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ABSTRACT: 
 
In this paper, a fully automatic 3D surface scanner, from point collection to point cloud registration and smoothing, is presented. The 
system is composed by a camera pair, which is calibrated automatically, and a hand-held laser plane. On epipolar images, generated 
from the stereo-frames taken as the object is being swept over by the laser plane, the search for point correspondences is reduced to 
identifying intersections of image rows with the recorded laser profiles. A variation of fitting Gaussian curves to the gray-value data 
along epipolar lines allows estimating peak positions by also using information from the vicinity of the peak. 3D reconstruction by 
simple stereovision is strengthened geometrically by imposing additional coplanarity constraints. All unknowns for a scanning po-
sition are estimated simultaneously in a single iterative adjustment. In order to register point clouds from different scan positions, the 
ICP algorithm is applied. Initial values for ICP are obtained automatically by using images acquired from adjacent scanning positions. 
For this, SIFT points on images of overlapping scans are extracted, matched and related to the scans to provide 3D point corres-
pondences, which allow the required approximate 3D registration. The tools employed here for surface smoothing are also presented. 
Finally, examples are given to illustrate the performance of described methods.  
 
 

1. INTRODUCTION 
 
Several automatic scanning techniques have been reported for 
generating 3D surface models. Forest & Salvi (2002) and Blais 
(2004) refer to image-based scanners, commercial and low-cost 
ones. The most common techniques are the structured light and 
the slit-scanner approaches. The latter includes several systems 
(Bouguet & Perona, 1998; Zagorchev & Goshtasby, 2006; Win-
kelbach et al., 2006) with means to orient the planes generated 
by a hand-held surface-profiling device. Kawasaki & Furukawa 
(2007) use the fact that laser lines define coplanar profiles and 
exploit coplanarity information from object planes in the scene 
to calibrate their system and acquire the 3D surface model. 
 
These scanners, including ours (Prokos et al., 2009 and 2010), 
require object scanning from different viewpoints to generate a 
watertight model (for a different approach see Rusinkiewicz et 
al., 2002). In order to register separate point clouds, tools such 
as the Iterative Closest Point algorithm (developed by Besl & 
McKay, 1992, Chen & Medioni, 1992, and Zhang, 1994, based 
on Arun et al., 1987) are applied. Assuming initial estimates for 
the rigid body transformation parameters, the ICP algorithm es-
tablishes correspondences between the two overlapping point 
clouds and estimates the rotation and translation that minimize 
the distances between corresponding points. Variations of ICP in 
literature address some of its reported problems (Campbell & 
Flynn, 2001; Rusinkiewicz & Levoy, 2001).  
 
The initial estimates for the rotation and translation between the 
two point clouds needed for ICP can be found manually or auto-
matically. Faugeras & Hebert (1983) register point clouds after 
object recognition in the overlapping part of the clouds. Johnson 
& Hebert (1997) create spin images of the clouds and use them 
to obtain initial estimation. Mian et al. (2004) divide the cloud 
into sections by a uniform grid, calculate a fourth order tensor 
for each grid cell and establish correspondences between tensors 
using correlation. Similar to the SIFT algorithm (Lowe, 2004), 
Taati et al. (2007) propose local 3D descriptors and their use in 
the two point clouds for finding correspondences, with the help 
of RANSAC to remove outliers.  

On the other hand, radiometric methods are based either on RGB 
information from a camera mounted on a scanner or on intensity 
values provided by certain scanners or on their combination (as 
in Forkuo & King, 2004). A manual process illustrating the geo-
metry of the method is that of Al-Manasir & Fraser (2006). The 
camera–scanner setup is initially calibrated and point clouds are 
then registered with relative orientation of images from the two 
scan positions, based on image matches collected manually. In 
contrast, Kang et al. (2007) have suggested an iterative automa-
tic method for point cloud registration from images using points 
extracted via the Moravec operator and initial correspondences 
found through correlation. The algorithm was further developed 
(Kang & Zlatanova, 2007; Kang et al., 2009) by changing to pa-
noramic images using the SIFT detector. Böhm & Becker (2007) 
also use the SIFT detector to extract points on imagery as well as 
on intensity images provided by the scanner so that point clouds 
and images are both registered in one step. In Wang & Brenner 
(2008) SIFT points on the reflectance images of the scanner are 
extracted and evaluated separately based on mean and Gaussian 
curvatures to exclude false matches. The approach adopted here 
is similar to that of Barnea & Filin (2007), who use information 
from a camera mounted on the scanner to register point clouds 
taken from different viewpoints. Using the SIFT detector, image 
points are extracted, and the estimated correspondences are vali-
dated using RANSAC. For implementing rigid body transforma-
tion, image correspondences are transferred to 3D space by pro-
jection of the point clouds on the respective images. 
 
Generally, before or after point cloud registration a smoothing 
procedure follows for reducing the effect of noise. It is a process 
where the points of a set move in order to create a new point set 
which satisfies some specified conditions maintaining the initial 
topology. Among the first methods is Laplacian smoothing (see 
Buell & Bush, 1972), in which points move to the center weight 
of their neighbouring points. Several variations of this method 
have been reported (e.g. Blacker & Stephenson, 1991, propose 
different weights for each neighbouring point in calculating the 
mean). A limitation of Laplacian smoothing lies in the fact that 
the topology of points close to concavities (gaps) in the model 
may change. To avoid such cases Field (1988) and Canann et al. 
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(1997) have proposed a conditional movement of each point. In 
addition, Laplacian smoothing tends to alter the size of the ori-
ginal point set by reducing its external dimensions. Therefore, 
Vollmer et al. (1999) suggest that for each point a new position 
is calculated as described by Laplacian smoothing, and then the 
point returns using the opposite resultant motion of its neigh-
bouring points. Another simple smoothing method is designed 
to equally distribute the angles of each point with its neighbours 
(Radi & Selberherr, 1998). Finally, Yamada et al. (1996) treat a 
point set as a force field similar to the physical binding forces 
between atoms in order to produce a smooth mesh. 
 
These methods treat the problem in an isotropic manner. How-
ever, several researchers have proposed anisotropic solutions to 
smoothing of point clouds. Lange & Polthier (2005) produce a 
smooth point cloud using an anisotropic geometric mean curva-
ture flow, while for Zhang et al. (2006) the point cloud data has 
temperature field attributes that allow heat to be conducted only 
inside the field with no outward effect, which for a point cloud 
means that smoothing solely affects local area, while retaining 
feature boundary information. Means used here for smoothing 
are described in Section 4. 
 
 

2. POINT CLOUD GENERATION 
 
Our scanning system has been presented in Prokos et al. (2009, 
2010). Here its main features are outlined. It consists of a pair of 
web cameras in a fixed relative position and a hand-held laser 
plane generator, which helps establish point correspondences by 
coding the scene. The camera system is calibrated automatically 
using stereo pairs of a planar chessboard pattern. Nodes are ex-
tracted using the Harris operator and ordered with the help of a 
red chess square. System geometry (namely, camera parameters 
and scaled relative orientation) is found by bundle adjustment. 
 
For scanning, stereo pairs are continuously taken from each po-
sition of the static camera pair as the laser plane is being slowly 
swept manually over the object surface. Optionally, the object is 
placed at the intersection of two (unknown) background planes. 
Hence, synchronized frames capture the object, the background 
planes and the laser trace (Fig. 1). The latter is isolated on each 
frame by subtracting a background reference frame (produced 
using a temporal median approach). Eventually these reference 
frames are used for supplying point clouds with photo-texture, 
but also for automatic initialization of the ICP algorithm as dis-
cussed later. All frames then undergo a noise reduction process 
and are transformed with their stereo mates to epipolar pairs. 
 

Figure 1. A typical stereo pair used in the scanning process.  
 
Homologue points are found as intersections of the laser profile 
with (epipolar) image lines, which represents a peak detection 
task. Several peak detection approaches are found in literature 
(Fisher & Naidu, 1996). Here, a Gaussian curve is fitted directly 
to the intensity values of each row. To relax the strictness of 1D 
interpolation, two further Gaussian curves with common peak 
position are simultaneously adapted in the directions of the two 
main diagonals through the initial peak estimation. In this way, 

estimated peaks remain on the epipolar lines, but are influenced 
also by gray values from the surroundings of the initial estima-
tion. This appears to allow better peak localization (≤0.1 pixels); 
consequently, peaks showing large a posteriori errors in curve 
fitting can be safely excluded from 3D reconstruction. 
 
The parallax equations applied to epipolar images yield 3D co-
ordinates without redundancy. Reliability is enhanced by intro-
ducing extra geometric constraints. Thus, all 3D points obtained 
from a single laser profile are bound to be coplanar (on the laser 
plane). Also, points on a background plane must simultaneously 
satisfy its equation (this constraint is optional). Third, all neigh-
bouring reconstructed 3D points have to be close to each other 
(neighbours are identified by means of a window in one of the 
cameras). These constraints introduce significant redundancy in 
the adjustment, thereby allowing higher accuracy and reliability.  
 
Prior to object scanning the background planes must be scanned 
to provide estimates for their equation coefficients. On the other 
hand, initial values for all 3D point coordinates are given by the 
parallax equations, which allow finding approximations for the 
coefficients of the laser planes. It is then possible to classify all 
points in three groups (on background planes and on the object). 
Next, a single iterative 3D reconstruction adjustment is carried 
out. All laser traces imaged from a particular viewpoint are ad-
justed together, with individual points forced to belong to their 
(unknown) laser plane, while points on background planes are 
also constrained to lie on the (unknown) corresponding plane. 
Hence, unknowns include the X and Z coordinates of all points 
(the Y coordinate is constrained by epipolar geometry) of the N 
profiles plus 3×N coefficients of the laser planes plus 6 coeffi-
cients of the background planes (these are common unknowns 
for all laser profiles). It is noted that, in order to have more and 
better distributed observations on background planes, images of 
the planes alone (without the object) are also included in the ad-
justment. Finally, an additional optional step is to back-project 
all 3D surface points onto the reference images for interpolating 
colour values which complement the 3D data to allow visualiza-
tion of a textured XYZ–RGB set. 
 
 

3. POINT CLOUD REGISTRATION 
 
Scans from different view-points (for each new scan the object 
is rotated and/or translated against the stationary camera pair) 
are registered to each other via the ICP algorithm. Approximate 
values for initialization of ICP are obtained by exploiting texture 
information from the reference stereo pairs as follows. The fact 
that the overlap among adjacent point clouds is sufficient for the 
application of ICP also means that on the respective reference 
images a substantial overlap exists between the two scans. Each 
individual point cloud is expressed in the 3D system of the left 
camera; furthermore, the fixed geometry of the camera pair is 
known. Therefore, if the orientation of any of the two cameras 
of a scanning position with respect to any of the two cameras of 
an adjacent scanning position is found, good initial values for 
point cloud registration would be available. If, furthermore, the 
overlapping object area has sufficient texture to allow extraction 
of SIFT points (Lowe, 2004), their descriptors allow establishing 
image point homologies. These are then refined using RANSAC 
(Fischler & Bolles, 1981, Hartley & Zisserman, 2000) to satisfy 
the epipolar geometry of the stereo pair, i.e. only inlying corres-
pondences of the fundamental matrix of the image pair (or its 
essential matrix since camera geometry is known) are kept. 
 
Of course, extracted SIFT points may refer not only to the object 
surface but also to the background planes. From the scanning 
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process, background images of the two exterior planes and the 
object from each scanning position are available. By subtracting 
these images, thresholding the result and successively applying 
erosion, dilation and closing operations, the silhouette of the ob-
ject emerges (Fig. 2). This region serves as a mask for extracted 
points, i.e. only points inside it may participate in determining 
the registration parameters of the two images (strictly speaking, 
of the two point clouds). Obviously, points may also be detected 
in the shadow cast by the object (Fig. 2). In our implementation, 
all four possible combinations of the images of adjacent stereo 
pairs are checked to find the best solution. If the two left or the 
two right images of adjacent pairs are used, the matched points 
in the shadow will have practically the same image coordinates 
and may be directly excluded; else, it is expected that such out-
liers will be detected in the RANSAC process. 
 

Figure 2. Above: reference image (left) and background planes 
(right). Below: subtraction of these images (left) and silhouette 
of the object (right), which includes its shadow. 
 
To the actual problem of finding initial values for point cloud 
registration there are two possible approaches. First, the rotation 
and translation extracted linearly (from the fundamental or the 
essential matrix) can be refined iteratively in a relative orienta-
tion adjustment and then used for point cloud registration. The 
scale factor can be estimated by extending 2D point homologies 
to 3D space (the relation between images and scanned object is 
known) and comparing distances in stereo model and scans. Yet 
this process appears to be error-prone. While rotation between 
clouds is adequately estimated, translation may be incorrect due 
to noisy estimation of scale. Alternatively, the translation can be 
directly calculated from the center-weights of the corresponding 
3D point sets. 
 
A straightforward approach adopted here relies directly on rigid 
body transformation; matched imaged points simply serve as an 
intermediate step towards finding 3D homologies. This is done 
by using in a window around a matched image point all known 
2D–3D correspondences to interpolate the 3D point. Rigid body 
transformation is solved linearly (Arun et al., 1987) and refined 
iteratively. Thus, ≥3 SIFT point correspondences must be trans-
ferred to 3D. In some cases image points cannot be upgraded to 
3D due to occlusions or because they are in object regions not 
scanned (scanning needs a threefold visibility, i.e. from both 
cameras and the laser plane). If needed, therefore, the previous 
approach is used, which requires only one 3D point correspon-
dence for the translation. Of course, both approaches require ≥7 
image point homologies for the fundamental matrix, yet it is not 
necessary for all but one of the 2D correspondences for the first 
approach, and three for the second, to be upgraded to 3D space. 

Our scanner with two cameras allows the creation of four stereo 
pairs between two scan positions. In a typical case, for instance, 
where the next position is a result of a clockwise rotation of the 
object, the stereo pair most suitable for establishing homologies 
is that of the right image of the first scan and the left image of 
the second scan. However, the procedure is also performed for 
the other three possible stereo pairs and, if correspondences are 
found, the averaged translation and rotation calculated from all 
are used as initial approximations for ICP. 
 

Figure 3: Matched points on the right image from the first scan 
position and the left image from the second scan position. 
 

 
Figure 4: Point clouds before and after approximate registration. 
 

Figure 5: Textured scans after initial registration and after ICP. 
 

Figure 6: Matched points on pairs formed by the right image of 
the first scan position (left) with the left image (above) and the 
right image (below) of the second scan position. 
 
Fig. 3 presents the 15 point correspondences of an image pair, 
used for finding initial values for rigid body transformation. The 
resulting approximation brings the point clouds close enough to 
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each other (Fig. 4) to allow ICP to function. Fig. 5 illustrates the 
triangulated surface after approximate registration and after ICP 
has been carried out. 
 

Figure 7: Point clouds before and after approximate registration.
 
Finally, in Fig. 6 a further example is given, in which one image 
of a stereo pair has been combined with both images of another 
pair. It is clear that the distribution of the matched SIFT points is 
unfavourable (almost in one direction); even so, it was possible 
to extract approximate values for rigid body transformation suit-
able for the initialization of ICP (Fig. 7). 
 
 

4. POINT CLOUD SMOOTHING 

The immediate result of scanning is an unstructured point cloud 
in the sense that no actual surface has been generated yet, i.e. all 
points, even if their calculation has relied on their neighbours, 
remain autonomous entities (Fig. 8a). Our goal here is to con-
struct a simple topology for each point, consisting of the know-
ledge of the neighbouring points and a vector for producing an 
‘oriented point’ (to use a term of Johnson & Hebert, 1997). For 
each point its neighbours are found by a distance threshold (Fig. 
8b). If at least two neighbours are found, a plane is fitted and its 
normal is assigned to the point (Fig. 8c). This is repeated for all 
points of the cloud (Fig. 8d). It is assumed that the displacement 
of points due to smoothing should be limited in the direction of 
their vector; the amount of movement used here equals to the 
residual of the point in plane fitting. 
 

Figure 8. Initial point cloud (a); neighbours found with distance 
thresholding (b); fitted plane, its normal given to the point (c);
procedure repeated for all points of the cloud (d). 
 
For more free-formed surfaces, this assumption of a piecewise 
planar surface can be replaced by a higher order approximation. 
A simple approach would be to keep the direction of the point 
vector obtained by plane-fitting as the local z-axis and apply an 

equation of the elliptical paraboloid which is linear in z (every 
point must now have at least 5 neighbours):  
 

z = ax2 + by2 + cxy + dx + ey + f 
 
The amount of displacement is equal to the residual of the point 
in this surface fitting process. Results of these two smoothing 
algorithms are seen in Fig. 9 (where, for visualization purposes, 
the noise of the initial point cloud has been generated by mis-
aligning two overlapping point sets). It is seen that the use of a 
higher order equation produces here a smoother result. 
 

Figure 9. Initial point cloud (above); smoothing using the plane 
fitting (left) and using fitting of elliptic paraboloids (right). 
 
These smoothing processes utilize the surface geometry only to 
supply each point with a vector. However, vectors might also be 
combined in order to determine the percentage of displacement. 
The mean angle between each vector and its neighbouring ones 
may dictate this percentage: if vectors are parallel, the displace-
ment calculated above is directly given to the point; the further 
are neighbouring vectors from parallelism, the less displacement 
is given to the point in question. In calculating the mean angle, 
neighbouring vectors have weights proportional to their points’ 
distance from the point. This approach is currently under study. 
 
In the process of point cloud generation efforts are made to keep 
the number of outliers possibly small, either by rejecting points 
in the peak detection phase or during the adjustment itself. Even 
so, outlying points are present after scanning. Such points are 
often isolated, i.e. without closely neighbouring points. Thus, if 
the search for neighbours of a point returns no points, this point 
can be removed. If, on the other hand, sufficient neighbours are 
found to allow surface-fitting and the residual deviation of the 
point from the local surface is ≥5 times larger than the standard 
error of the adjustment, then this point can also be removed. 
 
 

5. CONCLUSION 
 
We have developed a photogrammetric range-finder based on 
stereovision and the slit-scanner principle, realized by a hand-
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held planar laser beam. The procedure is fully automatic, from 
data collection to complete 3D point cloud generation, with the 
user moving the laser plane over the object. The accuracy and 
reliability of 3D reconstruction is strengthened by introducing 
additional geometric constraints (Prokos et al., 2009, 2010). The 
scans from different positions are to be unified with point cloud 
merging algorithms such as ICP; these need approximate values 
for rotation and translation between individual scans. In order to 
automate this procedure image content is exploited. The orienta-
tion of any of the two cameras of a scanning position with re-
spect to any of the two cameras of an adjacent position suffices 
for providing approximate values for 3D registration. Assuming 
sufficient surface texture, SIFT and RANSAC algorithms allow, 
in principle, to establish valid point matches by calculating the 
fundamental matrix of the pair. Scan orientation can be obtained 
from the fundamental matrix, with scale being estimated by ex-
tending image correspondences to 3D. Alternatively, these cor-
respondences may be used in a more direct approach by subject-
ing point clouds to a rigid body transformation. Tests have indi-
cated good initial registration among scans, allowing the ICP al-
gorithm to refine the solution. Finally, clouds are smoothened 
using simple techniques assuming that object surface is locally a 
plane or an elliptical paraboloid. This determines the magnitude 
and direction of point displacement in the smoothing process. 
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