft) or Revit (Autodesk) provides architects with various
tools for creating detailed plans and sections for the construction
process. This software is typically used after the initial form find-
ing process, i.e., when the building concept is clear, and function,
stability, and style are defined (or, following Vitruvius, utilitas,
firmitas, venustas). For the early design process all sorts of rapid
modeling tools are used, most notably Maya or 3D Studio Max
(Autodesk), or simple tools like SketchUp (Google), or Rhino
(McNeel) for freeform architecture.

In this paper we present results from the GANDIS project, which
attempts to close the gap between early design and construction-
ready planning in a different way, namely using procedural build-
ing templates. An important drawback of the conventional design
process is that some implications of the initial design become ap-
parent only after construction planning. The energy footprint of
a building, for instance, depends on the A/V ratio (surface to vol-
ume), the glass proportion, the number of floors, but also of the
wall insulation standard. So the requirement was to create an in-
teractive planning tool that allows for computing characteristic
key values from a set of prototypical parametric buildings. Even
if the prototype buildings are only roughly similar to the building
to be planned, the tool allows judging the impact of changes in
the building on the energy footprint. This allows answering ques-
tions such as: How compact should the building be, what happens
if we create this overhang, and how expensive is it to compensate
energy loss by better insulation on that wall, etc.

We consider parametric building templates to be useful for many
applications other than energy design. The examples created in
this case study are simple, but once the approach is clear, more

targeted and elaborate building models can be created using the
same approach. The objective of this paper is to illustrate the pro-
cess of developing parametric building models, in the hope that
others can learn from it. We seek to provide an enabling tech-
nology for interactively changeable complex procedural building
templates.

The process starts from a set of example buildings provided by ar-
chitects (Fig. 1). They span the design space that is to be param-
eterized. To define this space unambiguously, however, required
many discussions, e.g., on the parameter minima and maxima, or
to clarify which special cases should be prevented to guarantee
that the building created remains valid. The next step was to de-
velop first simple buildings, and then to successively extend them
to create more complex ones. This inductive process is marked by
continuous refactoring in order to find a set of re-usable paramet-
ric sub-constructions (doors, windows, floor plan processing). So
our experience was that developing the first few models took most
of the time, while later the toolset and thus, the design space, were
powerful enough to create more elaborate models faster. The Of-
fice series of templates was created from the Residential series
merely by replacing the facade decoration function (see sec. 5.6).

2 RELATED WORK

If the creation of a valid 3D building model is tedious, then even
more so is the creation of a parameterized building. It requires a
description of the construction process from input parameters to
building elements. Which technologies can be used for this?

First of all, almost every 3D modeling software package includes
a scripting language to automate construction processes, using
languages like C# (Revit), AutoLisp (AutoCAD), MEL (Maya),
all from (Autodesk, 2011), Ruby for SketchUp (Google, 2011),
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Figure 1: Exploring the design space of the “residential” build-
ings: static reference models created with conventional modeling
software (Google SketchUp) served as guideline for abstraction.

or RhinoScript (Robert McNeel & Associates, 2011) etc. We also
use a programming language (GML), but it was primarily de-
signed as an efficient shape description language, and not as an
add-on to a graphical 3D editor. Grasshopper, a Rhino plugin, is
a graphical dataflow editor that allows designers to explore algo-
rithmic shapes without programming. Compared with program-
ming, this approach limits the expressiveness with respect to pos-
sible abstractions. In our approach, to find good abstractions is
the goal.

Only very few approaches can be found in the scientific litera-
ture. Chevrier et al. use parametric models to reduce the time for
reconstructing heritage monuments (Chevrier et al., 2010). They
created a Maya extension for parametric architectural elements.
Users can select from a range of predefined parametric models,
and after giving an initial estimate, the parameters can be adjusted
using measurements from point clouds.

Finkenzeller (Finkenzeller, 2008) separates the coarse structure
of a building from its appearance, which can be chosen from a
given set of styles. The method uses annotated floor plans to de-
fine the coarse outline. All information is stored in a graph struc-
ture, together with basic architectural information, the locations
of walls and balconies etc. The system can generate high-quality
models with an appealing level of detail. However, the drawback
is that Finkenzeller postulates a certain systematic of a building.
Our approach is more generic and allows to structure buildings in
different ways. In this sense, we see it more as a research tool for
finding and developing good building structures.

A procedural modeling technique that recently received much at-
tention are shape grammars. They were originally introduced
by (Stiny and Gips, 1972), but only much later the grammar lan-
guage CGA Shape from (Wonka et al., 2003, Müller et al., 2006)
was developed into a commercial tool, the CityEngine from Pro-
cedural Inc. We have also incorporated this split grammar ap-
proach (Hohmann et al., 2010), but we found it insufficient to
cover the whole design space we needed for GANDIS.

3 THE BUILDINGS & THEIR PARAMETERS

Designing an energy-efficient building is not just a question of the
right insulation; the shape and orientation of a building are just
as important. GANDIS provides an iPhone app that allows users
to interactively explore the impact of decisions made early in the
design process on the energy footprint of a building. The user can
choose between residential and office building and picks a basic

(a) (b) (c) (d)

Figure 2: In the GANDIS project buildings are grouped into sets
with similar shape. The following basic shapes are used: rectan-
gular 2(a), L-shaped 2(b), atrium 2(c) and a freeform 2(d) type.

(a) rectangular (b) L-shaped (c) atrium

(d) freeform residential (e) freeform office

Figure 3: The first task was the definition of high level parame-
ters (red) for each building shape.

shape for the floor plan (cf. Fig. 2). The building dimensions can
be manipulated interactively while the GANDIS software contin-
uously updates estimates of the energy efficiency.

There are two parametric models for each of the four basic shapes
(cf. Fig. 2). The first three basic shapes, rectangular, L-shaped
and atrium, are intended to approximate the more accurate mod-
els that will be created later in the design process. The fourth
“shape” is called free-form and is intended not as a stand-in for
any specific building but rather as an example that the user can
manipulate in order to learn more about energy efficiency.

In the beginning, we had to assess the variability of the buildings.
For this, the architects in our team modeled a static instance of
each building type using Google SketchUp (cf. Fig. 1). These
reference models provided a helpful guideline in the discussion
that led to the abstraction of the buildings. The exact set of pa-
rameters varies between the different models. Common to all
the models is the “number of floors” parameter; the rectangular
buildings have length and width parameters, while the other types
require more parameters to define their shape (cf. Fig. 3). Ad-
ditionally, the residential building models allow a choice of three
different roof shapes.

4 THE TOOLSET

This section describes the main tools and technologies that were
combined to create the full range of parametric GANDIS models.

4.1 GML

The Generative Modeling Language (GML) is a simple scripting
language for generative parametric modeling (Havemann, 2005).
The key concept is simple and general: a stream of individual to-
kens is processed one token after another. A token either contains
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(a) (b)

Figure 4: A solid convex region in 3D space is the intersection
of halfspaces (oriented planes). Each plane divides space into
unbounded interior and exterior. (a) The solid is the intersection
of all interiors. (b) With this plane based representation, a part of
a cube can be clipped away simply by adding another halfspace.

data, in which case it is put on a stack, or a processing instruction,
an operator. Operators can use the operand stack for popping in-
put parameters and pushing their results. However, the real work
is done through side effects, by manipulating internal states and
data structures. In GML, this might be a mesh data structure to
which a vertex or a face is added. In PostScript, where the con-
cept originates from, this is the bitmap of the page to be printed.

4.2 Shape representation: convex polyhedra

Shapes are represented in our system by solid convex polyhedra
(CPs). A CP is defined by the intersection of a finite number of
halfspaces, i.e., oriented planes. Each plane is defined using three
3D points, the point orientation permits to distinguish above from
below and thus, interior from exterior. – A more intuitive way
to think about CPs is to imagine a piece of cheese from which
parts are cut away using a knife. The main advantage of CPs
is that they can be split simply by adding another plane (knife
cut). To obtain the cut-away part, the plane is reversed. CPs are
very robust; consistency is not an issue because if the halfspace
intersection is empty, the CP simply vanishes.

CPs are so simple to use because the complexity of dealing with
inconsistencies is encapsulated in the boundary computation. The
vertex enumeration problem, which is dual to the convex hull
problem (De Berg et al., 2000), is a special case of Constructive
Solid Geometry (CSG), also see (Hachenberger and Kettner, 2005).
We have developed a robust and fast mesh clipping algorithm that
can deal with the various special cases in a consistent way. How-
ever, in principle any system that is able to evaluate convex poly-
hedra can also be used, e.g., (CGAL, 2011).

Convex polyhedra are available in GML via a set of specialized
operators and a few new token types. The following piece of
GML code is sufficient to create the polyhedron in figure 4(b):

1 (−0.5,−0.5,−0.5) (0.5,0.5,0.5) cp−po−registerbox
2 dup
3 (0.9,0.9,0.032) (−0.9,−0.9,0.22) (0.9,−0.9,−0.44)
4 cp−pl−register
5 cp−po−addplane
6 /stdRed (0,0,0) 0 1 1 cp−po−setproperties

The cp-po-registerbox operator expects two 3D points on the
stack, creates an axis-parallel box, and pushes on the stack a so-
called CP ticket. A ticket is a GML token that is used as reference
to a piece of data, in this case of GML type “CP solid”. The dup
operator duplicates the topmost stack element. cp-pl-register in
line 4 creates a new plane (“CP plane”), and (cp-po-addplane)
adds it to the existing polyhedron. cp-po-setproperties consumes
the duplicated box ticket and makes the polyhedron visible in red.

Figure 5: From convex polygon to convex polyhedron: The top
and bottom planes are constructed from a given extrusion depth,
and each polygon segment yields one side plane. In case the poly-
gon is nonconvex, the solid is automatically “convexified”.

As a more complicated example, the following code performs the
prism construction shown in Fig. 5. In GML, !x defines (pops)
and :x retrieves (pushes) the value of named register x.

1 % Function extrude−polygon
2 % Stack input : a convex polygon in 3D, a 3D direction vector
3 % Stack output : a convex polyhedron
4 usereg ! extrusion !poly
5
6 [ % choose three points to define bottom and top planes
7 :poly 0 get
8 :poly :poly length 2 div get
9 :poly −1 get

10 ] !poly3
11
12 [ % top plane
13 :poly3 { : extrusion add } map aload cp−pl−register
14
15 % bottom plane
16 :poly3 reverse aload cp−pl−register
17
18 % side planes
19 0 1 :poly length {
20 ! i
21 :poly : i get !a
22 :poly : i 1 add get !b
23 :a :b :a : extrusion add cp−pl−register
24 } forx
25 ]
26 cp−po−register

4.3 Shape grammar

Shape grammars are a natural fit for many forms of architec-
ture because grammars are well suited for describing hierarchical
structures. Shape grammars are derived from formal grammars
(Chomsky, 1956), which are part of formal language theory. This
theory concerns itself with finite sequences of symbols called
words and with — possibly infinite — sets of words called lan-
guages. A formal grammar is a way of defining such a language.
It consists of a set N of nonterminal symbols, a set Σ of termi-
nal symbols (the alphabet) and a set P of production rules. Each
production rule describes a possible replacement of the symbols
on its left-hand side by the symbols on its right-hand side. In a
context-free grammar, the left-hand side is a single nonterminal
symbol.

Grammar evaluation begins with a start symbol S ∈ N . Then
rules are applied to replace nonterminal by other symbols, until a
word consisting only of terminal symbols remains: The grammar
has just generated a word. - A simple grammar looks like this:

S ::= AbA

A ::= cd

By convention, nonterminal symbols are represented by upper-
case letters and terminal symbols by lowercase letters. The first
rule is the only rule applicable in the first step. It replaces S by
the sequence AbA. Two applications of the second rule (possible
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1 [ −1 1.0 −2 ] WPX split aload
2 F V F

(a)

1 1.0 WPX subdivide
2 { WALL } forall

(b)

1 1 WPZ subdivide {
2 [ 0.2 −1 0.2 ] WPZ split aload
3 F
4 [ 0.2 −1 0.2 ] WPX split aload
5 F V F
6 F
7 } forall

(c)

Figure 6: The split rule in (a) splits a volume into three symbols,
F (“fill”), V (“void”), and F, along the horizontal axis, where the
empty box should be one unit wide and the filled nonterminals
should share the remaining space according to a proportion of
1 : 2. The subdivide rule (b) splits the box into equal parts with a
minimum size of one unit. Both kinds of rules can be combined
in interesting ways (c).

in any order) can yield the derivation sequences S → AbA →
cdbA → cdbcd or S → AbA → Abcd → cdbcd, both generat-
ing the same word cdbcd.

The idea behind shape grammars is to operate on two- or three-
dimensional shapes instead of one-dimensional symbol strings.
In this case we use three-dimensional CPs labelled by symbols.
The grammars we use are split grammars (Wonka et al., 2003):
Each rule splits a CP carrying a specific label up into smaller
polyhedra, covering the same volume and carrying other labels.
We limit ourselves to deterministic grammars: For each non-
terminal symbol, there is only one rule that applies to it. Conse-
quently, a given grammar can only generate one word, i.e. evalu-
ates to one 3D model for any given starting volume. Note, how-
ever, that both the starting volume and the grammar itself can
depend on parameters of the parametric model.

There are three kinds of production rules:

Terminal Rule Replace a nonterminal symbol by a single ter-
minal symbol. Depending on the terminal symbol that is
chosen, this will assign a material to the volume and make
it visible, or make it entirely invisible.

Split Rule Splits the volume along one or more planes perpen-
dicular to a given direction. The planes are distributed ac-
cording to absolute and relative sizes given as part of the
rule (cf. Fig. 6(a)).

Subdivide Rule Given a direction and a minimum size, splits
the volume along planes planes perpendicular to that direc-
tion into as many parts of equal size as possible (Fig. 6(b)).

We have embedded this formal shape grammar system into GML
in order to use it for parametric modeling tasks. The grammar
rules operate on the convex polyhedra described in the previ-
ous section, a generalization of the commonly used rectangular
boxes. The (nonterminal and terminal) symbols for the CP la-
bels are not represented explicitly in the GML translation of a
grammar; rather, we rely on the operand stack and on GML’s
standard ability to define functions. Each rule name translates
to a named function containing the GML code corresponding to

the rule. Note that with a one-to-one correspondence between
nonterminal symbols and the rules that are applied to them, the
nonterminals actually do not need to be labelled explicitly.

Evaluating a GML shape grammar always starts with a CP at the
top of the GML operand stack. Each rule is a GML function, or a
sequence of tokens, that consumes one convex polyhedron from
the top of the stack. While most rules become named GML func-
tions, rules that are used only in one place can be directly placed
into the calling function/rule. This rule “inlining” can make the
textual description of a grammar much less verbose.

A split rule is implemented as a call to the split operator (cf. Fig.
6(a)). It pops three arguments from the operand stack: the convex
polyhedron to be split, a list of distances or proportions that de-
termine the number and positions of the splitting planes, and the
direction to split in. It returns an array of new convex polyhedra;
further rules are applied to them by calling the respective GML
functions. Likewise, a subdivide rule is implemented as a call to
the subdivide operator (cf. Fig. 6(b)). It pops the polyhedron,
the minimum size and the direction from the operand stack, and it
returns an array of convex polyhedra. In the shape grammar for-
malism, the same rule is applied to all polyhedra resulting from
a subdivide, so this is done in a forall loop. A terminal rule is
where the shape grammar formalism ends. It can be implemented
by any code that does something with the resulting polyhedron.
Most commonly, the cp-po-setproperties operator is used to ei-
ther assign a material to the polyhedron to make it visible, or to
mark it as invisible.

5 DEVELOPING THE MODELS

There is more than one way to build any given parametric model.
While creating the models, we were faced with several decisions;
some of these had to be revised as we progressed from the simpler
building types (rectangular, L-shaped) to the more complex ones
(atrium, freeform).

5.1 Rectangular and L-Shaped Residential Buildings

Figure 7: Residential rectangular and L-shapes buildings.

Once we felt we had sufficiently understood the architectural ideas
that our parametric models had to capture, the first decision we
faced was whether to rely on shape grammars right from the start,
or whether to use more conventional methods, such as extrusion
from a floor plan polygon.

We wanted to keep our parametric model as modular as possible,
that is the parts that describe what the walls look like, where win-
dows are placed, etc. should be independent from the part that
defines the basic shape of the building. From the parameters first
an intermediate representation of the basic shape should be con-
structed, to which in a second pass the explicit building geometry
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(a) (b) (c)

Figure 8: Floor slab construction. A simple polygon (a) is
decomposed into convex parts that are extruded (b) to obtain the
floor slab parts of the building (c).

(a) (b)

Figure 9: Wall construction. Given a simple polygon as outer
boundary (a), one wall piece is constructed for each polygon seg-
ment (b) by making use of the offset polygon.

is added. This should work in basically the same way for all
building shapes.

The grammar formalism cannot deal well with non-convex shapes.
It is not obvious how to define general, reusable rules that can be
applied to a non-convex floor plan. It can often be easier to cal-
culate a floor plan polygon from the building parameters directly
(cf. Fig. 3). Polygons are versatile and can be turned into 3D
shapes of floors and walls in a general way (cf. Figs. 8, 9).

Decision 1 We use polygonal floor plans and extrude them to get
3D representations of floor slabs and walls.

For every line segment of the floor polygon one wall segment is
created, i.e., one convex polyhedron. This CP is then used as
starting volume for a shape grammar. We have successfully em-
ployed shape grammars for modeling façades (Krispel et al., 2010),
which lead to the next design decision:

Decision 2 To model the building façades, we apply a shape gram-
mar to each wall (on each storey).

An important decision is whether to construct the building floor
by floor, or whether the side walls are extruded over all floors.
The advantage of the latter approach is that the shape grammar
can be applied to the entire façade, so that structures can cross
floor boundaries. Still one floor slab needs to be created per
storey, but that is feasible. However, despite this advantage a
different design decision was taken:

Decision 3 All the buildings are created one storey at a time.

The reason for this decision is the freeform residential building,
where different floors have different shapes. Another reason is
that the façades of the GANDIS models are comparably sim-
ple. Only one façade element is not strictly confined to a single
floor (the large opening in Fig. 7, top left, middle building, upper
floor). – The final remaining building block is the roof. A flat
roof is basically just a floor slab. However, the other two roofs
are more complicted, so due to the time constraints we decided:

Decision 4 The two non-trivial roof forms are constructed by a
separate piece of GML code for each basic building shape.

We used hand-crafted convex decompositions of the building shapes
in order to construct the convex polyhedra representing the roofs;
this leads to eight different roof construction functions in the code
(two roof forms for each of four building shapes). With more time
and effort, they could be refactored and combined into a single
function per roof type that works for all building shapes, rectan-
gular, L-shaped and atrium. The residential freeform building,
however, needs to be treated separately in any case because its
roof has a different structure. The roofs on the simpler buildings
follow the building shape, changing their slope in order to always
reach the same height. In the freeform building the roof shape on
“core” of the building remains fixed, and it extends outwards and
upwards on the variable parts (cf. Fig. 3(d)).

5.2 Atrium

Figure 10: Residential atrium buildings.

The atrium shape posed a new challenge: its ground area is not a
simple polygon but a polygon with a polygonal hole. One option
is to extend the system to deal with this more complex shape
directly, but there is also a more general alternative.

Decision 5 A floor polygon with holes is decomposed into a set
of polygons without holes. The polygon sides are tagged to ac-
count for constructing the walls, possibly a different set is used
for creating floor slabs.

For constructing the walls of the atrium building, we use two
(rectangular) wall polygons (cf. Fig. 11(a)); one for the outward-
facing walls, one for the walls facing the atrium. For constructing
the floor slabs, the ring shape is split into two roughly L-shaped
parts (cf. Fig. 11(b)).

5.3 Freeform Residential

The freeform residential building uses a different shape for even-
numbered and for odd-numbered floors. As we have already de-
cided to construct each floor separately, this is no big problem.

(a) wall polygons (b) floor polygons

Figure 11: Atrium polygons
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Figure 12: Residential freeform buildings.

(a) (b)

Figure 13: In the freeform residential buildings, the shape of a
floor slab between storeys is influenced by both storeys.

But we have to take into account that the shape of the floor slab
that separates two storeys depends on the shapes of both the floor
above it and the floor below it. If the lower floor extends fur-
ther than the upper storey (cf. Fig. 13(a)), the slab that divides
them is exposed as a roof; if the upper storey extend further (cf.
Fig. 13(b)), the slab has to function as a floor. Therefore, the
area of the dividing floor slab has to be the set-theoretic union of
the areas of the lower and upper storey. In this particular case,
we can trivially calculate the resulting polygon by always using
the larger of the corresponding parameter values for the even and
odd-numbered floors.

Decision 6 Separate polygons are generated for even and odd-
numbered floors; the shape of the dividing floor slabs is calcu-
lated from both sets of parameters.

5.4 Office Buildings

Figure 14: Office rectangular, L-shape and atrium buildings.

For the simple shapes (rectangular, L-shaped, atrium), the office
buildings are very similar to the corresponding residential build-
ings. The only differences are that

1. the only available roof type is the flat roof,

2. the outer walls are lightweight curtain walls rather than solid
walls with windows, and

3. the buildings have solid core at a fixed distance from the
outer curtain walls.

To get curtain walls instead of solid walls with windows, all we
have to do is to use a different grammar for the walls.

Decision 7 The core of the office buildings is modeled by adding
an additional polygon (or two, for the atrium building) to the list
of wall polygons. A different (trivial) grammar is applied to these
additional walls.

5.5 Freeform Office

Figure 15: Office rectangular, L-shape and atrium buildings.

The freeform office building consists of three intersecting rectan-
gular parts, where each part has a different number of floors. If
we model this building by constructing the individual floor poly-
gons, we find that the top floor is a rectangle, the floor below it is
the union of two rectangles, and all other floors are the union of
three rectangles. Modeling the building in this way has one big
disadvantage: the wall grammars are applied to walls of differ-
ent lengths in different storeys; therefore, corresponding façade
elements in different storeys will not align properly. In order to
account for this, we have to find a way to calculate the boundary
of the combination of the floor parts, rather than treating the floor
parts individually.

Decision 8 Rather than calculating the outlines of individual floors,
we first construct three complete rectangular office buildings and
then merge them together using CSG operations.

Constructive Solid Geometry, or CSG, is the term commonly
used for set-theoretic operations on three-dimensional solid ob-
jects, such as union, difference and intersection. By rendering
all three rectangular parts of the building, we get a building with
unwanted interior walls. For each of the three parts, we elim-
inate the unwanted walls using two CSG difference operations;
we “cut away” the walls that are inside the bounding boxes of the
two other parts (cf. Fig. 16(a)).

Putting these parts together yields the desired result (cf. Fig.
16(b)). Note that the floor slabs and the building cores still have
extra interior faces. Since a valid interior building core is not of
interest in our project this was not resolved. If non-intersecting
core geometry was required for further processing, the overlap-
ping parts of the building core could also be properly merged
using a CSG union operation. – Note that in particular such join
operations pose a fundamental problem when using exclusively
shape grammars. An extension to context-sensitive shape gram-
mars is not directly possible using the presented GML grammar
approach, where grammar rules are realized as GML functions.

(a) (b)

Figure 16: Freeform office: (a) To avoid undesirable interior
walls, the walls inside the other building parts are cut away using
a CSG operation. (b) The result of the combination.
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(a) (b) (c)

Figure 17: Three different façade styles

5.6 Construction of the walls

According to decision 2 the structure (or style) of each wall is
defined by a shape grammar. Figure 17 shows some examples
of the different wall styles that were required in our parametric
model. As the wall grows longer, we will simply repeat the basic
“tiles” to fill the wall. In the case of figure 17(c), there is an
extra space in the middle of the wall (highlighted in blue), which
should remain constant in width while the left and right parts are
repeated.

The top-level rule of the wall grammar therefore uses the sub-
divide operator for the first two cases; for the third case, a split
rule is applied first, and subdivide is applied to the leftmost and
rightmost parts. The grammar is applied to walls with different
orientations; therefore, we will pass the direction of a wall as a
parameter to the GML function defining the grammar.

The function wall-c for the toplevel nonterminal 17(c) looks as:

1 /wall−c {
2 usereg ! dir
3 [ −1 6.0 −1 ] ; dir split aload
4 ; dir tile−b
5 TW
6 ; dir tile−a
7 } def

The words tile-a and tile-b refer to further nonterminals defined
in separate functions; tile-a is the repeating part in the left half of
the wall, tile-b is the part repeated on the right side. Both words
take the wall direction as a parameter in addition to the convex
polyhedron. For tile-a, we first need the subdivide rule; then,
still using the same direction, the tile is split up into parts for a
window, a door, and for the walls in between:

1 / tile−a {
2 usereg ! dir
3
4 9.0 ; dir subdivide
5 {
6 [ −1.6 window−width−b −1.0
7 door−width−a −1.0 ] ;dir split aload
8 TW
9 door−a

10 TW
11 window−b
12 TW
13 } forall
14 } def

In this code TW (for terminal wall) is a terminal symbol, door-
a and window-b are more nonterminals, and window-width-a
and window-width-b are constants defined elsewhere. The rule
for door-a can be defined as a split into an upper part, which is
a wall, and a lower part, which uses the terminal symbol V for
void. The global constant WPZ refers to a split parallel to the
world coordinate system plane z = 0.

1 /door−a {
2 [ door−height−a −1 ] WPZ split aload TW V
3 } def

The definitions for tile-b, window-b, as well as for other types of
windows, doors and walls (including the curtain wall used in the
office buildings) are similar.

Figure 18: Populations of freeform buildings.

6 TAKING MEASUREMENTS

The main objective of the GANDIS project is to assess the en-
ergy efficiency of a procedurally generated parametric building.
In fact only a few key quantities are required for the approximate
energy efficiency calculation. Some of them, such as the exterior
area and the enclosed volume of the building, can be directly cal-
culated from the parameters. It is much easier to multiply length,
width and height of a box than to calculate the volume of a box-
shaped building from the volumetric CP model. The most inter-
esting challenge was to find out the exact amount of glass area on
each of the façades of the building.

The area occupied by windows depends on the particular gram-
mar used to define the façades. Different grammar rules behave
differently when the wall length changes; therefore, we want to
calculate the window areas just when building the wall geome-
try, as this is possible then with little extra effort. The method of
choice is to collect all “glass” terminals for each wall, and to cal-
culate the total area facing in the wall direction. We already have
a GML function that implements the “void” terminal symbol for
expressing empty spaces in the shape grammar. Its code is simple
as it uses cp-po-setproperties to make the polyhedron invisible
but for its outline:

1 /V {
2 / archwhite (0.3,0.3,0.3) 0 1 0 cp−po−setproperties
3 } def

This is the right place to add code to store a reference to the poly-
hedron in a global array (more exactly, to append it to the array):

1 /V {
2 usereg !polyhedron
3 WindowPolyhedra ;polyhedron append
4
5 ;polyhedron / archwhite (0.3,0.3,0.3)
6 0 1 0 cp−po−setproperties
7 } def

Whenever a window is created its 3D shape is stored in the global
variable WindowPolyhedra for future reference. The window
areas must be calculated separately for each of the four points
of the compass, so in fact four different wall arrays are needed.
When applying the grammar to a wall the WindowPolyhedra
variable must refer to the appropriate array. To obtain the actual
window area the faces of the polyhedra facing to the respective
direction are extracted, and their areas are summed up.

1 /glassAreaN
2 0.0
3 NorthWindowPolyhedra {
4 (0,1,0) getcpfacepoly polygonarea add
5 } forall
6 def
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In the above code (0, 1, 0) is the direction of the positive y axis
which points North in our coordinate system. The function getcp-
facepoly expects a polyhedron and a direction, and it returns, as
a polygon, the face whose orientation matches most closely the
given direction. An initial value of 0.0 is pushed first. For each
north-facing window polyhedron, the area of the appropriate face
is added to it. The result is stored in a variable named glassAreaN.

From a more abstract point of view, by adding the appropriate
CPs to the wall direction array we have in fact labelled each
“glass” terminal with a semantic attribute. After the model is
finished we were then able to sum up the values calculated from
the labeled terminals. Compared to calculating the area while the
model is being constructed, this leads to a much cleaner over-
all structure of the code. – We are currently also pursuing a more
general and versatile solution that combines the attribute operator
cp-po-setproperties with another operator cp-po-getbyattr that
runs a query to obtain all CPs that are labeled with a particular at-
tribute. In GML, the resulting object arrays can be further refined
in a simple way using the filter operator that maps an array to a
filtered array using an arbitrary filter function.

7 CONCLUSION AND FUTURE WORK

We have presented a technology for creating parametric build-
ing templates. The goal of the GANDIS use case was to isolate
the essential parameters of six specific parametric buildings fam-
ilies. The parametrization leads to a reduction of the degrees of
freedom that increases the efficiency of building design, since a
smaller number of user interactions is required to obtain a build-
ing compared to more general modeling software.

The downside of this limitation is of course that the user cannot
realize buildings outside of the given parametrization; i.e., the
generality is impaired. This is compensated by the possibility
to quickly realize other new parametric families using the GML
framework developed in GANDIS, as witnessed by the two fam-
ilies of freeform buildings (residential and office), which follow a
quite different systematic. Concerning the expressiveness of the
framework we can observe that a large class of buildings can be
realized despite some severe limitations, e.g.:

• No general roof algorithm, roofs are custom-tailored
• No interior walls or internal ground floor structure
• No Mezzanines, only one floor polygon per storey
• No vertical interior structures like elevators or stairways
• No vertical facade structures across storeys

These issues mark obvious areas for further generalization and
future research. More important, however, will be the question
whether the presented combination of GML, CPs with CSG, and
shape grammars will be sufficient to cover also these extensions
– or whether we need additional tools in the toolset.

All GANDIS models can be downloaded from the GML home-
page www.generative-modeling.org. The energy bilance appli-
cation for the Apple iPhone and iPad can be obtained from the
AppStore under the name GANDIS.
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