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ABSTRACT: 

In photogrammetry a camera is considered calibrated if its interior orientation parameters are known. These encompass the principal 

distance, the principal point position and some Additional Parameters used to model possible systematic errors. The current state of 

the art for automated camera calibration relies on the use of coded targets to accurately determine the image correspondences. This 

paper presents a new methodology for the efficient and rigorous photogrammetric calibration of digital cameras which does not 

require any longer the use of targets. A set of images depicting a scene with a good texture are sufficient for the extraction of natural 

corresponding image points. These are automatically matched with feature-based approaches and robust estimation techniques. The 

successive photogrammetric bundle adjustment retrieves the unknown camera parameters and their theoretical accuracies. Examples, 

considerations and comparisons with real data and different case studies are illustrated to show the potentialities of the proposed 

methodology. 

 
a) b) 

 

 
Figure 1. A target-based calibration procedure (a) and the targetless approach (b). 

 

 

1. INTRODUCTION 

Accurate camera calibration and image orientation procedures 

are a necessary prerequisite for the extraction of precise and 

reliable 3D metric information from images (Gruen and Huang, 

2001). A camera is considered calibrated if its principal 

distance, principal point offset and lens distortion parameters 

are known. Camera calibration has always been an essential 

component of photogrammetric measurement. Self-calibration 

is nowadays an integral and routinely applied operation within 

photogrammetric image triangulation, especially in high-

accuracy close-range measurement. With the very rapid growth 

in adoption of off-the-shelf (or consumer-grade) digital cameras 

for 3D measurement applications, however, there are many 

situations where the geometry of the image network cannot 

support the robust recovery of camera interior parameters via 

on-the-job calibration. For this reason, stand-alone and target-

based camera calibration has again emerged as an important 

issue in close-range photogrammetry.  

In many applications, especially in Computer Vision (CV), only 

the focal length is generally recovered. In case of precise 

photogrammetric measurements, the whole set of calibration 

parameters is instead employed. Various algorithms for camera 

calibration have been reported over the past years in the 

photogrammetry and CV literature (Remondino and Fraser, 

2006). The algorithms are usually based on perspective or 

projective camera models, with the most popular approach 

being the well-known self-calibrating bundle adjustment 

(Brown, 1976; Fraser, 1997; Gruen and Beyer, 2001). It was 

first introduced in close-range photogrammetry in the early 

1970s by Brown (1971). Analytical camera calibration was a 

major topic of research interest in photogrammetry over the 

next decade and it reached its full maturity in the mid 1980s. In 

the early days of digital cameras, self-calibration became again 

a hot research topic and it reached its maturity in the late ‘90s 

with the development of fully automated vision metrology 

systems mainly based on targets (e.g. Ganci and Handley, 

1998). In the last decade, with the tremendous use of consumer-

grade digital cameras for many measurement applications, there 

was a renewed interest in stand-alone photogrammetric 

calibration approaches, especially for fully automatic on-the-job 

calibration procedures. Nowadays the state of the art basically 

relies on the use of coded targets which are depicted in images 

forming a block with a suitable geometry for estimating all the 

calibration parameters (Cronk et al., 2006). Target measurement 

and identification is performed in an automatic way. A bundle 
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adjustment allows then the estimation of all the unknown 

parameters and their theoretical accuracies.  

On the other hand, camera calibration continues to be a more 

active area of research within the CV community, with a 

perhaps unfortunate characteristic of much of the work being 

that it pays too little heed to previous findings from 

photogrammetry. Part of this might well be explained in terms 

of a lack of emphasis on (and interest in) accuracy aspects and a 

basic premise that nothing whatever needs to be known about 

the camera which is to be calibrated within a linear projective 

rather than Euclidean scene reconstruction. 

 

2. CAMERA CALIBRATION IN PHOTOGRAMMETRY 

AND COMPUTER VISION 

In photogrammetry camera calibration is meant as the recovery 

of the interior camera parameters. Camera calibration plays a 

fundamental role in both photogrammetry and CV but there is 

an important distinction between the approaches used in both 

disciplines. Even the well-known term self-calibration has 

different meanings.  

Lens distortion generates a misalignment between the 

perspective centre, the image point and the object point. It is 

quite simple to understand that the collinearity principle, which 

is the basis for image orientation, is no longer respected 

(“departure from collinearity”). Modelling lens distortion 

allows to strongly reduce this effect. A calibrated camera is a 

powerful measuring tool, with a precision superior to 1:25,000 

as reported in different vision metrology applications (Maas and 

Niederöst, 1997; Albert et al., 2002; Amiri Parian et al., 2006; 

Barazzetti and Scaioni, 2009; Barazzetti and Scaioni, 2010). 

The importance of camera calibration is confirmed by the vast 

number of papers in the technical literature: accuracy aspects, 

low-cost and professional cameras, stability and behaviour of 

the parameters, variations in the different colour channels as 

well as algorithmic issues were reported in Fraser and Shortis 

(1995), D’Apuzzo and Maas (1999), Läbe and Förstner (2004), 

Fraser and Al-Ajlouni (2006), Peipe and Tecklenburg (2006)  

and Remondino and Fraser (2006).  

During a photogrammetric camera calibration procedure, the 

systematic errors in digital CCD/CMOS sensor are universally 

compensated with an 8-terms physical mathematical model 

originally formulated by Brown (1971). This comprises terms 

for the principal distance (c) and principal point offset (x0, y0) 

correction, three coefficients for the radial distortion (k1, k2, k3), 

and two coefficients for the decentring distortion (p1, p2). The 

model can be extended by two further parameters to account for 

affinity and shear within the image plane, but such terms are 

rarely if ever significant in modern digital cameras, especially 

for heritage and architectural applications. The corrections 

terms are generally called Additional Parameters (APs).  

The three APs used to model the radial distortion δr are 

generally expressed with an odd-ordered polynomial series: 
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where r is the radial distance of the generic image point (x, y) 

from the principal point (x0, y0): 

 

( ) ( )2

0

2

0
yyxxr −+−=     (2) 

 

The components along x and y of δr may be estimated as 

follows:
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The coefficients ki are a function of the used principal distance 

and are usually highly correlated, with most of the error signal 

generally being accounted for by the cubic term k1r
3. The k2 and 

k3 terms are typically included for photogrammetric (low 

distortion) and wide-angle lenses and in higher-accuracy vision 

metrology applications. Recent research has demonstrated the 

feasibility of empirically modelling radial distortion throughout 

the magnification range of a zoom lens as a function of the focal 

length written to the image EXIF header (Fraser and Al-

Ajlouni, 2006). 

A misalignment of the lens elements along the optical axis 

instead generates decentring distortion. The corrections terms 

for the measured image coordinates are given by:
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The decentering distortion parameters p1 and p2 are invariably 

strongly projectively coupled with x0 and y0. Decentering 

distortion is usually an order of magnitude or more less than the 

radial distortion and it also varies with focus, but to a much less 

extent. 

Considering all the APs, the image coordinates correction terms 

can be formulated as:  
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The simultaneous estimation of APs and camera parameters is 

generally referred to as self-calibrating bundle adjustment. The 

bundle adjustment with APs needs a favourable network 

geometry to be correctly solved i.e. convergent and rotated 

images of a preferably 3D object should be acquired, with well 

distributed points throughout the image format (Figure 2a). If 

the network is geometrically weak, high correlations between 

the unknown parameters may lead to instabilities in the least-

squares estimation. The inappropriate use of the APs can also 

weaken the bundle adjustment solution, leading to over-

parameterization, in particular in the case of minimally 

constrained adjustments (Fraser, 1982). 

The collinearity model and the related bundle adjustment 

problem must be linearized to obtain a system of linear 

observation equations. The linearized model can be solved with 

the Gauss-Markov model of least squares (Mikhail et al., 2001) 

and its solution is rigorous in a functional and stochastic sense. 

Good initial values of the unknown parameters are needed for 

the linearization process based on the Taylor series expansion. 

External constraints (e.g. GNSS/INS data, GCPs) can also be 

efficiently incorporated into the general model. The final system 

is made up of observation equations (those written as functions 

of both observations and parameters) and constraint equations 

(those written in terms of the parameters). The second group of 

equations is usually formulated as pseudo-observation 

equations, where the unknown parameters are linked to their 

measured values. All the variables in the adjustment become 

weighted observations. By properly tuning each weight it is 

possible to give more or less emphasis to the observed values of 

each unknown parameter. 
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If the observations are image coordinates, the reconstruction is 

affected by an overall ambiguity (i.e. a 3D similarity 

transformation). This “datum problem” (or rank deficiency) can 

be solved by introducing ground control points (GCPs) and/or 

GNSS/INS information. The second solution is almost the 

standard in aerial photogrammetry, while these data are not 

generally available in close-range surveys. The rank deficiency 

of the Least Squares problem can also be removed with an inner 

constraint. This does not involve external observations and 

leads to the so-called free-net solution (Granshaw, 1980; 

Dermanis, 1994). The theoretical accuracy obtainable with a 

free-net adjustment, coupled with precise image points and 

good calibration parameters is superior to 1:100,000. In some 

cases, a theoretical accuracy of about one part in a million was 

reached (Fraser, 1992). 

  
(a) 

 
(b) 

 
Figure 2. An appropriate image network which allows the correct 

estimation of all calibration parameters (a). An image network 

inappropriate for camera calibration and more efficient for scene 

reconstruction and 3D modeling applications (b). 

 

Some good and practical rules for camera calibration can be 

summarized as follows: 

• self-calibration is only reliable when the image network 

geometry is favourable, i.e. the camera station configuration 

comprises highly convergent images, orthogonal roll angles 

and a large number of well distributed object points. A 

compensation for departures from collinearity might well be 

achieved in a bundle adjustment with APs for a weak 

network, but the precise and reliable recovery of 

representative calibration values is less likely to be obtained; 

• a planar object point array could be employed for camera 

calibration if the images are acquired with orthogonal roll 

angles, a high degree of convergence and, desirably, varying 

object distances. What is sought is the maximum possible 

imaging scale variation throughout the image format.  

• orthogonal roll angles must be present to break the projective 

coupling between IO and EO parameters. Although it might 

be possible to achieve this decoupling without 90o image 

rotations, through provision of a strongly 3D object point 

array, it is always recommended to have ‘rolled’ images in 

the self-calibration network; 

• the accuracy of a network increases with increasing 

convergence angles for the imagery. Increasing the angles of 

convergence also implicitly means increasing the base-to-

depth (B/D) ratio.  

In CV, the orientation procedures are (often) uncalibrated. This 

allows one to deal with simple, quick, and flexible acquisition 

procedures. The mapping between object (X) and image (x) 

points with the general projective camera model may be written 

as (Hartley and Zissermann, 2004): 

 

[ ] [ ]XtRKXtRPXx ,,

100

0

0

=

















== y

x

pf

pf
  (6) 

 

The matrix K is the calibration matrix, here written for CCD or 

CMOS sensors with square pixels and a skew parameter equal 

to 0. This relationship includes the focal length f and the 

principal point offset, so that the model is equivalent to that 

with interior orientation parameters (although the focal length is 

not the principal distance, except for lenses focused at infinity). 

To compensate for the image distortion, a distortion factor L(r) 

is generally considered, that depends on the radius only (Hartley 

and Zissermann, 2004): 
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where (xcorr, ycorr) are the corrected (or undistorted) coordinates, 

and (xc, yc) is the centre of radial distortion.  

For the solution of Eq. 6 (based on the corrected image 

coordinates), a bundle adjustment generally based on the 

Levenberg-Marquard algorithm is employed. Given a set of n 

image points and m 3D points, the reprojection error (i.e., the 

distance between the back projected 3D point and the 

corresponding measured image point) is minimized (Triggs et 

al., 2000): 
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where xij is the measured image point, Ki are the camera 

parameters, Pi is the projection matrix, Xj is a 3D point. The 

coefficient wij is set to 1 if camera i observes point j, and 0 

otherwise. 

 In CV applications all camera parameters (interior and exterior) 

are usually recovered simultaneously and directly from the same 

set of images employed to reconstruct the scene. This solution is 

acceptable if the main goal is not an accurate metric 

reconstruction. On the other hand, in photogrammetric 

applications, although the estimation of the camera parameters 

is still carried out within a bundle adjustment, the network 

geometry used for object reconstruction is generally not 

sufficient to estimate the interior parameters at the same time 

(Figure 2). Therefore, it is strongly suggested to separate the 
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recovery of the interior and exterior orientation parameters by 

means of two separate procedures with adequate networks. 

 

 

3. TARGETLESS CAMERA CALIBRATION 

Since many years commercial photogrammetric packages use 

coded targets for the automated calibration and orientation 

phase (Ganci and Handley, 1998; Cronk et al., 2006). Coded 

targets can be automatically recognized, measured and labelled 

to solve for the identification of the image correspondences and 

the successive camera parameters within few minutes. 

 

 
 

Figure 3. Examples of coded targets. 

 

Commercial software (e.g., iWitness and PhotoModeler) 

typically works with small coded targets (Figure 3) that can be 

distributed in order to form a 3D calibration polygon. The main 

advantage of this procedure is related to the possibility to have a 

portable solution. This is useful in many photogrammetric 

surveys and to assure a correct and automated identification of 

the image correspondences.  

This paper presents a new methodology to efficiently calibrate a 

digital camera using the ATiPE system, widely described in 

Barazzetti et al. (2010a) and Barazzetti (2011). ATiPE can 

automatically and accurately identify homologues points from a 

set of convergent images without any coded target or marker. A 

set of natural features of an existing object are used to 

determine the image correspondences. These image points are 

automatically matched with the implemented feature-based 

matching (FBM) approaches. The object should have a good 

texture in order to provide a sufficient number of tie points well 

distributed in the images. The operator has to acquire a set of 

images (12-15) with a good spatial distribution around an object 

(including 90o camera roll variations). Architectural objects 

(e.g. arcades, building facades, colonnades and similar) should 

be avoided because of their repetitive textures and symmetries. 

Big rocks, bas-reliefs, decorations, ornaments or even a pile of 

rubble are appropriate  (Figure 4).  
 

  
Figure 4. Examples of good calibration objects. 

 

ATiPE uses SIFT (Lowe, 2004) and SURF (Bay et al., 2008) as 

feature detectors and descriptors. A kd-tree search (Arya et al., 

1998) speeds up the comparison between the descriptors of the 

adopted FBM algorithms. The experimental tests demonstrated 

that points are rarely matched with convergence angles superior 

to 30-40°. A normal exhaustive quadratic comparison of the 

feature descriptors is a more robust approach in case of very 

convergent images. This is the most important drawback of the 

method, which leads to a long elaboration time. The global 

processing time is often unpredictable. It ranges from few 

minutes up to some hours for large datasets with very 

convergent images. 

 

 

4. EXAMPLES AND PERFORMANCE ANALYSES 

4.1 Practical tests 

Figure 5a shows a calibration testfield created with some coded 

targets. 16 images are acquired using a Nikon D700 

(4,256×2,832 pixels) equipped with a 35 mm Nikkor lens 

(focused at ∞).  The camera calibration solution was computed 

within Australis, which can automatically detected all the coded 

targets and compute the calibration parameters (Table 1) 

according to the 8-term mathematical model described in 

Section 2. The same images were then processed with ATiPE in 

order to extract a set of natural points randomly distributed in 

the scene (Figure 5b). The successive estimation of the bundle 

solution (within Australis) provided all calibration parameters 

with the camera poses and 3D points (Figure 5c and 5d). The 

corresponding calibration parameters and their precisions are 

equal and shown in Table 1. The project with targets 

comprehends 55 3D points (5 circles × 11 targets). The 

estimated theoretical accuracies along the x, y and z axis were 

1:83,000, 1:40,900 and 1:64,500, respectively. The processing 

with ATiPE provided for 2,531 3D natural points (at least 4 

images for each point; 1,356 points were matched in 6 or more 

images). The estimated theoretical accuracies along the x, y and 

z axis were 1:22,100, 1:6,500; 1:9,400, respectively. This 

disparity is motivated by the use of different matching strategies 

leading to different accuracy in the image measurements. The 

measurement of the centre of the targets is performed more 

precisely than natural points extracted using FBM methods. 

Indeed, as also stated by Fraser (1996), the accuracy of the 

computed object coordinates depends on the image 

measurement precision, image scale and geometry as well as the 

number of exposure. 

 

 Targets 

 Value Std.dev 

RMSE (µm) 0.89  

c (mm) 35.8970 ±0.005 

x0 (mm) -0.0973 ±0.004 

y0 (mm) -0.1701 ±0.004 

k1  6.97946e-005 ±6.0510e-007 

k2 -5.40867e-008 ±3.2964e-009 

k3  -1.21579e-011 ±5.4357e-012 

p1  -1.4449e-006 ±1.074e-006 

p2  -5.3279e-006 ±9.990e-007 

 

 ATiPE 

 Value Std.dev 

RMSE (µm) 2.97  

c (mm) 35.8891 ±0.003 

x0 (mm) -0.0703 ±0.002 

y0 (mm) -0.1716 ±0.002 

k1  6.97850e-5 ±3.6472e-7 

k2  -5.64321e-8 ±2.0338e-9 

k3  -5.65025e-12 ±3.4521e-12 

p1  -6.3586e-6 ±6.064e-7 

p2  -5.2057e-6 ±6.068e-7 
 

Table 1. Camera interior parameters estimated with the target-based 

approach and using ATiPE (targetless) method for a Nikon D700 

mounting a 35 mm lens. 
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a)   b)  

c)     d)    

Figure 5. The calibration polygon with iWitness/Australis targets (a). Tie points extracted by ATiPE using the natural texture of the scene (b). The 

bundle adjustment results achieved in Australis using coded target image coordinates (c) and natural features image coordinates (d). The recovered 

camera parameters of both approaches are reported in Table 1. 

 

Figure 6 shows another example of the experiments. The 

camera employed is a Nikon D200 with a 20 mm Nikkor lens. A 

set of 30 images was acquired, including coded targets to 

perform an automated camera calibration. The self-calibrating 

bundle adjustment with and without coded targets achieved very 

similar results for the interior parameters (Table 2). 
 

 

 
 

Figure 6. The scene used for the automated camera calibration with and 

without coded targets (top). The camera network of the targetless 

solution with the recovered camera poses and sparse point cloud 

(bottom). 

 

 Targets ATiPE 

 Value Std.dev Value Std.dev 

RMSE (µm) 1.01 - 3.63 - 

c (mm) 20.4367 0.003 20.4244 0.003 

x0 0.0759 0.002 0.0760 0.002 

y0 0.0505 0.003 0.0481 0.002 

k1 2.8173e-4 2.605e-6 2.7331e-4 2.5102e-6 

k2 -4.5538e-7 3.585e-8 -4.6780e-7 2.666e-8 

k3 -2.7531e-10 1.452e-10 -5.8892e-11 9.2528e-11 

p1 7.849e-6 2.113e-6 1.9942e-6 1.979e-6 

p2 -1.6824e-5 2.247e-6 -1.4358e-5 1.858e-6 
 

Table 2. Results for a Nikon D200 equipped with a 20 mm Nikkor lens, 

with and without targets. 

 

 

4.2 Accuracy analysis with independent check points 

The consistence and accuracy of the first targetless calibration 

experiement were verified using a special testfield composed of 

21 circular targets which are used as Ground Control Points 

(GCPs). Their 3D coordinates were measured with a theodolite 

Leica TS30, using three stations and a triple intersection to 

obtain high accuracy results. The standard deviation of the 

measured coordinates was ±0.2 mm in x (depth) and ±0.1 mm in 

y and z.  

A photogrammetric block of 6 images was also acquired. All 

target centres were measured via LSM to obtain sub-pixel 

precisions. The photogrammetric bundle adjustment was carried 

out with the two sets of calibration parameters. Both 

photogrammetric projects were run in free-net and then 

transformed into the Ground Reference System (GRS) using 5 

GCPs. The remaining 16 points were used as independent check 

points (ChkP) to evaluate the quality of the estimation 

procedure. The following quantities were computed for each 

ChkP:  
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∆x = xGRS - xPhoto, ∆y = yGRS - yPhoto, ∆z = zGRS - zPhoto   (9) 

 

The differences in both configurations are shown in Table 3. It 

can be noted that the behaviour is quite similar and the standard 

deviations of the differences along x, y and z are equivalent.  

 

 GRS – Targets 

 ∆x ∆y  ∆z  

Mean (mm) 0.15 0.59 -0.32 

Std.dev (mm) 0.43 0.75 1.45 

Max (mm) 0.83 1.58 2.22 

Min (mm) -0.55 -0.90 -2.43 

 GRS – ATiPE 

 ∆x  ∆y  ∆z  

Mean (mm) 0.16 0.61 -0.35 

Std.dev (mm) 0.40 0.77 1.44 

Max (mm) 0.81 1.62 2.12 

Min (mm) -0.46 -0.95 -2.42 
 

Table 3. Comparison between ChkP coordinates measured with a 

theodolite (GRS) and photogrammetric measurements with and 

without targets (ATiPE). The behaviour and the residuals are 

similar for both photogrammetric approaches. 
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Targets - ATiPE
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Figure 7. Graphical behaviour of the differences of the ChkP 

coordinates in the solution obtained using coded targets (a) and  natural 

features extracted with ATiPE (b). The differences between the target 

and targetless approach are shown in (c). 

 

It is also interesting that the differences are superior to 2 mm for 

some points. This is probably due to a residual movement of the 

targets during the data acquisition phase. Indeed, both reference 

data and images were acquired at different epochs. All targets 

are made of paper and probably there was a small deformation 

of this deformable material. This is also demonstrated by the 

coherence of both photogrammetric projects (Figure 7).  

The coordinates of both photogrammetric projects were then 

compared. They confirm the consistence between these 

calibration datasets. A graphical visualization of the differences 

between the ATiPE procedure (targetless) and the estimation 

based on targets is shown in Figure 7. 

 

4.3 Analysis of covariance and correlation matrices 

The use of a free-net bundle adjustment for the estimation of the 

calibration parameters leads to a modification of the general 

form of the least squares problem. In some cases, if the network 

geometry is not sufficiently robust to incorporate all calibration 

parameters (basic interior plus the APs), the adjustment can 

provide highly correlated values. Therefore, a statistical 

evaluation of the obtained APs is always recommended (Gruen, 

1981; Jacobsen, 1982; Gruen, 1985). This can be carried out by 

using the estimated covariance matrices and not only with the 

independent analysis of the standard deviations of each single 

unknown (Cox and Hinkley, 1976; Kendall, 1990; Sachs, 

1984). 

In the following,  the dataset with targets is used as reference, as 

it can be assumed as the current state of the art for traditional 

photogrammetric calibrations. In particular, CT is the 8×8 

covariance matrix of all calibration parameters estimated using 

targets. The covariance matrix with the targetless procedure is 

named CA (A = ATiPE). The aim is to demonstrate that CT and 

CA are similar, in order to confirm the consistence of both 

calibrations. There exist several criteria for comparing 

covariance matrices, e.g. different distances d(CT, CA) which 

depend on the choice of the model employed. However, it is 

quite complicated to understand when d is small, especially if 

the estimated values have different measurement units. A 

possible solution could be to use the eigenvalues λi of the 

covariance matrices, in order to obtain new diagonal matrices 

that can be compared (Jolliffe, 2002). According to this 

procedure, the directions of the principal axes of the confidence 

ellipsoids are given by the eigenvectors. 

To check the equality of the covariance matrices, the 

Hotelling’s test could also be used: 
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where m is the number of data and n the number of calibration 

parameters (8 in this case). For both matrices the ratio of the 

values given by Eq. 10 was estimated, obtaining a large 

disparity between CT and CA because of the different number of 

observations used during the estimation of the photogrammetric 

bundle solutions. To understand better the results achieved with 

both calibration procedures it is possible to use the correlation 

matrix R. It is well-known that some calibration parameters are 

highly correlated, e.g. the coefficient ki modelling radial 

distortion. In addition, there is a projective coupling between p1 

and p2 with x0 and y0, respectively. The experimental results 

provided two correlation matrices (RT, RA) very similar, where 

the correlations between the listed parameter configurations are 

quite strong (>0.8), although the targetless procedure seems 

slightly better (Table 4).  
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RT c xp yp K1 K2 K3 P1 P2 

C 1        

xp 0.13 1       

yp -0.01 -0.06 1      

K1 0.22 0.05 -0.01 1     

K2 -0.27 -0.04 -0.05 -0.97 1    

K3 0.24 0.03 0.07 0.93 -0.99 1   

P1 -0.21 -0.91 0.08 -0.11 0.1 -0.09 1  

P2 -0.01 0.04 -0.93 0.01 0.03 -0.04 -0.06 1 

 

RA c xp yp K1 K2 K3 P1 P2 

c 1        

xp 0.02 1       

yp -0.04 -0.03 1      

K1 0.02 0.02 0.05 1     

K2 -0.09 -0.01 -0.04 -0.96 1    

K3 0.09 0.01 0.03 0.9 -0.98 1   

P1 -0.03 -0.86 0.05 -0.02 0.02 -0.02 1  

P2 0 0.03 -0.87 -0.09 0.06 -0.05 -0.04 1 

 
Table 4. The correlation matrices estimated with targets (top) and 

ATiPE (bottom). 

 

For the remaining parameters, the correlations are instead 

correctly reduced. A consideration deserve to be mentioned: in 

the case of uncorrelated parameters the relationship det(R) = 1 

must be verified. Therefore, a simple general criterion to assess 

the quality of these covariance matrices can be the simple 

comparison of the determinants: 

 

det(RT) = 1.3·106  < det(RA) = 7.1·105 

 

This values are quite similar, because the matrices look quite 

similar. Therefore test the equality of the correlation structures, 

a multi-dimensional statistical analysis should be employed. 

Lawley’s procedure (1963) requires the estimation of the 

following statistic: 

 

∑∑
−

= +=








 +
−−=

1

1 1

22

6

52
1

n

i

n
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where m is the number of data and n the number of calibration 

parameters (8 in this case). The application of this criterion 

shows that CA and CT are not equal (the ratio between the χ2 

values is superior to 40), but this is mainly due to the different 

number of observations between the procedures (e.g. 55 3D 

points with the target-based method, 7,593 with ATiPE). The 

estimation of the ratio log(det(R(A))/log(det(RT)) ≈ 32 confirms 

the previous results. 

In summary, the statistical interpretation of the results is quite 

difficult because of the different numbers of input data. The 

comparison between different sets of calibration parameters 

using total station measurements is probably a better factor to 

check the final quality of the targetless calibration parameters.  

 

 

5. CONCLUSION 

This paper has presented a new procedure for camera 

calibration based on the natural texture of an object which has 

to be properly selected. The method can also be assumed as the 

initial step for a complete 3D reconstruction pipeline of some 

categories of objects. It is worth noting that different phases of 

the “reconstruction problem” can be now carried out in a fully 

automated way.  

The proposed methodology for camera calibration is not based 

on targets, but it is capable of providing the unknown camera 

parameters values with the same theoretical accuracy of the 

more familiar target-based procedure. It has also been proved 

that the larger number of tie points extracted for computing self-

calibration gives rise to slightly smaller correlations among the 

parameters. But further statistical analyses should be performed. 

The key-point leading to a successful calibration is (i) the 

selection of a proper object featuring a good shape and textures 

and (ii) the acquisition of a set of images which results in a 

suitable image block geometry.  

For industrial and highly-precise photogrammetric projects, the 

target-based camera calibration procedure will probably remain 

the standard solution while for many other 3D modeling 

applications, the presented method can be the ideal solution to 

speed up the entire photogrammetric pipeline, avoid targets and 

allow on-the-job self-calibration in a precise and reliable way. 
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